
Alchini

Capitolo 9
Chimica Organica, 8ª Edizione
John E. McMurry

Struttura e Legame

- Idrocarburi insaturi contenenti un triplo legame
- Formula generale: C_nH_{2n-2}
- Il triplo legame introduce due gradi di insaturazione

- il legame σ C-C è formato per sovrapposizione in linea di due orbitali sp
- Ogni legame π è formato per sovrapposizione in parallelo di due orbitali 2p

Struttura e Legame

Gli alchini sono più reattivi degli alcheni

$$H_2C = CH_2 \longrightarrow H_3C - CH_3$$
152 Kcal/mol - 88 Kcal/mol = 64 Kcal/mol

 $HC = CH \longrightarrow H_2C = CH_2$
200 Kcal/mol - 152 Kcal/mol. = 48 Kcal/mol

- I due legami π di un triplo legame sono più deboli di un legame σ C-C, per cui si rompono molto più facilmente.
- Come conseguenza gli alchini danno più reazioni di addizione.
- Gli alchini sono più polarizzabili degli alcheni perchè gli elettroni π sono più debolmente legati.

Struttura e Legame

- I cicloalchini con anelli piccoli sono instabili.
- Il Cicloottino è il più piccolo cicloalchino isolabile, però decompone facilmente a temperatura ambiente.

Per accomodare un triplo legame in un anello, deve avvenire un piegamento dei legami dei due C sp, questo destabilizza la molecola

Nomenclatura

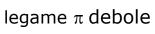
Proprietà fisiche

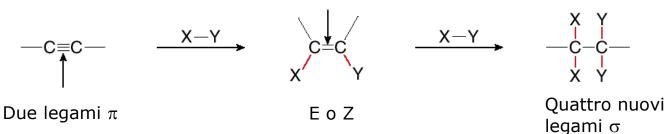
- Le proprietà fisiche degli alchini sono simili a quelle di idrocarburi con la stessa forma e peso molecolare.
- Gli alchini sono apolari, hanno bassi p.eb e p.f., che aumentano con il numero di atomi di C.
- Gli alchini sono solubili in solventi organici e insolubili in H₂O.

Acetilene

• La combustione dell'acetilene rilascia più energia per mole di $\rm O_2$ consumata di ogni altro idrocarburo. Esso brucia con una fiamma molto calda (3300 °C) ed è un eccellente combustibile.

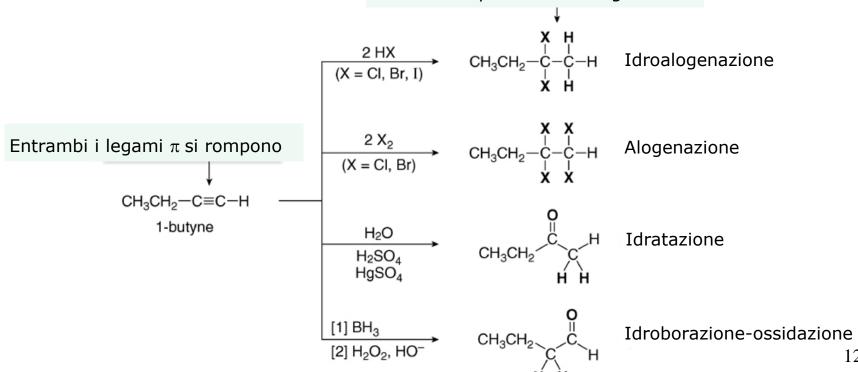
Reazione	Δ H/mol O_2 (Kcal/mol)
$H_3C-CH_3 + 7/2 O_2 \longrightarrow 2 CO_2 + 3 H_2O$	-442
$H_2C=CH_2 + 3O_2 \longrightarrow 2CO_2 + 2H_2O$	-467
$HC \equiv CH + 5/2 O_2 \longrightarrow 2 CO_2 + H_2O$	-520


Preparazione di Alchini


Gli alchini vengono preparati mediante reazioni di eliminazione.

Dialogenuro geminale

$$CH_3$$
— C — C — C — CH_3 base CH_3 — C = C — CH_3 Dialogenuro vicinale


Reazioni degli Alchini — Addizioni

Si formano quattro nuovi legami σ

12

Idroalogenazione

Fase [1] Addizione di HBr per formare un vinilalogenuro

Fase [2] Addizione di HBr per formare un dialogenuro geminale

Più veloce

(si forma il carbocatione secondario, più stabile)

La carica positiva è delocalizzata

13

Reattività di Alchini

1. Idroalogenazione (Addizione elettrofila di acidi alogenidrici)

Non è regioselettiva con alchini interni, a meno che non siano simmetrici

Alogenazione

Fase [1] Addizione di X₂ per formare dialogenuro vicinale trans

Ione alonio a ponte

Fase [2] Addizione di X₂ per formare un tetraalogenuro

Ione alonio a ponte

Idratazione-Tautomeria cheto-enolica

Equilibrio tautomerico

L'equilibrio favorisce la forma chetonica perchè il C=O è molto più forte di un C=C.

Due tautomeri sono isomeri costituzionali che differiscono per la posizione di un doppio legame e di un atomo di idrogeno. Due tautomeri sono speci all'equilibrio

enolo chetone

Tautomeria cheto-enolica

$$C = C$$
 $O = H$
 $O = H$

16

Idratazione

Regioselettiva

I due intermedi carbocationici hanno diversa stabilità

I due intermedi carbocationici hanno stabilità simile

Idroborazione—Ossidazione

$$\begin{array}{c|c} H_2B-H \\ \hline \end{array} \qquad \begin{array}{c} H_2B \\ \hline \end{array} \qquad \begin{array}{c} H \\ \end{array} \qquad \begin{array}{c} H_2O_2, OH \\ \end{array} \qquad \begin{array}{c} H \\ \end{array} \qquad \begin{array}{c} O \\ \end{array} \qquad \begin{array}{c} O$$

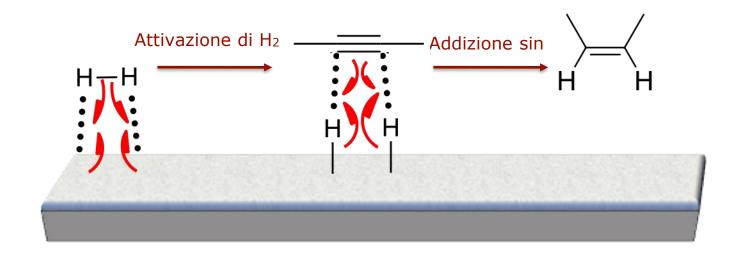
$$\begin{array}{c} H_2 \\ H_-B \\ \hline \\ \hline \end{array} \qquad \begin{array}{c} H_2 \\ \hline \\ \end{array} \qquad \begin{array}{c} H_2 \\ \hline \\ \end{array} \qquad \begin{array}{c} H_2 \\ \hline \\ \end{array} \qquad \begin{array}{c} O \\ \hline \end{array} \qquad \begin{array}{c} O \\ \hline \\ \end{array} \qquad \begin{array}{c} O \\ \hline \end{array} \qquad \begin{array}{c} O \\ \hline$$

Alchino interno

2 isomeri

Riduzione di alchini

1. Addizione di due equivalenti di H₂ forma un alcano


$$R-C = C-R \xrightarrow{H_2} R-C-C-R$$
alkane

2. Addizione sin di un equivalente di H₂ forma un alchene cis

3. Addizione anti di un equivalente di H₂ forma un alchene trans

$$R-C\equiv C-R$$
 H_2 H R anti addition trans alkene

Idrogenazione catalitica

Idrogenazione catalitica - prodotti

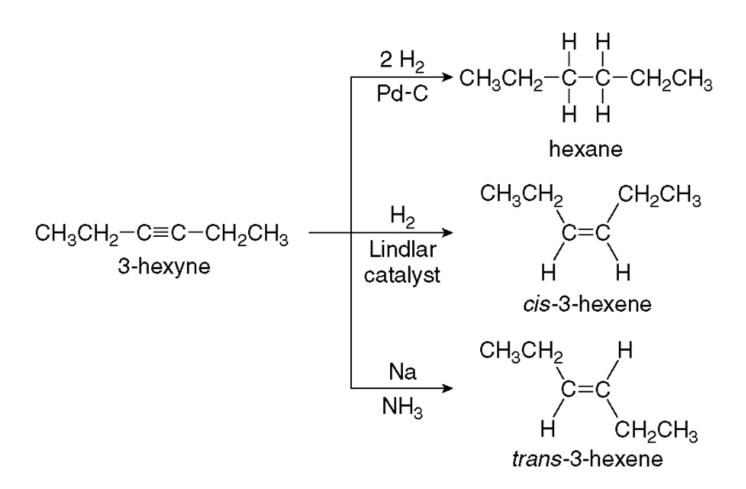
Alcani

$$CH_{3}-C\equiv C-CH_{3} \xrightarrow{H_{2}} \begin{bmatrix} CH_{3} & CH_{3} \\ H & C=C \end{bmatrix} \xrightarrow{H_{2}} CH_{3} \xrightarrow{H_{2}} CH_{3} \xrightarrow{H_{1}} H \xrightarrow{H_{1}} H$$

Cis-Alcheni:

- Il Pd o Pt metallici sono molto reattivi e l'addizione di H2 procede fino alla formazione dell'alcano.
- Usando un catalizzatore di Pd meno reattivo si ha addizione di un solo equivalente di H2 e formazione di un alchene cis. Il catalizzatore è Pd adsorbito su CaCO₃ e «avvelenato» con Pb(II) acetato e chinolina. E' chiamato catalizzatore di Lindlar. (Lindlar's catalyst).

Riduzione con Na in NH₃ liquida


Steps [1] e [2] Addizione di un elettrone e un H⁺ per formare un radicale

$$R-C \equiv C-R$$
 $= C-C-R$ $=$

Steps [3] e [4] Addizione di un elettrone e un H⁺ per formare un trans alchene

Example
$$CH_3-C\equiv C-CH_3$$
 Na NH_3 CH_3 CH_3

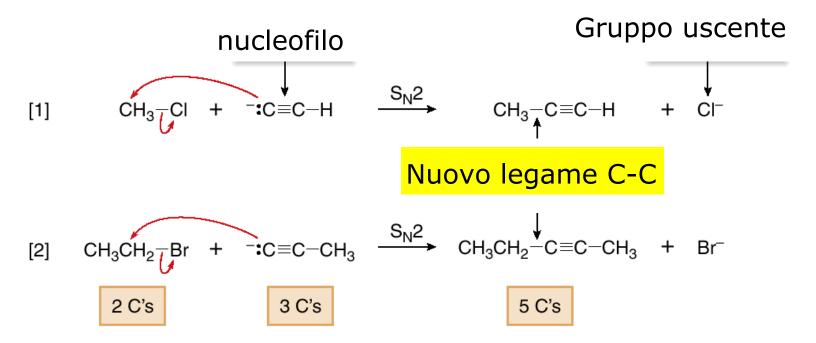
Sommario delle riduzioni di alchini

Scissione ossidativa degli alchini

- Alchini interni sono ossidati ad acidi carbossilici (RCOOH).
- Alchini terminali sono ossidati a un acido carbossilico e CO₂

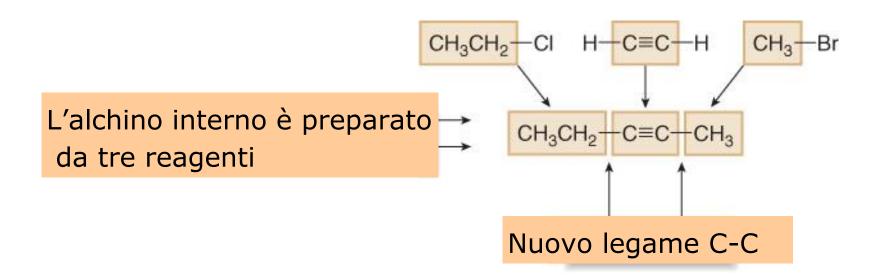
Anioni Acetiluro

$$R-C\equiv C-H$$
 + :B \Rightarrow $R-C\equiv C$: + $H-B^+$ Alchini terminali Ione acetiluro


pKa circa 25

		Base	pK _a of the conjugate acid
Queste basi sono sufficientemente forti per deprotonare un alchino terminale	{	⁻NH₂ H⁻	38 35
Queste basi <i>non</i> sono sufficientemente forti per deprotonare un alchino terminale	{	⁻OH ⁻OR	15.7 15.5–18

Anioni Acetiluro


 Anioni acetiluro sono forti nucleofili e reagiscono con metilalogenuri e alogenuri primari per dare prodotti di sostituzione nucleofila

Gli acetiluri non reagiscono con alogenoalcani secondari o terziari

La sostituzione nucleofila con un acetiluro forma un legame C-C

Anioni Acetiluro

