
Amortised Analysis

Chapters 17.1-17.2 of Cormen’s book

Giulia Bernardini

giulia.bernardini@units.it

Algorithmic Design

a.y. 2022/2023

mailto:giulia.bernardini@units.it

Amortised analysis
In an amortised analysis, we average the time required to perform
a sequence of operations over all the operations performed.

With amortised analysis, we can show that the average cost of an
operation over a sequence of operations is small, even though a
single operation within the sequence might be expensive.

Probability is not involved; an amortised analysis guarantees the
average performance of each operation in the worst case.

Graphs

Chapter 22 of Cormen’s book

Giulia Bernardini

giulia.bernardini@units.it

Algorithmic Design

a.y. 2022/2023

mailto:giulia.bernardini@units.it

BFS: Pseudocode
BFS(G,s) - G is represented by the adjacency lists Adj[] of its vertices

for each u V {s}
u.color white;
u.distance ;

s.color gray;
s.distance 0;
Q ;
enqueue(Q,s);
while Q

u dequeue(Q);

for each v Adj[u]

if v.color = white

v.color gray;
v.distance u.distance + 1;
enqueue(Q,v);

u.color black;

⋅
∈ ∖
←

←∞
←

←
←∅

≠ ∅
←

∈

←
←

←

Initialisation

Visit of the source

Visit of the other vertices

BFS: Complexity
BFS(G,s) - G is represented by the adjacency lists Adj[] of its vertices

for each u V {s}
u.color white;
u.distance ;

s.color gray;
s.distance 0;
Q ;
enqueue(Q,s);
while Q

u dequeue(Q);

for each v Adj[u]

if v.color = white

v.color gray;
v.distance u.distance + 1;
enqueue(Q,v);

u.color black;

⋅
∈ ∖
←

←∞
←

←
←∅

≠ ∅
←

∈

←
←

←

Initialisation: O(|V|)

Visit of the source: O(1)

Visit of the other vertices:

each iteration of the for loop
enqueues v Adj[u] only if

it is white, and it
immediately turns its color
to gray each vertex is
inserted in Q at most once.

Cost of the while loop:

O =O(|E|)

∈

⟹

(∑
u∈V

|Adj[u] |)

O(1) O(|Adj[u]|)

Breadth-First Search
The visiting order is related to the distance from a source node:
the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the
shortest paths from the source to any reachable node

White nodes have not been discovered yet;

b

C

d e

f

g

f

f fs

Breadth-First Search
The visiting order is related to the distance from a source node:
the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the
shortest paths from the source to any reachable node

White nodes have not been discovered yet; gray nodes have
been discovered but have undiscovered neighbours;

b

C

d e

f

g

f

0 fs

Breadth-First Search
The visiting order is related to the distance from a source node:
the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the
shortest paths from the source to any reachable node

White nodes have not been discovered yet; gray nodes have
been discovered but have undiscovered neighbours;

b

C

d 1

f

g

f

0 fs

Breadth-First Search
The visiting order is related to the distance from a source node:
the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the
shortest paths from the source to any reachable node

White nodes have not been discovered yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

b

C

d 1

f

g

1

0 fs

Breadth-First Search
The visiting order is related to the distance from a source node:
the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the
shortest paths from the source to any reachable node

White nodes have not been discovered yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

b

C

2 1

f

g

1

0 fs

Breadth-First Search
The visiting order is related to the distance from a source node:
the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the
shortest paths from the source to any reachable node

White nodes have not been discovered yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

b

C

2 1

2

g

1

0 fs

Breadth-First Search
The visiting order is related to the distance from a source node:
the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the
shortest paths from the source to any reachable node

White nodes have not been discovered yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

b

C

2 1

2

2

1

0 fs

Breadth-First Search
The visiting order is related to the distance from a source node:
the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the
shortest paths from the source to any reachable node

White nodes have not been discovered yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

3

C

2 1

2

2

1

0 fs

Breadth-First Search
The visiting order is related to the distance from a source node:
the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the
shortest paths from the source to any reachable node

White nodes have not been discovered yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

3

3

2 1

2

2

1

0 fs

Breadth-First Search
The visiting order is related to the distance from a source node:
the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the
shortest paths from the source to any reachable node

White nodes have not been discovered yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

3

3

2 1

2

2

1

0 fs

Breadth-First Search
The visiting order is related to the distance from a source node:
the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the
shortest paths from the source to any reachable node

White nodes have not been discovered yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

3

3

2 1

2

2

1

0 f Not reachable from ss

BFS: Properties
Lemma 1. The time complexity of BFS is O(|V|+|E|) (linear in the
size of the adjacency-list representation of G)

Lemma 2. Let Q=[v1,…,vn] be the queue at any iteration of BFS.
Then vi.distance vi+1.distance and vn.distance v1.distance+1,
for all i=1,…,n-1

Lemma 2 tells us that, at any iteration, if the head node of Q is
at distance d from s, Q only contains nodes at distance d or
d+1 from s; possible nodes at distance d+2 will be only
enqueued after all nodes at distance d have been dequeued.

Lemma 3. Let d(v,s) be the distance between v and s, for any
v V. Then:

(i) v.distance v is reachable from s

(ii) if v.distance v.distance = d(v,s)

≤ ≤

∈
≠ ∞ ⟺

≠ ∞ ⟹

DFS: Pseudocode
DFS(G) - G is represented by the adjacency lists Adj[] of its vertices

for each u V
u.color white;

t 0;
for each u V

if u.color = white
DFS_visit(G,u)

DFS_visit(G,u)

t t+1;

u.d t;

u.color gray;

for each v Adj[u]

if v.color = white
DFS_visit(G,v);

v.color black;

t t+1;

u.f t;

⋅
∈

←
←

∈

←
←

←
∈

←
←

←

Initialisation

Start the search from

a new source

Visit the graph recursively

DFS: Complexity
DFS(G) - G is represented by the adjacency lists Adj[] of its vertices

for each u V
u.color white;

t 0;
for each u V

if u.color = white
DFS_visit(G,u)

DFS_visit(G,u)

t t+1;

u.d t;

u.color gray;

for each v Adj[u]

if v.color = white
DFS_visit(G,v);

v.color black;

t t+1;

u.f t;

⋅
∈

←
←

∈

←
←

←
∈

←
←

←

Start the search from

a new source: this only

happens when a vertex

is white O(|V|) calls⟹

Visit the graph recursively:

this procedure is only called

on white vertices, which

are immediately painted gray

 O =O(|E|)⟹ (∑
u∈V

|Adj[u] |)

Initialisation: O(|V|)

Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: v.d records
when v becomes gray, v.f records when it becomes black.

b

C

d e

f

g

f

fs

Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: v.d records
when v becomes gray, v.f records when it becomes black.

b

C

d e

f

g

f

fs1/?

t=1

Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: v.d records
when v becomes gray, v.f records when it becomes black.

b

C

d

f

g

f

fs1/?

2/?

t=2

Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: v.d records
when v becomes gray, v.f records when it becomes black.

b

C

f

g

f

fs1/?

2/?3/?

t=3

Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: v.d records
when v becomes gray, v.f records when it becomes black.

C

f

g

f

fs1/?

2/?3/?

4/?

t=4

Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: v.d records
when v becomes gray, v.f records when it becomes black.

C

f

g

f

fs1/?

2/?3/?

4/5

t=5Back edge: links a node with one of its ancestors in the DF forest

Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: v.d records
when v becomes gray, v.f records when it becomes black.

f

g

f

fs1/?

2/?3/?

4/5

6/?

t=6

Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: v.d records
when v becomes gray, v.f records when it becomes black.

f

g

f

fs1/?

2/?3/?

4/5

6/7

t=7

Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: v.d records
when v becomes gray, v.f records when it becomes black.

f

g

f

fs1/?

2/?3/8

4/5

6/7

t=8

Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: v.d records
when v becomes gray, v.f records when it becomes black.

f

g

fs1/?

3/8

4/5

6/7

t=9

9/?

2/?

Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: v.d records
when v becomes gray, v.f records when it becomes black.

g

fs1/?

3/8

4/5

6/7

t=10

9/? 10/?

2/?

Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: v.d records
when v becomes gray, v.f records when it becomes black.

fs1/?

3/8

4/5

6/7

t=11

9/? 10/?

11/?2/?

Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: v.d records
when v becomes gray, v.f records when it becomes black.

fs1/?

3/8

4/5

6/7

t=12

9/? 10/?

11/122/?

Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: v.d records
when v becomes gray, v.f records when it becomes black.

fs1/?

3/8

4/5

6/7

t=13

9/? 10/13

11/122/?

Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: v.d records
when v becomes gray, v.f records when it becomes black.

fs1/?

3/8

4/5

6/7

t=14

9/14 10/13

11/122/?

Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: v.d records
when v becomes gray, v.f records when it becomes black.

fs1/?

3/8

4/5

6/7

t=15

9/14 10/13

11/122/15

Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: v.d records
when v becomes gray, v.f records when it becomes black.

fs1/16

3/8

4/5

6/7

t=16

9/14 10/13

11/122/15

Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: v.d records
when v becomes gray, v.f records when it becomes black.

s

3/8

4/5

6/7

t=17

17/?1/16

9/14 10/13

11/122/15

Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: v.d records
when v becomes gray, v.f records when it becomes black.

s

3/8

4/5

6/7

t=18

17/181/16

9/14 10/13

11/122/15

Depth-First Search
DFS produces a depth-first (DF) forest (a different tree for each
source). Even for the same sources, this forest is not unique: it
depends from the order in which the edges outgoing from each
node are traversed. All the results are essentially equivalent.

The red edges are tree edges; the light blue edges are back
edges, linking a node with one of its ancestors in the DF forest.

You can verify yourself that the result below is another possible
outcome of DFS with the same two sources.

1/16

7/148/13

11/12

9/10

2/15 5/6

3/4

17/18

An application: Topological Sort

An edge (u,v) indicates that item u must be worn before item v.

An application: Topological Sort

An edge (u,v) indicates that item u must be worn before item v.

1/8

2/5

3/4

6/7

9/10

13/14

17/18

12/15

11/16

3/42/56/7

9/10

13/1412/1511/1617/18

1/8

TopologicalSort(G)

DFS(G);

 sorted w.r.t finishing time

TopOrder empty_stack;

for

TopOrder.push();

return TopOrder;

Ṽ[1,…, |V |] ← V
←

i = 1… |V |
Ṽ[i]

2/3

An application: Topological Sort

An edge (u,v) indicates that item u must be worn before item v.

TopologicalSort(G)

DFS(G);

 sorted w.r.t finishing time

TopOrder empty_stack;

for

TopOrder.push();

return TopOrder;

Ṽ[1,…, |V |] ← V
←

i = 1… |V |
Ṽ[i]

15/18

16/17

6/7

5/8

11/12

2/3

13/14

4/9

1/10

6/716/17 5/8

11/12

4/91/1013/14

15/18

Exercises
EX (Cormen 17.1-1): If the set of stack operations included a
MULTIPUSH operation, which pushes k items onto the stack,
would the O(1) bound on the amortized cost of stack operations
continue to hold?

Exercises
EX1: Given a connected, undirected graph, design an algorithm
that assigns one of two colors (say blue or green) to each vertex in
such a way that no edge links two vertices of the same color; or
return FAIL if no such coloring is possible.

Exercises
EX2: Give an O(|V|)-time algorithm that determines whether or not
a given undirected graph contains a cycle. (Hint: Think of the
maximum number of edges that an acyclic undirected graph may
have; use DFS and terminate it early when appropriate).

