Amortised Analysis Chapters 17.1-17.2 of Cormen's book

> Giulia Bernardini *giulia.bernardini@units.it*

> > Algorithmic Design a.y. 2022/2023

Amortised analysis

- In an amortised analysis, we average the time required to perform a sequence of operations over all the operations performed.
- With amortised analysis, we can show that the average cost of an operation over a sequence of operations is small, even though a single operation within the sequence might be expensive.
- Probability is not involved; an amortised analysis guarantees the average performance of each operation in the worst case.

Graphs Chapter 22 of Cormen's book Giulia Bernardini

giulia.bernardini@units.it

Algorithmic Design a.y. 2022/2023

BFS: Pseudocode

BFS: Complexity

The visiting order is related to the distance from a source node: the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the shortest paths from the source to any reachable node

White nodes have not been discovered yet;

The visiting order is related to the distance from a source node: the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the shortest paths from the source to any reachable node

White nodes have not been discovered yet; gray nodes have been discovered but have undiscovered neighbours;

The visiting order is related to the distance from a source node: the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the shortest paths from the source to any reachable node

White nodes have not been discovered yet; gray nodes have been discovered but have undiscovered neighbours;

The visiting order is related to the distance from a source node: the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the shortest paths from the source to any reachable node

The visiting order is related to the distance from a source node: the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the shortest paths from the source to any reachable node

The visiting order is related to the distance from a source node: the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the shortest paths from the source to any reachable node

The visiting order is related to the distance from a source node: the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the shortest paths from the source to any reachable node

The visiting order is related to the distance from a source node: the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the shortest paths from the source to any reachable node

The visiting order is related to the distance from a source node: the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the shortest paths from the source to any reachable node

The visiting order is related to the distance from a source node: the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the shortest paths from the source to any reachable node

The visiting order is related to the distance from a source node: the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the shortest paths from the source to any reachable node

BFS: Properties

Lemma 1. The time complexity of BFS is *O*(|V|+|E|) (linear in the size of the adjacency-list representation of G)

Lemma 2. Let *Q*=[*v*1,…,*vn*] be the queue at any iteration of BFS. Then *v_i.distance≤v_{i+1}.distance* and *v_n.distance≤v₁.distance*+1, for all *i*=1,…,*n-*1

Lemma 2 tells us that, at any iteration, if the head node of Q is at distance *d* from *s*, Q only contains nodes at distance *d* or *d+*1 from *s*; possible nodes at distance *d+2* will be only enqueued after all nodes at distance *d* have been dequeued.

Lemma 3. Let *d*(*v,s*) be the distance between *v* and *s,* for any $v \in V$. Then:

(i) v.distance $\neq \infty \iff v$ is reachable from *s*

(ii) if *v.distance* $\neq \infty \implies v$.distance = d(*v*, *s*)

DFS: Pseudocode

DFS(G) - G is represented by the adjacency lists Adj[·] of its vertices for each $u \in V$ *u.color* white*;* ← *t* ← O; for each $u \in V$ **if** *u.color =* white DFS_visit(*G,u*) DFS_visit(*G,u*) $t \leftarrow t+1$; u.d←t; u.color←gray; ${\bf for\ each\ } \nu \in {\rm Adj}[\nu]$ **if** *v.color =* white DFS_visit(*G,v*); *v.color*←black; $t \leftarrow t+1$; $u.f \leftarrow t$; **Initialisation** Start the search from a new source Visit the graph recursively

DFS: Complexity

DFS(G) - G is represented by the adjacency lists Adj[·] of its vertices

for each $u \in V$

u.color white*;* ←

t ← O;

for each $u \in V$ **if** *u.color =* white DFS_visit(*G,u*)

```
DFS_visit(G,u)
```
 $t \leftarrow t+1$; u.d←t;

u.color←gray;

 ${\bf for\ each\ } \nu \in {\rm Adj}[\nu]$

if *v.color =* white DFS_visit(*G,v*);

v.color←black;

 $t \leftarrow t+1$;

 $u.f \leftarrow t$;

Initialisation: *O*(|V|)

Start the search from a new source: this only happens when a vertex is white \implies O(|V|) calls

Visit the graph recursively: this procedure is only called on white vertices, which are immediately painted gray

$$
\implies O\bigg(\sum_{u\in V} |Adj[u]| \bigg) = O(|E|)
$$

Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have been discovered but have undiscovered neighbours; black nodes have been discovered and their neighbours too.

Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have been discovered but have undiscovered neighbours; black nodes have been discovered and their neighbours too.

Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have been discovered but have undiscovered neighbours; black nodes have been discovered and their neighbours too.

Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have been discovered but have undiscovered neighbours; black nodes have been discovered and their neighbours too.

Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have been discovered but have undiscovered neighbours; black nodes have been discovered and their neighbours too.

Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have been discovered but have undiscovered neighbours; black nodes have been discovered and their neighbours too.

Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have been discovered but have undiscovered neighbours; black nodes have been discovered and their neighbours too.

Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have been discovered but have undiscovered neighbours; black nodes have been discovered and their neighbours too.

Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have been discovered but have undiscovered neighbours; black nodes have been discovered and their neighbours too.

Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have been discovered but have undiscovered neighbours; black nodes have been discovered and their neighbours too.

Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have been discovered but have undiscovered neighbours; black nodes have been discovered and their neighbours too.

Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have been discovered but have undiscovered neighbours; black nodes have been discovered and their neighbours too.

Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have been discovered but have undiscovered neighbours; black nodes have been discovered and their neighbours too.

Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have been discovered but have undiscovered neighbours; black nodes have been discovered and their neighbours too.

Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have been discovered but have undiscovered neighbours; black nodes have been discovered and their neighbours too.

Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have been discovered but have undiscovered neighbours; black nodes have been discovered and their neighbours too.

Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have been discovered but have undiscovered neighbours; black nodes have been discovered and their neighbours too.

Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have been discovered but have undiscovered neighbours; black nodes have been discovered and their neighbours too.

Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have been discovered but have undiscovered neighbours; black nodes have been discovered and their neighbours too.

DFS produces a depth-first (DF) forest (a different tree for each source). Even for the same sources, this forest is not unique: it depends from the order in which the edges outgoing from each node are traversed. All the results are essentially equivalent.

The red edges are tree edges; the light blue edges are back edges, linking a node with one of its ancestors in the DF forest.

You can verify yourself that the result below is another possible outcome of DFS with the same two sources.

An application: Topological Sort

An edge (*u*,*v*) indicates that item *u* must be worn before item *v.*

An application: Topological Sort

An edge (*u*,*v*) indicates that item *u* must be worn before item *v.*

An application: Topological Sort

An edge (*u*,*v*) indicates that item *u* must be worn before item *v.*

EX (Cormen 17.1-1): If the set of stack operations included a MULTIPUSH operation, which pushes k items onto the stack, would the O(1) bound on the amortized cost of stack operations continue to hold?

EX1: Given a connected, undirected graph, design an algorithm that assigns one of two colors (say blue or green) to each vertex in such a way that no edge links two vertices of the same color; or return FAIL if no such coloring is possible.

EX2: Give an O(|V|)-time algorithm that determines whether or not a given undirected graph contains a cycle. (*Hint: Think of the maximum number of edges that an acyclic undirected graph may have; use DFS and terminate it early when appropriate*).