FISICA NUCLEARE (12)

- Diffusione da potenziale Coulombiano (2)
 - Fattore di forma
 - Sez. d'urto di Mott
- Scoperta del neutrone
- Fisica dei neutroni
 - Sorgenti di neutroni
 - Assorbimento e moderazione dei neutroni (1)

Fattore di Forma

(3) $\Rightarrow F(q) \equiv trasf. Fourier$ della distr. densità di carica, detta Fattore di Forma della distribuzione di carica

Sez. d'urto di diffusione Coulomb. per carica estesa (regola d'Oro)

$$\frac{\mathrm{d}\sigma\left(\vartheta\right)}{\mathrm{d}\Omega} = \left(\frac{Z_1 Z_2 e^2}{16\pi\epsilon_0}\right)^2 \frac{4E_f^2}{\left(pc\right)^4} \frac{1}{\mathrm{sen}^4 \frac{\vartheta}{2}} |F\left(\boldsymbol{q}\right)|^2$$

• Diversamente da caso classico, sez. d'urto d'un bersaglio puntif. ed esteso coincidono solo per $\vartheta = 0$ (|q| = 0)

Sezione d'urto di Mott

Considerando **spin**, sez. d'urto per diff. coulombiana di *leptoni* relativistici su nuclei massivi e puntiformi diventa (trascurando rinculo bersaglio)

$$\frac{\mathrm{d}\sigma_{Mott}\left(\vartheta\right)}{\mathrm{d}\Omega} = \frac{\mathrm{d}\sigma_{Ruth}\left(\vartheta\right)}{\mathrm{d}\Omega} \left(1 - \beta^2 \mathrm{sen}^2 \frac{\vartheta}{2}\right) \quad \mathrm{con} \ \frac{\beta = v/c \to 1}{\beta = v/c \to 1} \qquad \frac{\mathrm{d}\sigma_{Mott}\left(\vartheta\right)}{\mathrm{d}\Omega} \simeq \frac{\mathrm{d}\sigma_{Ruth}\left(\vartheta\right)}{\mathrm{d}\Omega} \ \mathrm{cos}^2 \frac{\vartheta}{2}$$

• Per velocità crescenti del proiettile sez. d'urto Mott cala, con **3**, più rapidamente di Rutherford

Sez. d'urto $\frac{d\sigma_{Coul}(\vartheta)}{d\Omega}$ per leptoni incidenti su carica estesa si scrive quindi :

$$\frac{\mathrm{d}\sigma_{Coul}\left(\vartheta\right)}{\mathrm{d}\Omega} = \frac{\mathrm{d}\sigma_{Mott}\left(\vartheta\right)}{\mathrm{d}\Omega} \left|F\left(\boldsymbol{q}\right)\right|^{2}$$

Fattore aggiuntivo rispetto a Rutherford

Per capirne ruolo si può ad esempio considerare la diffusione a π radianti:

Conservazione $H \Rightarrow$ proiezione s_z cambia segno con l'urto se diffusione a π rad., ma è impossibile con un bersaglio di **spin =** 0, per conservazione mom. ang. totale del sistema interagente

L è infatti \perp a z e non può quindi determinare alcun cambiamento nella componente z del mom. ang.

Per particelle relativistiche, la diffusione a π rad. dovrebbe quindi essere totalmente soppressa dipendendo da cos²(π/2) come verificato sperimentalmente !

Scoperta del neutrone

1930, **Bothe & Becker**, bombardando con $\alpha \sim 5$ MeV del Po bersagli leggeri (⁹Be, ¹¹B, ⁷Li), producono *radiazione molto penetrante*, insensibile a campi e.m. : si pensò fossero γ

$$\alpha + {}^A_Z \mathbf{X} \ \rightarrow \ {}^{A+4}_{Z+2} \mathbf{Y}^* \ \rightarrow \ {}^{A+4}_{Z+2} \mathbf{Y} + \gamma$$

Ma era troppo penetrante ! Joliot-Curie mostrarono che attraversava spessori di Pb ~ 3 volte superiori ai più energetici γ noti
 Urtando bersagli idrogenati (paraffina, ...) estraeva p con E_p fino ~ 5.3 MeV. Ma per ottenere ciò con γ che interagiscono Compton, ci vogliono γ da ~ 50 MeV → irrealistico ! (Compton e non fotoel. per cons. impulso)

- Majorana congetturò che interazione fra nuova radiazione e prince prima fossero prince prince
- Chadwick riprodusse misure di Joliot-Curie con paraffina e altri bersagli idrogenati osservando che ipotesi di γ da ≈ 50 MeV contrastava con conservazione energia:

$${}^{4}_{2}\mathrm{He} + {}^{9}_{4}\mathrm{Be} \rightarrow {}^{13}_{6}\mathrm{C} + \gamma \Rightarrow c^{2} \left[M_{\alpha} + M \left({}^{9}_{4}\mathrm{Be} \right) - M \left({}^{13}_{6}\mathrm{C} \right) \right] \simeq 3727.4 + 8392.8 - 12109.6 \simeq 11 \mathrm{MeV}$$

Conservazioni energia e impulso invece **soddisfatte** ipotizzando con Majorana che la reazione produca una **particella neutra di massa simile al protone**

$${}^{4}_{2}\text{He} + {}^{9}_{4}\text{Be} \rightarrow {}^{12}_{6}\text{C} + n \implies c^{2} \left[M_{\alpha} + M \left({}^{9}_{4}\text{Be} \right) - M \left({}^{12}_{6}\text{C} \right) - M_{n} \right] \simeq$$
$$\simeq 3727.4 + 8392.8 - 11175.0 - M_{n}c^{2} \simeq \left(945.2 - M_{n}c^{2} \right) \text{ MeV}$$

da cui se $M_n \simeq M_p \simeq 938.3 \text{ MeV/c}^2 \Rightarrow$ energia cinetica max della particella neutra prodotta è $6 \div 7 \text{ MeV}$, compatibile con energie dei protoni estratti da materiali idrogenati

Fisica dei neutroni

- Neutroni non sentono barriera coulombiana ⇒ penetrano nucleo e avviano reazione anche a bassissime energie
 (< 1 eV) (ma possono anche rimbalzare sulla superficie del nucleo!)
- Difficile farne fasci collimati e monocinetici (particella carica associata ...); difficile rivelarli
- **n** libero decade β con $\tau_n \simeq 879$ s (puzzle vita media **n** ... neutrini solari ...)
- *n* elementare ⇒ *mom. dip. el.* = 0; anche se componenti legati da forze *simmetriche* per *parità* e *inv. temp.* ⇒ lim. sup. ≃ 3×10⁻²⁶ e×cm

Sorgenti di neutroni

Sorgenti con fotoneutroni

- Produzione $\frac{n}{n}$ con reazioni iniziate da $\frac{n}{2}$: energia $n \propto$ energia $\frac{n}{2}$
- Ad es. 24 Na emette ${m \gamma}$ da 2.76 MeV \implies $\gamma + {}^9$ Be \longrightarrow 8 Be + n

Yield ~ $2 \times 10^6 n/s$ per Curie di 24 Na, con vita media breve di ~ 15 ore Energia n ~ 0.8 MeV

Anche bremsstrahlung di e molto energetici in bersagli pesanti produce fotoneutroni

Sorgenti a spallazione

- *p* alta energia (> 100 MeV) scalzano da bersagli frammenti e molti neutroni, di energia massima ~ del proiettile a meno di quella di legame nel bersaglio
- Spallazione da cosmici primari in alta atmosfera, responsabile formazione ¹⁴C : *n* da spallazione rallentano per urti successivi con gas alta atmosfera (15÷9 km) fino a diventare termici e possono dar luogo alla ...

$$^{14}_{7}\text{N} + \text{n} \rightarrow ^{14}_{6}\text{C} + \text{p}$$

$$(1) \stackrel{\text{production}}{\longrightarrow} \stackrel{\text{production}}{\longrightarrow} \stackrel{\text{production}}{\longrightarrow} \stackrel{\text{production}}{\longrightarrow} (2) \stackrel{\text{production}}{\longrightarrow} \stackrel{\text{production}}$$

Sorgenti a fissione spontanea

Fissione spontanea ${}^{252}Cf$, con vita media $\tau \simeq 2.65$ y, è una sorgente usata comunemente

Ogni fissione produce ~ 4 neutroni, con un rateo di $\sim 2.3 \times 10^{12}$ neutroni/s per grammo di ^{252}Cf

Energie dei neutroni hanno caratteristica distribuzione continua da fissione, con valori medi nell'intervallo 1 ÷ 3 MeV, come in figura

Neutroni prodotti da reazioni nucleari

28

26

24

 $d(t, {}^4\mathrm{He})n$

Reazioni con fasci accelerati: cinematica e rivelazione **particelle cariche associate** definiscono energia e traiettoria dei neutroni prodotti (Fasci tagged)

$${}^{3}\mathrm{H} + d \longrightarrow {}^{4}\mathrm{He} + n \quad , \quad Q = +17.6 \text{ MeV}$$

$${}^{9}\mathrm{Be} + \alpha \longrightarrow {}^{12}\mathrm{C} + n \quad , \quad Q = +5.7 \text{ MeV}$$

$${}^{7}\mathrm{Li} + p \longrightarrow {}^{7}\mathrm{Be} + n \quad , \quad Q = -1.6 \text{ MeV}$$

$${}^{2}\mathrm{H} + d \longrightarrow {}^{3}\mathrm{He} + n \quad , \quad Q = +3.3 \text{ MeV}$$

$${}^{14}\mathrm{N} + d \longrightarrow {}^{15}\mathrm{O} + n \quad , \quad Q \simeq +5.1 \text{ MeV}$$

$${}^{14}\mathrm{N} + d \longrightarrow {}^{15}\mathrm{O} + n \quad , \quad Q \simeq +5.1 \text{ MeV}$$

$${}^{14}\mathrm{MeV}$$

$${}^{14}\mathrm{MeV}$$

$${}^{14}\mathrm{MeV}$$

Neutroni prodotti da rettori

- Flusso n in prossimità del core d'un reattore a fissione ~ $10^{14} n/(s \times cm^2)$
- Spettro fino ~ 5 \div 7 MeV, con massimo ~ 1 \div 2 MeV
- Nel reattore *n* termalizzati, ma ce n'è di energetici estraibili da piccolo foro nello schermaggio

angoli

d'emissione del neutrone

0^o

Bersaglio gassoso per produzione di neutroni veloci tramite le reazioni $d(d, {}^{3}\text{He})n$ e $d(t, {}^{4}\text{He})n$

Assorbimento e moderazione dei neutroni

n veloci inducono reazioni (n,p), (n,α) , (n,2n); per *n lenti* o *termici* prevale cattura in reazioni (n,y)

- Sezioni d'urto dominate da una o più **risonanze** fuori dalle quali $\propto 1/v$
- Più i n sono rallentati da processi **elastici** e **inelastici**, più probabile è **assorbimento** Penetrando spessore dx, n incontrano ndx atomi per unità d'area (n = atomi/V)
- σ_t comprende anche processi che si limitano a deviare n
- Riduzione dI intensità fascio $dI(x) = -I(x)\sigma_t \operatorname{nd} x$, da cui: $I(x) = I_0 e^{-\sigma_t nx}$ (*)

Vale per \mathbf{n} monocinetici, poiché σ_t dipende da E_n , e anche partendo da fascio monocinetico, (*) non descrive intero processo di riduzione intensità, non potendola applicare immutata a \mathbf{n} che abbiano già interagito col materiale

In **SL** urto elastico fra n d'energia E_n (velocità V_n) e atomo b di massa A, inizialmente a riposo (V_b =0).

In **CM** le velocità di $n \in b$ diventano $v_n = [A/(A + 1)]V_n$ e $v_b = [-1/(A + 1)]V_n$. Indicando con apici le velocità dopo l'urto, in **CM** i loro moduli restano invariati, mentre in **SL** la velocità $V_{n'}$ del $n \in (v_{n'} - v_b)$, come in figura