

993SM - Laboratory of Computational Physics Unit VII April 17, 2023

Maria Peressi

Università degli Studi di Trieste – Dipartimento di Fisica Sede di Miramare (Strada Costiera 11, Trieste)

e-mail: peressi@units.it

tel.: +39 040 2240242

The Ising model in the canonical ensemble

- Introduction to the Ising model
- The Ising model in the canonical ensemble: application of Metropolis Monte Carlo Method
 - Implementation in a code

(from Unit VI)

The canonical ensemble

(N,V,T) fixed. The probability that the system is in the microstate s with energy E_s is given by:

(here the energy identifies different microstates, it is not a characteristic of the macrostate)

$$P_s = \frac{1}{Z}e^{-\beta E_s}$$
, (canonical distribution)

where $\beta = 1/kT$, and Z is a normalization constant.

$$Z = \sum_{1}^{M} e^{-E_s/kT} \quad partition function$$

(M: all accessible microstates of the system) characterized by different E_s

(from lecture VII)

Ensemble averages

To calculate the ensemble average of a physical quantity $\langle A \rangle$ we work on a representative number m of the total number M of accessible microstates:

$$\langle A \rangle \approx A_m = \frac{\sum\limits_{s=1}^m A_s \, e^{-\beta E_s}}{\sum\limits_{s=1}^m e^{-\beta E_s}}$$

We can generate these *m* microstates:

- simply randomly, without any rule, and sum the values of A_s with the proper weight, or $\rho^{-\beta E_s}$

- randomly but with a probability distribution $\pi_s = \frac{e^{-\beta E_s}}{\sqrt{m}}$

$$\sum_{s=1}^{m} e^{-\beta E_s}$$
 (Note: $\pi_s \neq P_s$!)

Here m, not M!

(from lecture VII)

Importance sampling in the canonical ensemble

Ensemble averages can be calculated as **simple** averages if microstates are generated according to the proper probability distribution:

$$< A> \approx \frac{1}{m} \sum_{s=1}^{m} A_s$$
 with microstates s generated according to π_s

Using Metropolis Monte Carlo,

The transition matrix that generates microstates s according to π_s is:

$$T_{old,new} = min \left[1, \frac{\pi_{new}}{\pi_{old}} \right] = min \left[1, \frac{p_{new}}{p_{old}} \right] = min \left[1, \frac{e^{-\beta E_{new}}}{e^{-\beta E_{old}}} \right]$$

(from Unit VI)

Metropolis algorithm in the canonical ensemble

$$T(i \to j) = \min(1, e^{-\beta \Delta E})$$
 (Metropolis algorithm), where $\Delta E = E_j - E_i$.

- 1) always accept new configurations with lower energy
- 2) new configurations with higher energy are accepted with probability depending on T:

If $E_i > E_i$, accept the new (higher energy) configuration with probability $p = \exp(-\Delta E/k_BT)$. This means that when the temperature is high, we don't mind taking steps in the "wrong" direction.

stochastic simulations of an interacting spin ensemble

We need a model for:

- energy

- evolution (to build the trajectory / the Markov chain)

stochastic simulations of an interacting spin ensemble

We need a model for:

- energy => Ising model

evolution

(to build the trajectory / the Markov chain)

Ising model

the simplest model of interacting spin on a lattice

$$\mathcal{H}^{spin} = -J \sum_{i,j=1}^{N} s_i s_j$$

$$s_i = \pm 1$$

$$\downarrow \quad \downarrow \quad \uparrow$$

$$\downarrow \quad \downarrow \quad \downarrow$$

$$\downarrow \quad \downarrow \quad \downarrow$$

But where does it come from ? (next slides 10-16)

Consider two fermions, $\vec{s_1}$, $\vec{s_2}$ (e.g. electrons in He) described by a hamiltonian not depending explicitly on spin:

$$\mathcal{H} = h_1 + h_2 + V_{12}$$

=> the eigenstates can be in a factorized form (antisymmetric under particle exchange due to the Pauli exclusion principle):

$$\Psi$$
 (1,2) = $\Psi{+,-}^{orb}$ (1,2) χ (1,2)

In the Hilbert spin subspace we can choose a coupled representation, referring to the spin sum \vec{S} , with eigenstates labeled by $|S,S_z>$:

$$\Psi_{+,-}(1,2) = \Psi_{+,-}^{orb}(1,2) \chi_{S,S_z}(1,2) = \Psi_{+,-}^{orb}(1,2) | S, S_z > 0$$

Eigenstates

$$\Psi_{+,-}^{orb}(1,2)|S,S_z> = (\phi(1)\psi(2) + (-)^S\phi(2)\psi(1))/\sqrt{2} |S,S_z>$$

where $|S, S_z\rangle = \chi_{S,S_z}(\sigma_1, \sigma_2)$ have the explicit form:

$$\chi_{0,0} = \frac{1}{\sqrt{2}} \left[v_+(\sigma_1) v_-(\sigma_2) - v_-(\sigma_1) v_+(\sigma_2) \right] \quad \text{Spin singlet: antisymmetric}$$

Energy

$$<\Psi$$
 _ $|\mathcal{H}|\Psi$ _ $>=<\Psi_{+,-}^{orb}|\mathcal{H}|\Psi_{+,-}^{orb}>=<\phi|h|\phi>+<\psi|h|\psi>+J_{12}+(-1)^{S}K_{12}$
= $E_{0}+J_{12}+(-1)^{S}K_{12}$

with the Hartree and the exchange terms:

$$J_{12} = \langle \phi(1)\psi(2) | V_{12} | \phi(1)\psi(2) \rangle$$

$$K_{12} = \langle \phi(1)\psi(2) | V_{12} | \phi(2)\psi(1) \rangle$$

The Pauli principle => the energy is affected by spin even if ${\cal H}$ does not depend explicitly on it:

$$< S = 0 | \mathcal{H} | S = 0 >= E_s$$
 singlet $< S = 1 | \mathcal{H} | S = 1 >= E_t$ triplet

Hence:

$$< S = 0 |\mathcal{H}|S = 0 > - < S = 1 |\mathcal{H}|S = 1 > = E_s - E_t$$

12

$$=2K_{12}$$

Energy

The relative order of E_s , E_t depends on V_{12} (K_{12})

In He, with V_{12} repulsive Coulomb interaction,

$$E_s > E_t \quad (K > 0)$$

(a part from the ground state, when only singlet is allowed)

But the present discussion is independent on the sign of E_s-E_t

Idea: write a model hamiltonian explicitly dependent on spin (and only dependent on spin) which gives the same difference between the energy eigenvalues of its eigenstates as the original one.

Consider the operator:

$$\sum_{12} = \vec{s_1} \cdot \vec{s_2} = \frac{1}{2}S^2 - \frac{3}{4}$$

which is diagonal on the coupled basis, with eigenvalues:

$$< S = 0|\Sigma_{12}|S = 0 > = -\frac{3}{4}, < S = 1|\Sigma_{12}|S = 1 > = \frac{1}{4}$$

Consider then:

$$\mathcal{H}^{spin} = -(E_s - E_t)\Sigma_{12}$$

We have:

$$< S = 0 | \mathcal{H}^{spin} | S = 0 > - < S = 1 | \mathcal{H}^{spin} | S = 1 > = E_s - E_t$$

Heisenberg hamiltonian

$$\mathcal{H}^{spin} = -(E_s - E_t)\Sigma_{12}$$

is therefore OK! Defining: $J \equiv E_s - E_t$, we have (going back to the individual basis representation):

$$\mathcal{H}^{spin} = -J\vec{s_1} \cdot \vec{s_2}$$

Heisenberg hamiltonian

Extension to the case of several spins:

$$\mathcal{H}^{spin} = -\sum_{\substack{i,j=1\i
eq j}}^{N} J_{ij} \ \vec{s_i} \cdot \vec{s_j}$$

(see also: Ashcroft & Mermin, chap. 32, "Spin hamiltonian and Heisenberg model")

Ising model

Consider only the possibility : $s_i = \pm 1$ and nearest neighbor interaction only, with the same interaction constant J

$$\mathcal{H}^{spin} = -J \sum_{i,j=1}^{N} s_i s_j$$

J>0 (Es > Et)
$$\uparrow \uparrow$$
 spins favored => ferromagnetic case

J<0 (Es < Et) $\uparrow \downarrow$ spins favored => antiferromagnetic case

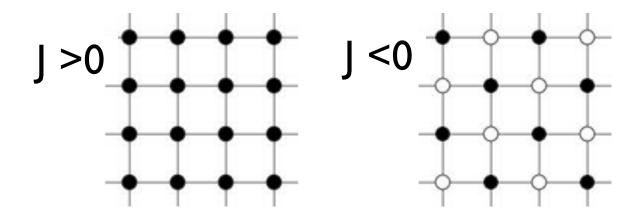
 $\downarrow \downarrow \downarrow$
 $\downarrow \downarrow$

(choosing the kind of interaction, we specify the energy model)

Ising model on a lattice

lattice containing N sites

lattice site *i* has associated with it a number s_i , where $s_i = +1$ for an "up" (\uparrow) spin and $s_i = -1$ for a "down" (\downarrow) spin. A particular configuration or microstate of the lattice is specified by the set of variables $\{s_1, s_2, \ldots s_N\}$ for all lattice sites.



Lowest energy state of the 2D Ising model on a square lattice with ferromagnetic (J>0) and antiferromagnetic (J<0) interactions. Solid and open circles correspond to +I and -I spins, respectively.

Ising model: interesting quantities

Ising model: energy

lattice containing N sites No external magnetic field:

$$E = -J \sum_{i,j=\text{nn}(i)}^{N} s_i s_j$$

(nn=nearest neighbor)

Energy in presence of an external magnetic field:

$$E = -J \sum_{i,j=\text{nn}(i)}^{N} s_i s_j - H \sum_{i=1}^{N} s_i,$$

or, better, define an average energy per spin: E/N

Ising model: magnetization

$$M = \sum_{i=1}^{N} s_i$$

"Order parameter": total magnetization, or -better- consider the average magnetization per spin:

$$m = \frac{M}{N} = \frac{1}{N} \sum_{i=1}^{N} s_i$$

$$-1 < m < +1$$

Ising model: configurations and energy

 2^n different configurations for n spins. (microstates)

e.g. $2^4 = 16$ spin configurations for $2x^2$ lattice

For J > 0 the state of lowest energy is when all the spins are aligned.

The state has macroscopic magnetization (ferromagnetic).

The ground state energy per spin

(ferromagnetic case, thermodynamic limit (N large), no ext. field) is:

$$E_0/N = -2J$$

Ising model: boundary conditions

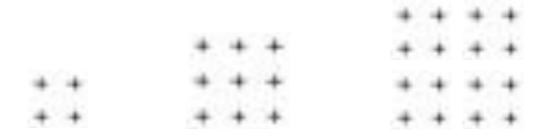
Of course we cannot simulate an infinite system (the thermodynamic limit).

We have two choices for the simulation cell:

- free or open boundary conditions
- periodic boundary conditions (PBC)

Ising model: open boundary conditions

in a N=LxL spin lattice there are 2L(L-1) nn interactions; for the ferromagnetic g.s. configuration, for instance, the energy is:



Let's count the interactions...

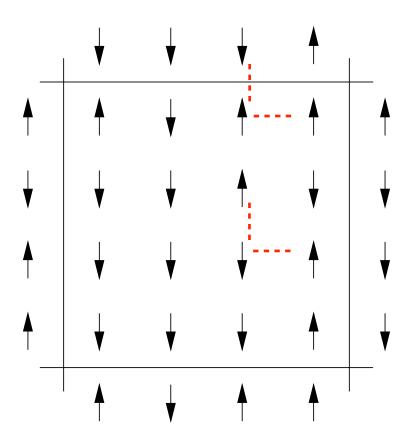
Ising model: open boundary conditions

in a N=LxL spin lattice there are 2L(L-1) nn interactions; for the <u>ferromagnetic</u> g.s. configuration, for instance, the energy is:

$$E_0/N = -J \qquad E_0/N = -(12/9)J \qquad E_0/N = -(24/16)J \qquad ... \qquad E_0/N = -J \times 2L(L-1)/L^2 \\ = -2J \times (1-1/L)$$
 (volume term)

Energy per spin in the ground state converges to the value $E_0/N = -2J$ in the thermodynamic limit (with deviations $\sim 1/L$)

Ising model: PBC



The energy is a 2N-term sum: each spin interacts with its NN within the simulation cell or with the NN images

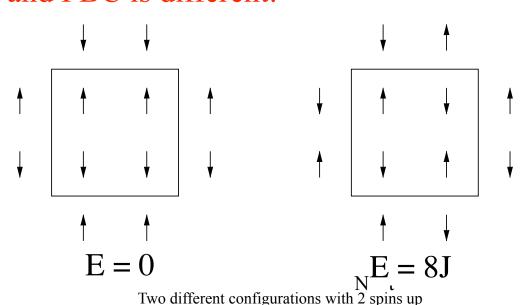
One of the 2^N possible configurations of a system of N=16 Ising spins on a square lattice. with periodic boundary conditions.

Ising model: PBC

We have always:

$$2^4 = 16$$
 spin configurations for $2x2$ lattice_N

but the energy for each configuration in case of open boundary conditions and PBC is different:



# of spins UP	Degeneracy	Energy	Magnetisation
4	1	-8J	4
3	4	0	2
2	4	0	0
2	2	8J	0
1	4	0	-2
0	1	-8J	-4

Energy and magnetization of 16 configurations of the 2×2 Ising model with PBC

Energy per spin in the ground state is always (also in small systems) equal to the value $E_0/N = -2J$ of the thermodynamic limit

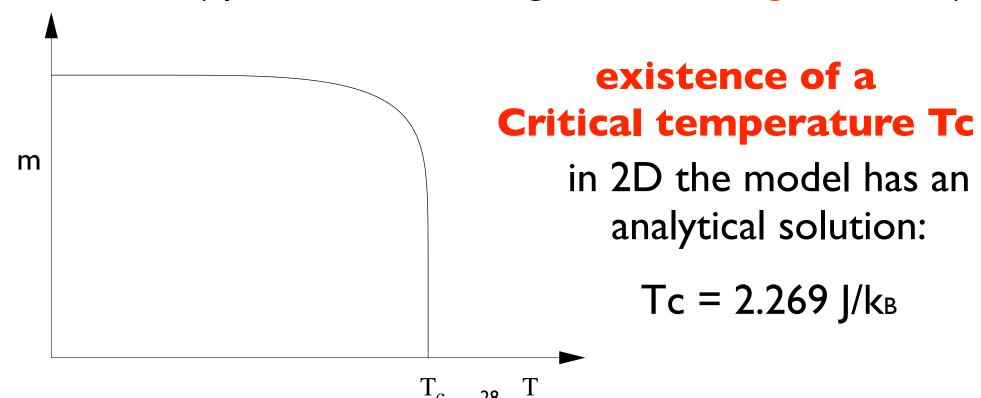
Ising model: phase transition

Low T: spin configuration minimizes energy

(if J>0: spins tend to align => high (absolute) magnetization)

High T: spin configuration maximizes entropy

(=disorder) (spins tend to disalign => low magnetization)

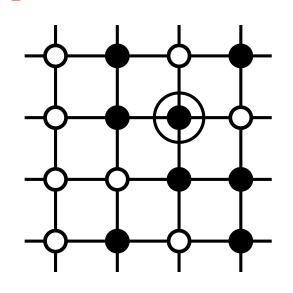


Ising model: dynamics?

Beside an energy model, we must define a dynamics in order to simulate the evolution of the system (i.e. to generate the trajectory in the phase space, to generate the configurations of the Markov chain)

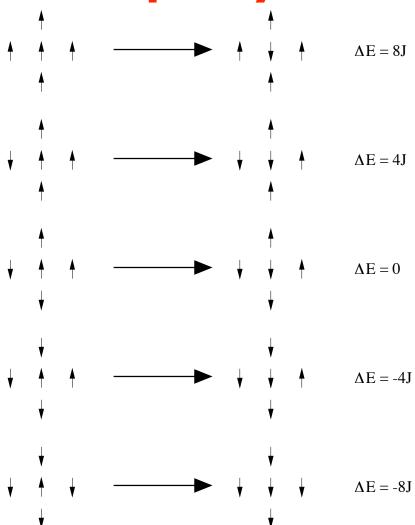
Ising model: spin flip dynamics

Consider nn interactions, choose a random spin and flip it: it's a new configuration (a microstate)



Apply **Metropolis Monte Carlo** method for evolution in the **canonical ensemble** (fix T). Evolution is driven by the **energy change** between the old and the new configuration, ΔE . Remark: Is it sufficient to calculate only ΔE , not E at each new configuration!

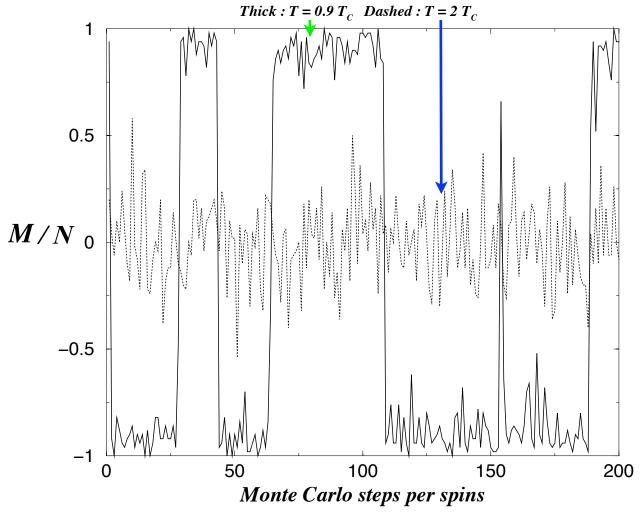
Ising model: spin flip dynamics



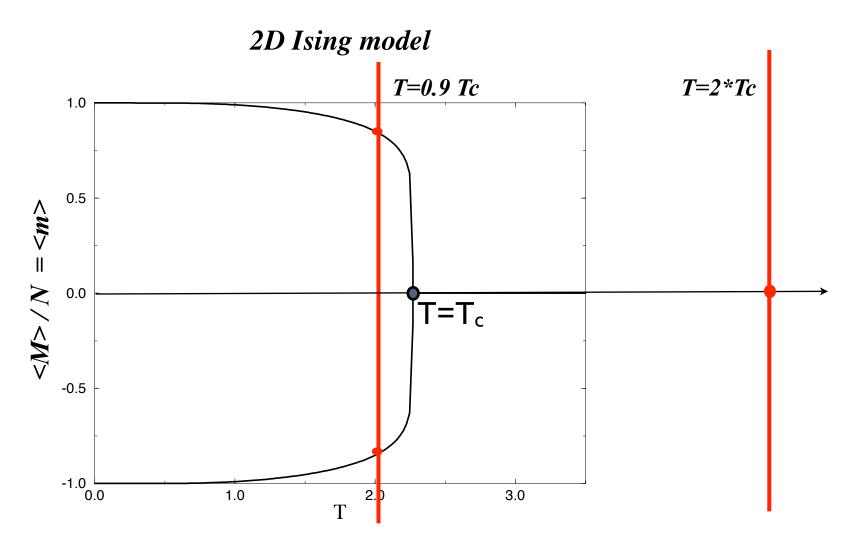
The five possible transitions of the Ising model on the square lattice with spin flip

Apply **Metropolis Monte Carlo** method for evolution in the **canonical ensemble** (fix T):

Average magnetization per spin as a function of time for a lattice 10x10 and two different T

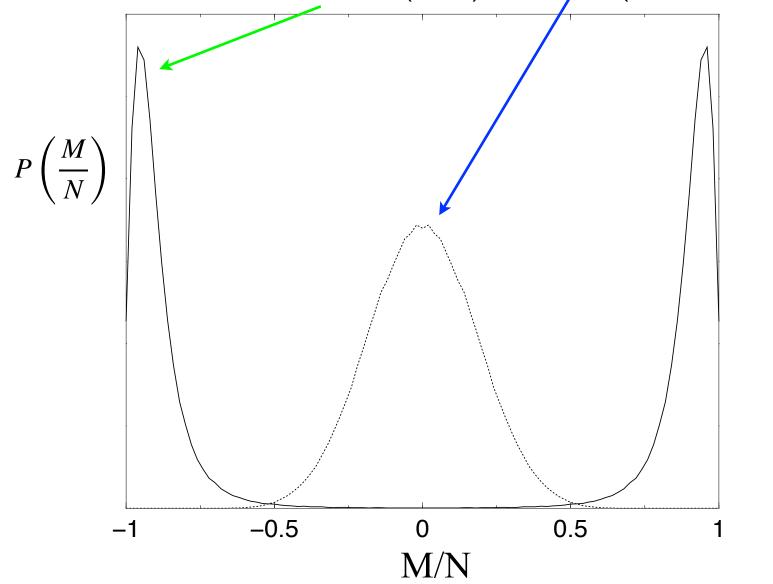


Fluctuations! do, as usual, temporal averages: $\langle M \rangle / N$, $\langle E \rangle / N$



Magnetisation as a function of the temperature for the 2D Ising model. (data averaged on time; red lines indicate the T values in the previous plot)

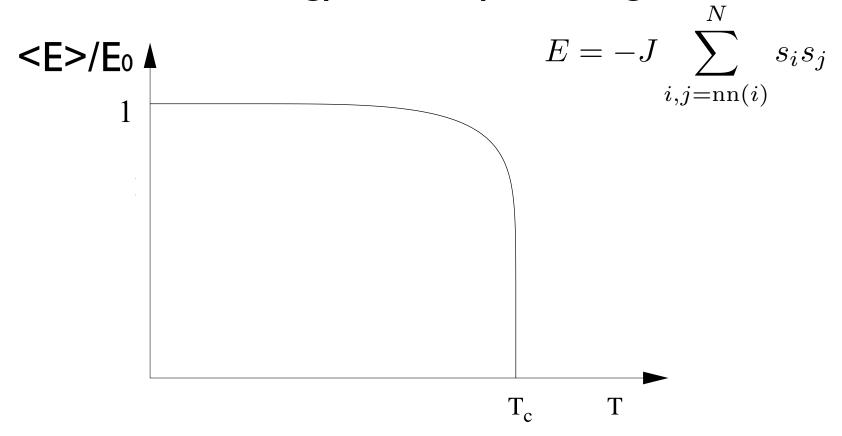
Magnetization distribution for $T < T_c$ (solid) and $T > T_c$ (dashed curve)



(data collected during time evolution, at equilibrium)

Ising model: phase transition

T_c also for energy, not only for magnetization:



and also the energy fluctuates during time evolution...

Intrinsic energy fluctuations in the canonical ensemble - I

Remind:
$$\langle E \rangle = \frac{1}{Z} \sum_{s} E_{s} e^{-\beta E_{s}}$$
 and $Z = \sum_{s} e^{-\beta E_{s}}$, therefore: $\langle E \rangle = -\frac{\partial}{\partial \beta} \ln Z$

Consider the thermal capacity:

$$C_v = \frac{\partial \langle E \rangle}{\partial T} = \dots = -\frac{1}{kT^2} \frac{\partial \langle E \rangle}{\partial \beta}$$

we have

$$\frac{\partial \langle E \rangle}{\partial \beta} = -\frac{1}{Z^2} \frac{\partial Z}{\partial \beta} \sum_{s} E_s e^{-\beta E_s} - \frac{1}{Z} \sum_{s} E_s^2 e^{-\beta E_s} = \langle E \rangle^2 - \langle E^2 \rangle = \langle (\delta E)^2 \rangle$$
where $\delta E \equiv E - \langle E \rangle$

Result:

$$C_v = \frac{\langle (\delta E)^2 \rangle}{k_B T^2}$$

The thermal capacity (or specific heat if considered for each particle) is related to the intrinsic stochastic energy fluctuations

Intrinsic energy fluctuations in the canonical ensemble - II

Since:
$$C_v = \frac{\langle (\delta E)^2 \rangle}{k_B T^2}$$

if N is the number of particles, we have:

$$\frac{\sqrt{\langle (\delta E)^2 \rangle}}{\langle E \rangle} = \frac{\sqrt{k_B T^2 C_v}}{\langle E \rangle} \propto \frac{\sqrt{N}}{N} \sim \frac{1}{\sqrt{N}}$$

i.e., the relative energy fluctuations reduce when N is large

(correct; in the thermodynamic limit: $E \to const.$, macro \sim micro)

Ising model: fluctuations

Fluctuations are intrinsic to the system evolution and are important!

Linear response functions are related to equilibrium fluctuations:

$$C=rac{\partial\langle E
angle}{\partial T}$$
 , $C=rac{1}{kT^2}\left(\langle E^2
angle-\langle E
angle^2
ight)$

And

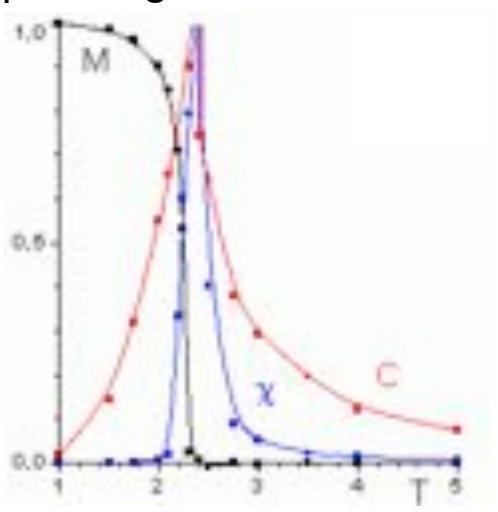
$$\chi = \lim_{H \to 0} \frac{\partial \langle M \rangle}{\partial H}$$
 , $\chi = \frac{1}{kT} (\langle M^2 \rangle - \langle M \rangle^2)$

where $\langle M \rangle$ and $\langle M^2 \rangle$ are evaluated in zero magnetic fields.

Ising model:

fluctuations and phase transition

Rapid change in <E> and <M> => singularities in C and χ



(Large fluctuations near the phase transition: Second Order phase transition)

specific heat:

$$C = \frac{\partial \langle E \rangle}{\partial T}$$

magnetic susceptibility:

$$\chi = \lim_{H \to 0} \frac{\partial \langle M \rangle}{\partial H}$$

Implementing the Ising model in the code

Implementing the Ising model

on a 2D square lattice in the canonical ensemble zero-field, nearest neighbor interactions only

$$\mathcal{H}^{spin} = -J \sum_{i,j=1}^{N} s_i s_j \qquad s_i = \pm 1$$

Input parameters are:

- L (linear lattice dimension, which gives the number of spins: N=L*L)
- nmcs (number of total MC steps per spin)
- nequil (number of equilibration MC steps per spin)
- T (temperature of the thermal bath).

Implementing the Ising model

```
program ising
    metropolis algorithm for the ising model on a square lattice
  use common
  integer :: imcs,ispin,jspin
  real (kind = double), dimension(5) :: cum
 call initial(nequil,cum)
  ! equilibrate system
  do imcs = 1,nequil
     call metropolis()
  end do
     accumulate data while updating spins
  do imcs = 1,nmcs
     call metropolis()
     call data(cum)
  end do
  call output(cum)
end program ising
```

Ising model on a lattice

L: linear lattice dimension N = LxL: number of spins a configuration (a microstate) is the whole sequence of spins, i.e. the LxL array spin(x,y) module common integer, public, dimension(:,:), allocatable :: spin subroutine initial(nequil,cum) allocate(spin(L,L)) spin(x,y) = 1 se $s_i = \pm 1$ else

spin(x,y) = -1

Ising model: magnetization

Total magnetization, or define an average magnetization per spin:

44

```
M = \sum s_i
compute initial magnetization
M = 0.0_{double}
                                 m = \frac{M}{N} = \frac{1}{N} \sum_{i=1}^{N} s_i
do y = 1,L
   do x = 1,L
       M = M + spin(x,y)
    end do
                                              -1 < m < +1
end do
          (Instead of the loop over x,y, write: M=sum(spin))
```

Ising model: energy

```
E = -J \quad \sum_{i=1}^{N} \quad s_i s_j \quad \uparrow \quad \downarrow \quad \uparrow
                                    i,j = \operatorname{nn}(i)
   compute initial energy
E = 0.0_double
do y = 1,L
   do x = 1,L
    sums = spin(x,up) + spin(right,y)
! calculate the initial energy summing all over pairs
! (for a given spin, consider only the up NN and the right NN
! - NOT the down and the left NN - : each interaction is counted once
           E = E - spin(x,y)*sums
        end do
    end do
```

Ising model: energy with PBC

```
do y = 1,L
         periodic boundary conditions
       if (y == L) then
         up = 1
      else
         up = y + 1
      end if
      do x = 1,L
          if (x == L) then
             right = 1
         else
             right = x + 1
          end if
          sums = spin(x,up) + spin(right,y)
! calculate the initial energy summing all over pairs
 (gor a given spin, consider only the up NN and the right NN
! - NOT the down and the left NN - : each interaction is counted once
         E = E - spin(x,y)*sums
      end do
   end do
```

Ising model: spin flip dynamics

Choose a random spin and flip it: it's **a new configuration** (a microstate)

```
do ispin = 1,N
! random x and y coordinates for trial spin call random_number(rnd)
x = \text{int}(L*\text{rnd}) + 1 \qquad \qquad 1 \leq x \leq L
\text{call random_number(rnd)}
y = \text{int}(L*\text{rnd}) + 1 \qquad \qquad 1 \leq y \leq L
.....
```

Flip is: spin(x,y) = -spin(x,y)

but do it later, only if you decide to accept the flip (according to Metropolis)

Ising model: energy variations per spin flip

Evolution is driven by the **energy change** between the old and the new configuration (Metropolis MC)

```
dE = DeltaE(x,y) ← energy variation for spin(x,y) flip
call random_number(rnd)
if (rnd <= w(dE)) then ← w(dE) is e<sup>-ΔE/k<sub>B</sub>T</sup>
    spin(x,y) = -spin(x,y)
    accept = accept + 1
    ....

function DeltaE(x,y) result (DeltaE_result)
DeltaE_result = 2*spin(x,y)*(left + right + up + down)
```

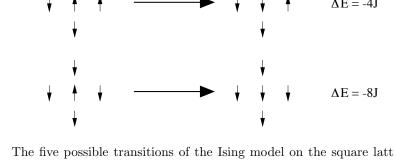
Energy variations per spin flip with PBC

```
function DeltaE(x,y) result (DeltaE_result)
    periodic boundary conditions
if (x == 1) then
   left = spin(L,y)
   right = spin(2,y)
else if (x == L) then
    left = spin(L-1,y)
   right = spin(1,y)
 else
    left = spin(x-1,y)
    right = spin(x+1,y)
 end if
 if (y == 1) then
   up = spin(x,2)
    down = spin(x,L)
 else if (y == L) then
   up = spin(x,1)
    down = spin(x,L-1)
 else
   up = spin(x,y+1)
    down = spin(x,y-1)
 end if
DeltaE_result = 2*spin(x,y)*(left + right + up + down)
```

Ising model: storage of Boltzmann's coeff.

```
Choosing the interaction parameter J=1,
possible energy variations per spin flip are -8,-4,0,+4,+8:
  do dE = -8,8,4
     w(dE) = \exp(-dE/T)
  end do
  accept = 0
  do i = 1,5
     cum(i) = 0.0_double
  end do
```

Convenient to store the Boltzmann's coefficient for these discrete values of energy variations



The five possible transitions of the Ising model on the square lattice with spin flip

 $\Delta E = 4J$

 $\Delta E = 0$

Ising model: updating energy and magnetization

```
subroutine metropolis()
     one Monte Carlo step per spin
  do ispin = 1,N
                                              DO NOT CALCULATE
                                             EVERYTHING FROM THE
     dE = DeltaE(x,y)
                                                    SCRATCH!!
     call random_number(rnd)
     if (rnd <= w(dE)) then
        spin(x,y) = -spin(x,y)
        accept = accept + 1
        M = M + 2*spin(x,y) ! factor 2 is to account for the variation:

E = E + dE ! (-(-)+(+))
     end if
                                 \Delta E is already a variation
  end do
end subroutine metropolis
```

Spin flip dynamics: how to choose spin to flip?

Random ...

```
do ispin = 1,N
! random x and y coordinates for trial spin call random_number(rnd)
x = \text{int}(L*\text{rnd}) + 1 \qquad \qquad 1 \leq x \leq L
\text{call random_number(rnd)}
y = \text{int}(L*\text{rnd}) + 1 \qquad \qquad 1 \leq y \leq L
.....
```

or ordered (sequential) ...

do
$$x = 1,L$$

do $y = 1,L$

. . .

$$spin(x,y) = -spin(x,y)$$

Spin flip dynamics: how to choose spin to flip?

- ORDERED: in some cases, it could go more slowly towards equilibrium (see later: correlation time), but it depends...
- NO appreciable differences in the statistics at equilibrium

Measuring physical quantities: how to accumulate data?

```
subroutine data(cum)
! accumulate data after every Monte Carlo step per spin
real (kind = double), dimension(5), intent (inout) :: cum
cum(1) = cum(1) + E
cum(2) = cum(2) + E*E
cum(3) = cum(3) + M
cum(4) = cum(4) + M*M
cum(5) = cum(5) + abs(M)
end subroutine data
```

After one MC step per spin for all spins:

Alternatively, do it after each MC step per individual spin...

Measuring physical quantities: how to accumulate data? Further remarks...

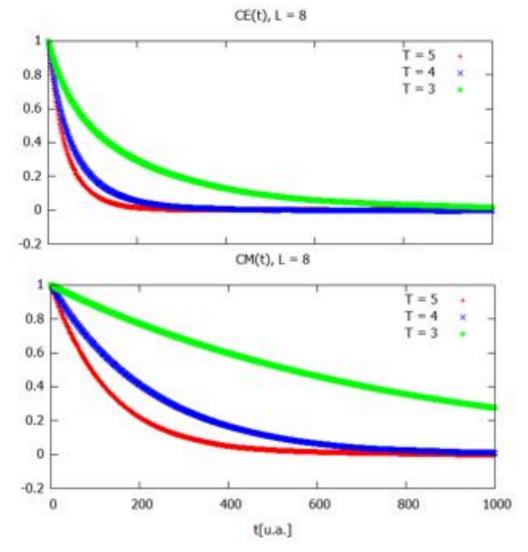
- Use statistically INDEPENDENT configurations
- Calculate therefore the CORRELATION TIME by considering the autocorrelation functions:

$$C_M(t) = \langle M(t)M(0) \rangle - \langle M \rangle^2, \quad C_E(t) = \langle E(t)E(0) \rangle - \langle E \rangle^2$$

$$(C_M(0) \propto \chi, \quad C_E(0) \propto C_V)$$

 $C_M(t) \to 0$ and $C_E(t) \to 0$ exponentially for $t \to \infty$ with a certain decay time τ : consider intervals longer than τ for statistical averages

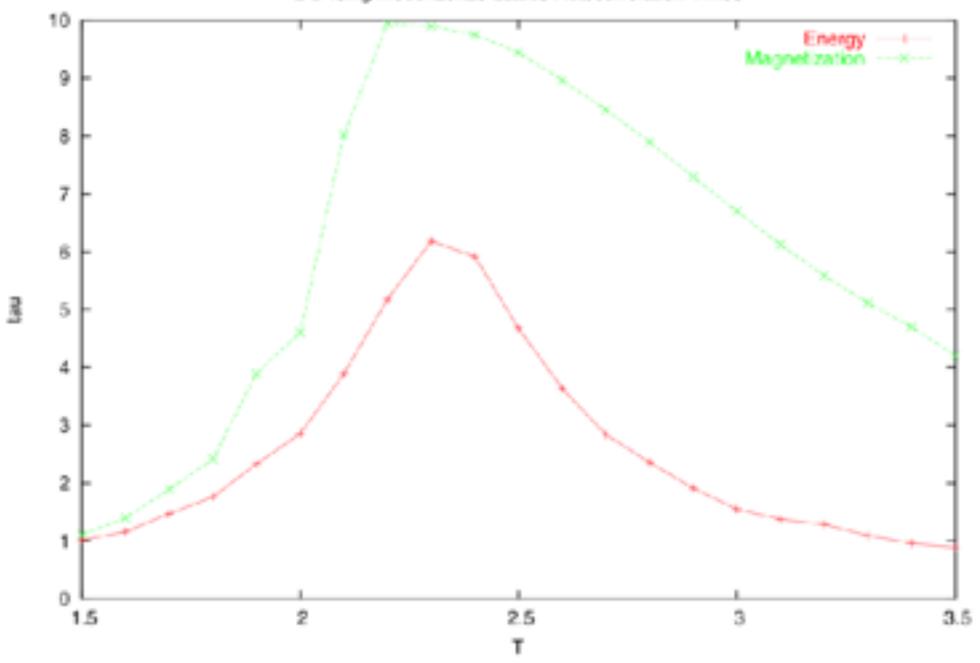
Autocorrelation functions



(NOTE: "critical slowling down" for $T \to T_C$)

=> configurations change very slowly, and it is difficult to sample enough configurations

2-D Ising Model 20x20 Lattice Autocorrelation Times



Measuring physical quantities: how to accumulate data? Further remarks...

- \bullet see also CORRELATION LENGTH between magnetic domains, $\zeta(T)$
- close to T_c, also the correlation length increases (spin alignments are more correlated), up to divergence

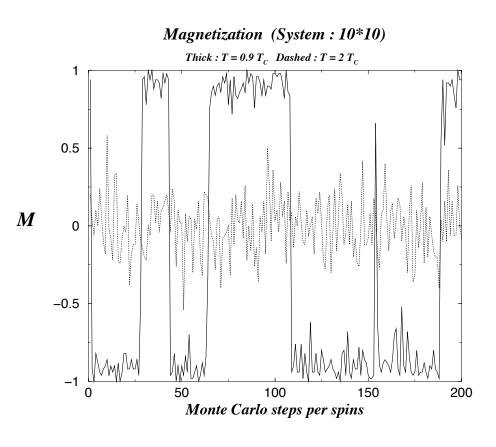
Measuring physical quantities: which errors?

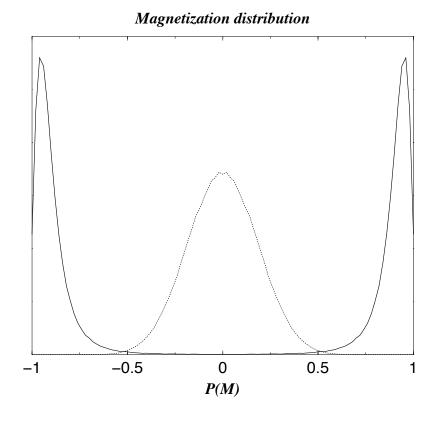
- necessary to give the ERROR ESTIMATE corresponding to the measured physical quantity !!!
- (see Tab. I of D.P. Landau, PRB 13, 2997 (1976), "Finite size behavior of the Ising square lattice")
- do also BLOCKING (called "coarse grained technique" in that paper)

How to do efficiently simulations as a function of T?

- Sometimes EQUILIBRATION time is long...
- IDEA: for T' close to T, choose as starting point the equilibrated output of T

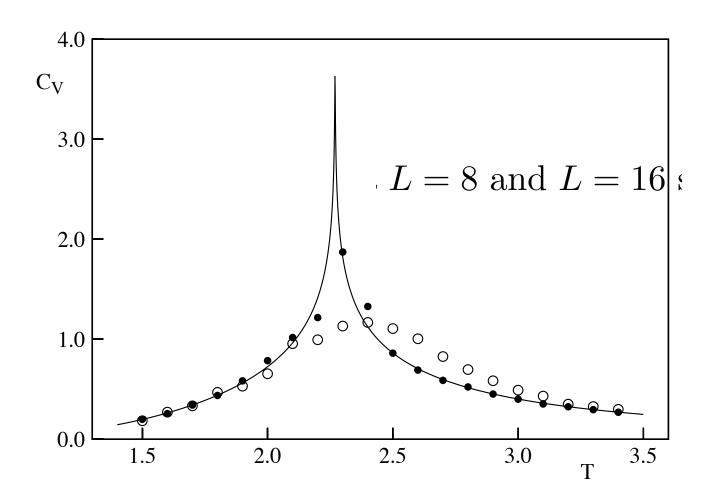
How to do efficiently simulations as a function of T?





Ising model: size problems

We cannot simulate an INFINITE system!



The temperature dependence of the specific heat C (per spin) of the Ising model

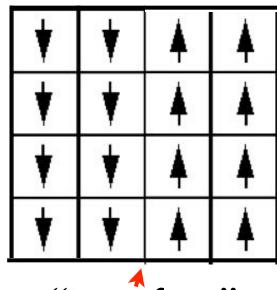
Ising model: size problems

INTERFACE EFFECTS: example of energy for HALF UP/HALF DOWN configurations:

$$L=2$$
 $E=0$

$$L=4$$
 $E=-1$

$$L=16$$
 $E=-1.75$



"interface"

···· for an infinite system: E=-2 We have a ("interface") term proportional to I/L

Program:

On moodle2:

ising.f90

Exercise

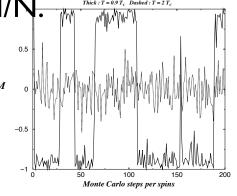
(a) Choose L=30, T=2, and initially spin=±1 randomly. Calculating and plotting the instantaneous values of the energy E/N and (together!) the magnetization M/N per spin (averaged over the lattice) as a function of Metropolis-MC steps, how much time (i.e. how many nequil MC steps) is it necessary to equilibrate the system?

Hint:

- Since initially spin=±1 randomly, E/N and M/N initially will be far from the expected equilibrium average value.

First, set nequil=0 and plot instantaneous values of E/N and M/N Estimate nequil from that plot!!! Visualization is important!!!!

nequil of course depends on T and on the initial situation



Then, set *nequil* not zero and calculate the time average < E > /N and < M > /N; increasing the total *nmcs*, the two quantities should converge...

Exercise

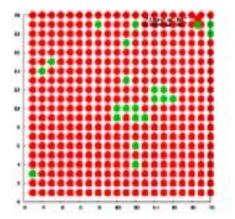
(a) Choose L=30,T=2, and initially spin=±1 randomly....

Plot a snapshot of the spin pattern: does the system appear ordered or disordered?

it should appear **ordered...**

p 'ising-up.dat' ps 3 pt 7, 'ising-down.dat' ps 3 pt 7

Plotting "ising-up.dat" and "ising-down.dat" which contain the coordinates of spin up and down respectively, one should get something like that:



Calculate also c and χ .

Exercise

(a) Choose L=30,T=2, and initially spin=±1 randomly....

Calculate also c and χ .

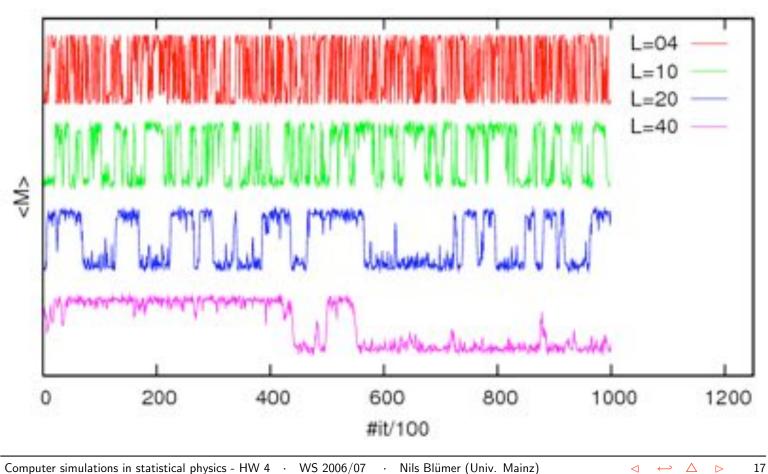
(b) Choose T=I and repeat (a)...



Some results that you should obtain...

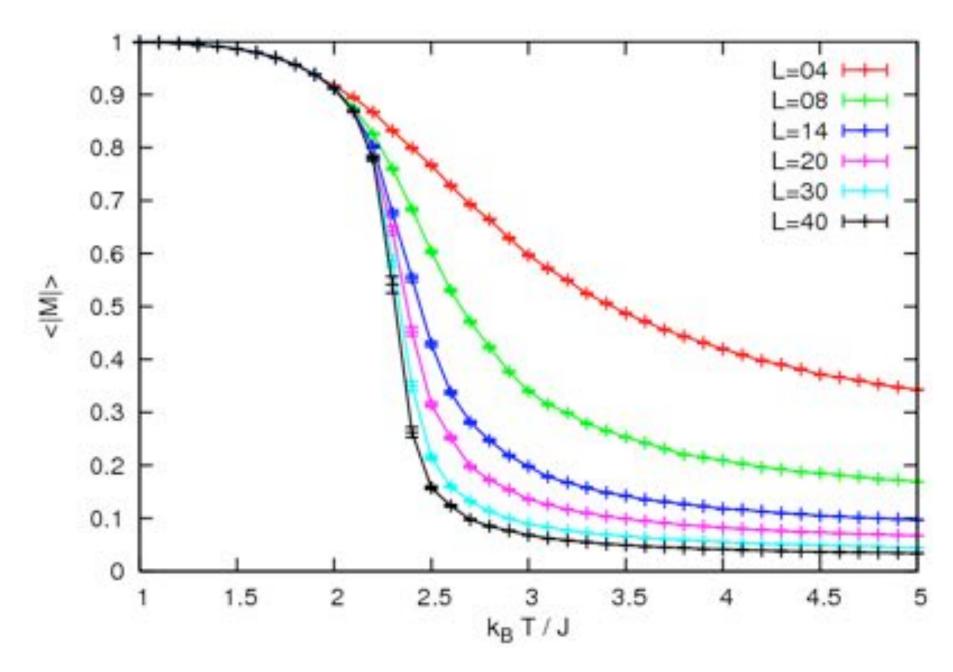
Raw data: traces, covariance and autocorrelation time

Trace: magnetization for $T=2.27J/k_B\approx T_C$ (10^5 sweeps)

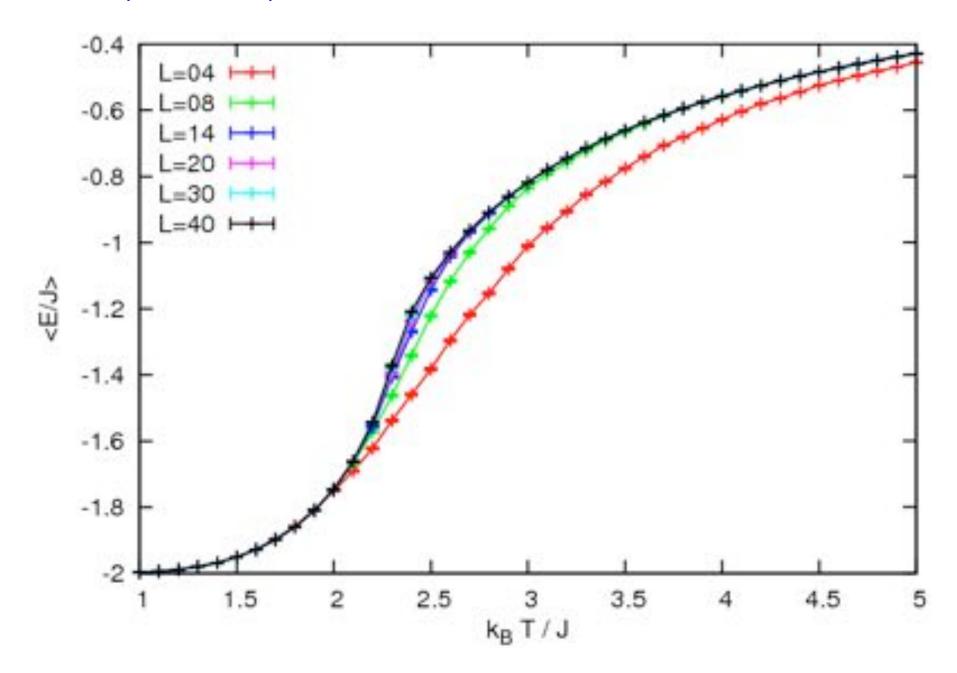


17

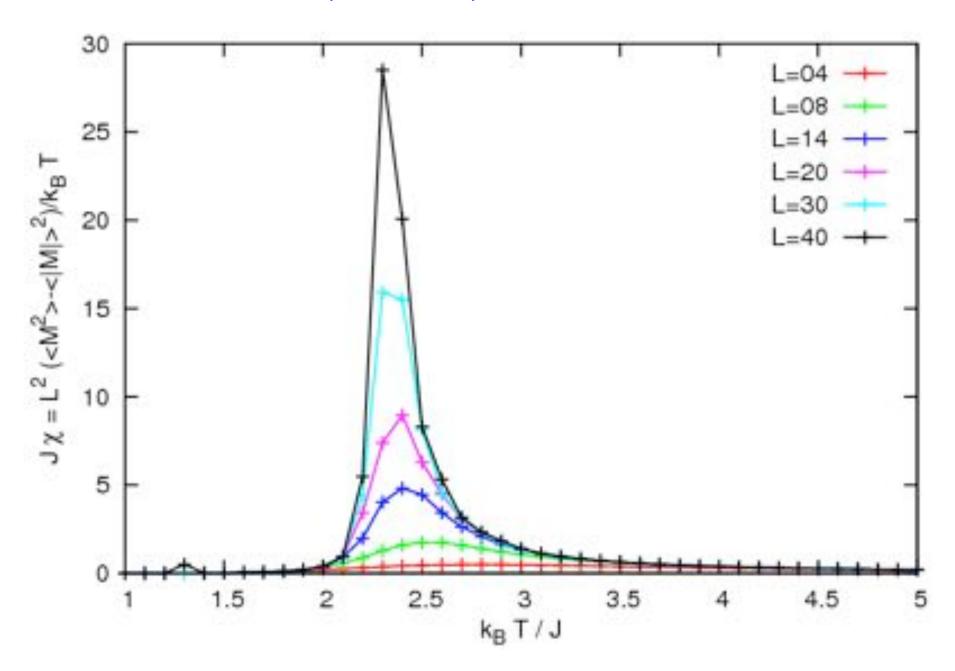
Magnetization (10^5 sweeps)



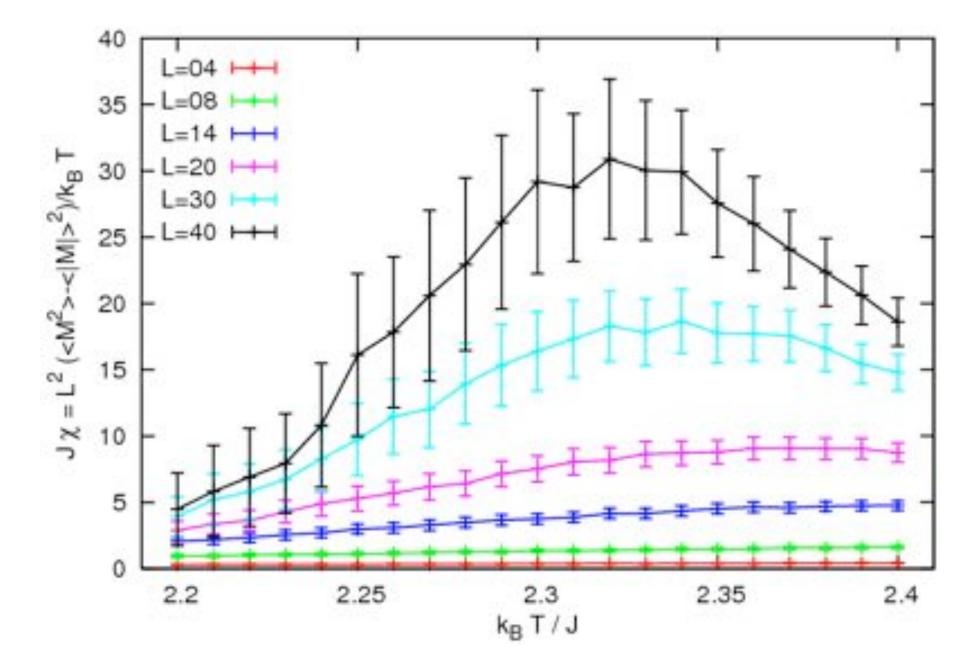
Energy (10^5 sweeps)



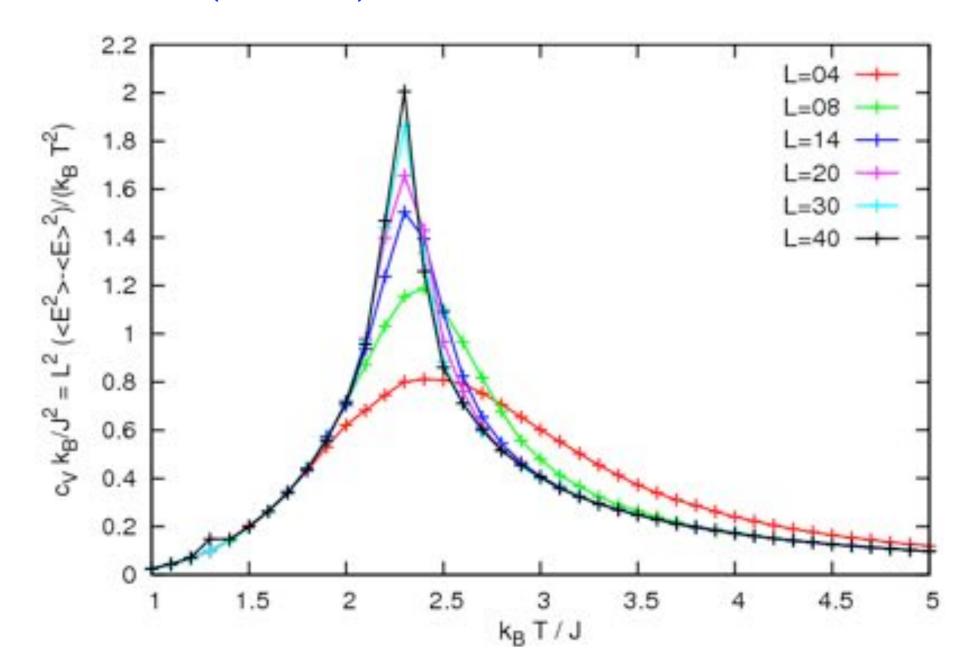
Magnetic susceptibility (10^5 sweeps)



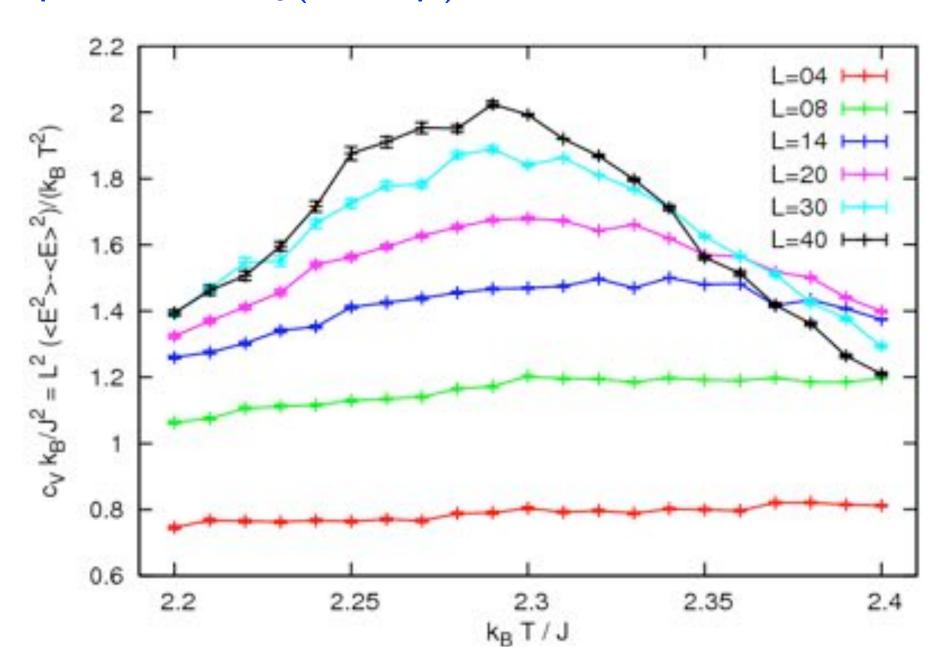
Magnetic susceptibility near T_c (10⁶ sweeps)



Specific heat (10^5 sweeps)



Specific heat near T_c (10⁶ sweeps)



extra:

- References
- More on finite size effects: finite size analysis and critical exponents
- Alternative dynamics
- Other interactions
- Other lattices
- Other models

A few references

Ising E 1925 Zeitschrift fur Physik 31 253–258
Bethe H 1931 Zeitschrift fur Physik 71 205
Heisenberg W 1928 Zeitschrift fur Physik 49 205

Near T_c , we can characterize the behavior of many physical quantities by power law behavior just as we characterized the percolation threshold (see Table 13.1). For example, we can write m near T_c as

$$m(T) \sim (T_c - T)^{\beta},\tag{17.22}$$

where β is a critical exponent (not to be confused with the inverse temperature). Various thermodynamic derivatives such as the susceptibility and heat capacity diverge at T_c . We write

$$\chi \sim |T - T_c|^{-\gamma} \tag{17.23}$$

and

$$C \sim |T - T_c|^{-\alpha}.\tag{17.24}$$

We have assumed that χ and C are characterized by the same critical exponents above and below T_c .

Another measure of the magnetic fluctuations is the linear dimension $\xi(T)$ of a typical magnetic domain. We expect the *correlation length* $\xi(T)$ to be the order of a lattice spacing for $T \gg T_c$. Because the alignment of the spins becomes more correlated as T approaches T_c from above, $\xi(T)$ increases as T approaches T_c . We can characterize the divergent behavior of $\xi(T)$ near T_c by the critical exponent ν :

$$\xi(T) \sim |T - T_c|^{-\nu}.$$
 (17.25)

From: Gould-Tobochnich

More precisely, the magnetisation follow a power law close to the transition only approaching from smaller T:

$$M = 0 T \ge T_c$$

$$M \sim |1 - T/T_c|^{\beta} T < T_c$$

If we use the Reduced temperature : $\Delta T = (T - T_c)/T_c$

$$C \sim |\Delta T|^{-\alpha}$$
 $M \sim |\Delta T|^{\beta} \text{ for } \Delta T < 0$
 $\chi \sim |\Delta T|^{-\gamma}$
 $\xi \sim |\Delta T|^{-\nu}$

Universalit

0.00 0.02 0.04 0.06 0.08 0.10 L^{-1}

the critical exponents are not independent from each other, because of the following scaling laws (\bullet) :

$$\gamma = \nu(2 - \eta),$$

$$2 = \alpha + 2\beta + \gamma,$$

$$\nu d = 2 - \alpha,$$

$$\gamma = \beta(\delta - 1),$$

so it is only necessary to know two of them to determine the others.

For the 2D Ising model:
$$egin{array}{c|c} \alpha & 0 \\ \beta & 0.125 \\ \hline \gamma & 1.750 \\ \hline \nu & 1 \\ \hline \end{array}$$

• Kerson Huang, Introduction to Statistical Physics (CRC Press)

If the heat capacity goes like: $C(T) \propto |T - T_c|^{-\alpha}$

we could plot $\frac{1}{C(T)}$ as a function of T and make a linear fit:

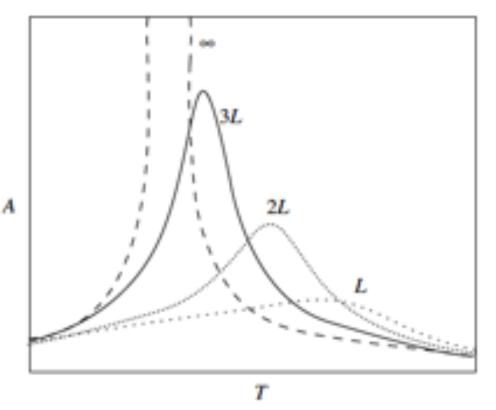
$$\frac{1}{C(T)} = a + bT$$

and similarly for the other quantities.

BUT: Because we can simulate only finite lattices, a direct fit of the measured quantities does not yield good estimates for the corresponding exponents α , ν , β , and γ => we have to take into account the finite size of the system

=> finite size scaling

The shift in the peak position of C and χ with respect to the critical temperature corresponding to the thermodynamic limit is described by: $T_c(L) - T_c(\infty) \propto L^{-\lambda}$



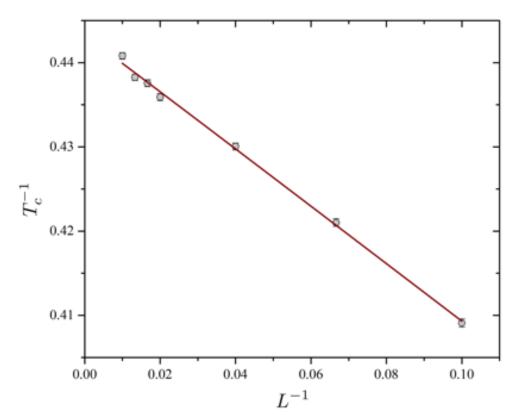


FIG. 1. Typical behaviour of a physical quantity A vs temperature close to the critical point for various system sizes. Figure taken from Thijssen⁸.

[Thijssen, Computational Physics (Cambridge University Press)]

FIG. 9. (Color online) Inverse of the critical temperature T_c^{-1} vs inverse of lattice size L^{-1} for the 2D Ising model. The curve was fitted with a power law $T_c^{-1} = T_{c\infty}^{-1} - bL^{-1/\nu}$, and the critical exponent ν was determined.

• From: E. Ibarra-Garcia-Padilla et al., European Journal of Physics 37(6):065103 DOI: <u>10.1088/0143-0807/37/6/065103</u>

(This is referred to percolation)

Because we can simulate only finite lattices, it is difficult to obtain estimates for the critical exponents α , β , and γ by using the definitions (17.22)–(17.24) directly. We learned in Section 13.4, we can do a *finite size scaling analysis* to extrapolate finite L results to $L \to \infty$. For example, from Fig. 17.2 we see that the temperature at which C exhibits a maximum becomes better defined for larger lattices. This behavior provides a simple definition of the transition temperature $T_c(L)$ for a finite system. According to finite size scaling theory, $T_c(L)$ scales as

$$T_c(L) - T_c(L = \infty) \sim aL^{-1/\nu},$$
 (17.27)

where a is a constant and ν is defined in (17.25). The finite size of the lattice is important when the correlation length

$$\xi(T) \sim L \sim |T - T_c|^{-\nu}.$$
 (17.28)

As in Section 13.4, we can set $T = T_c$ and consider the L-dependence of M, C, and χ :

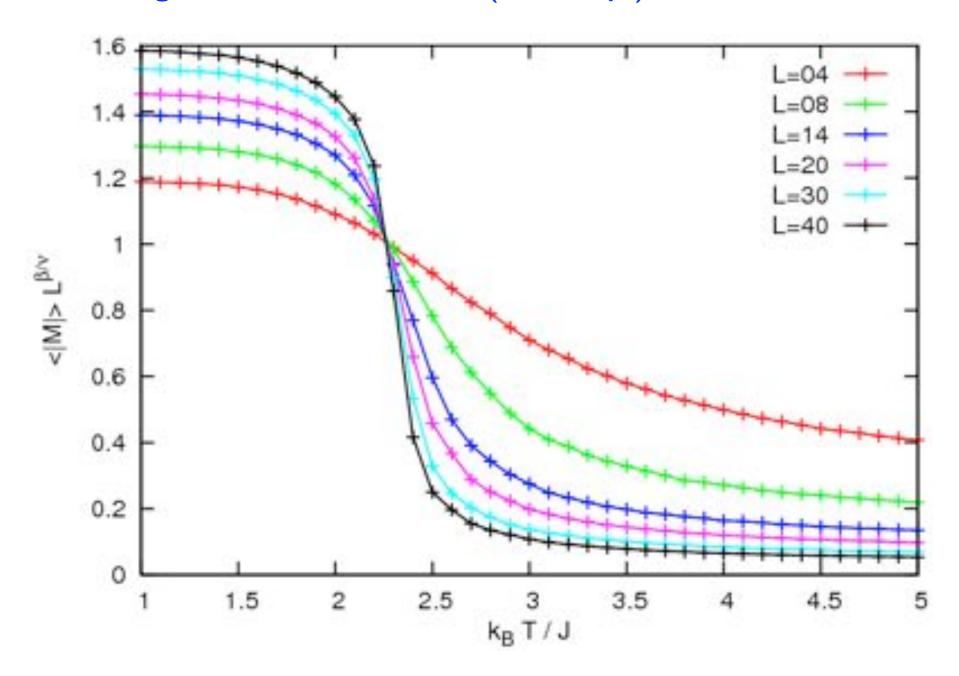
$$m(T) \sim (T_c - T)^{\beta} \to L^{-\beta/\nu} \tag{17.29}$$

$$C(T) \sim |T - T_c|^{-\alpha} \to L^{\alpha/\nu} \tag{17.30}$$

$$\chi(T) \sim |T - T_c|^{-\gamma} \to L^{\gamma/\nu}. \tag{17.31}$$

From: Gould-Tobochnich

Scaled magnetization vs unscaled T (10^5 sweeps)



Ising model: alternative dynamics

- in the SPIN FLIP dynamics the order parameter is not conserved (M changes during evolution)
- alternative: NN spin exchange (Kawasaki dyn.)
 (exchange two NN spins picked at random;
 M is conserved; this is equivalent to LATTICE
 GAS MODELS with fixed number of particles)
- another alternative: flip a cluster of spins (Wolff dynamics)

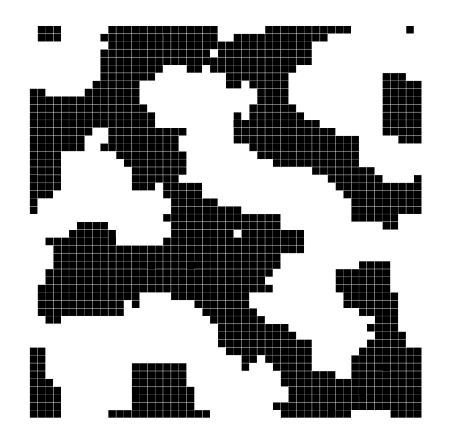
see e.g.: https://mattbierbaum.github.io/ising.js

Ising model: Kawasaki dynamics

Fixed magnetization : change of thermodynamical ensemble

No modification of the equilibrium properties

except phase separation



Addition of further interactions

Attractive (J>0) nearest-neighbor (NN) interaction only: total energy of the system:

$$E = -\frac{J}{2} \sum_{\langle ij \rangle} n_i n_j$$

=> Trend to aggregation (diffusive behavior is limited to a transient)

Add a repulsive (J<0) next-nearest-neighbor (NNN) interaction: total energy of the system:</p>

$$E = -\frac{1}{2} \sum_{\langle ij \rangle} J_{ij} n_i n_j$$

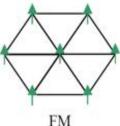
=> The behavior depends on the ratio $R=J_{NNN}/J_{NN}$

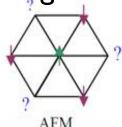
With finite NN and/or NNN interactions, temperature plays a role

Ising model: other generalizations

- SPINS: XY, Heisenberg, Potts...
- LATTICES: Square, Triangle, Cubic, Honeycomb, Kagome....
- INTERACTIONS: Magn. Field, Antiferrom.,
 Next Nearest Neighbor (NNN)....

Different behaviour according to the geometry and the kind of interactions. Example: frustration in the triangular antiferromagnetic Ising model:





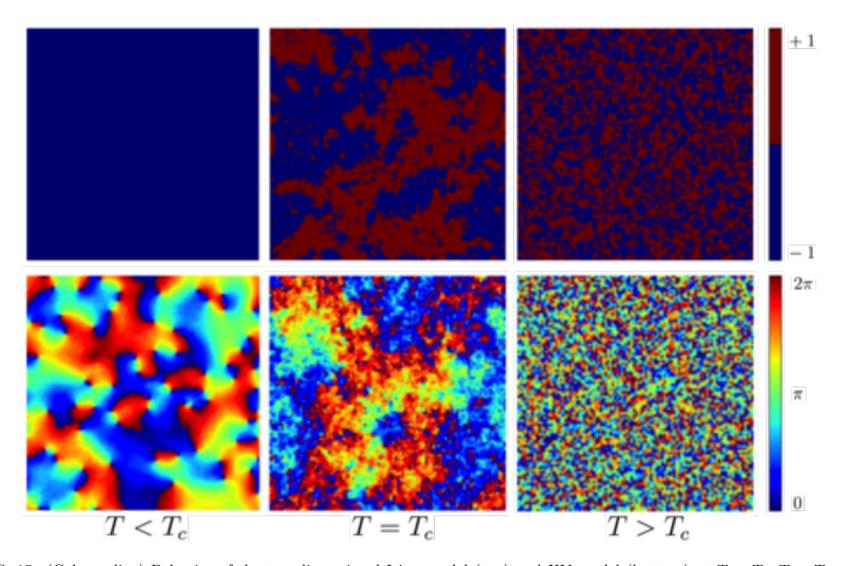


FIG. 15. (Color online) Behavior of the two dimensional Ising model (top) and XY model (bottom) at $T < T_c$, $T = T_c$ and $T > T_c$. For the Ising model, an \uparrow spin ($s_i = 1$) is represented by red and a \downarrow spin ($s_i = -1$) is represented by blue. For the XY model, because every spin is determined by θ , so $\mathbf{s}_i = (\cos \theta, \sin \theta)$, an angle of 2π is represented by red and an angle of 0 by blue. In the low-temperature phase, the Ising model exhibits spontaneous magnetization while in the XY model, vortex buddies appear (characterized by points where a continuum from blue to red, or viceversa, circle the point. It is worth to notice that these points are present by pairs with opposite circulation).