

L'Istituto Nazionale di Fisica Nucleare è un ente pubblico nazionale di ricerca, istituito l'8 agosto 1951; si occupa dello studio dei costituenti fondamentali della materia e delle leggi che li governano.

Svolge attività di ricerca, teorica e sperimentale, nei campi della fisica subnucleare, nucleare e astroparticellare.

Le attività di ricerca dell'INFN si svolgono in un ambito di competizione internazionale.

La ricerca fondamentale in questi settori richiede l'uso di tecnologie e strumenti di ricerca d'avanguardia che l'INFN sviluppa sia nei propri laboratori sia in collaborazione con il mondo dell'industria.

4 Laboratori Nazionali 20 Sezioni collegate

AD Antiproton Decelerator CTF-3 Clic Test Facility CNLS Cern Neutrinos to Gran Sasso ISOLDE Isotope Separator OnLine DEvice LEIR Low Energy Ion Ring LINAC LINear ACcelerator O-ToF- Neutrons Time Of Flight Misura di sezioni d'urto neutroniche ad alta accuratezza per l'astrofisica nucleare e per le tecnologie nucleari emergenti

[n_TOF @ CERN]

Caratterizzazione delle condizioni stellari

Nucleosintesi degli elementi più pesanti del Ferro

Astrofisica nucleare

Nucleosintesi primordiale

Cosmocronologia

Reattori di IV Generazione

Smaltimento delle scorie radioattive

Tecnologia nucleare

Fusione

Fisica medica

Materiali

...e ancora

...e Fisica di base !!!

<u>Reazioni indotte da neutroni</u>

Cattura (n, γ)

Fissione (n, f)

Produzione di particelle cariche
(n, cp)
(n, p)
(n, α)

Astrofisica nucleare

1957 Burbidge, Burbidge, Fowler, Hoyle

REVIEWS OF MODERN PHYSICS

VOLUME 29, NUMBER 4

OCTOBER, 1957

Dans

Synthesis of the Elements in Stars*

E. MARGARET BURBIDGE, G. R. BURBIDGE, WILLIAM A. FOWLER, AND F. HOYLE

Kellogg Radiation Laboratory, California Institute of Technology, and Mount Wilson and Palomar Observatories, Carnegie Institution of Washington, California Institute of Technology, Pasadena, California

> "It is the stars, The stars above us, govern our conditions"; (King Lear, Act IV, Scene 3)

> > but perhaps

"The fault, dear Brutus, is not in our stars, But in ourselves," (Julius Caesar, Act I, Scene 2)

TABLE OF CONTENTS

		-8
L	Introduction. A. Element Abundances and Nuclear Structure. B. Four Theories of the Origin of the Elements. C. General Features of Stellar Synthesis.	54 54 55 55
п.	Physical Processes Involved in Stellar Synthesis, Their Place of Occurrence, and the Time-Scales Associated with Them. A. Modes of Element Synthesis. B. Method of Assignment of Isotopes among Processes (i) to (viii). C. Abundances and Synthesis Assignments Given in the Appendix. D. Time-Scales for Different Modes of Synthesis.	55 55 55 55 55
ш.	Hydrogen Burning, Helium Burning, the α Process, and Neutron Production . A. Cross-Section Factor and Reaction Rates. B. Pure Hydrogen Burning. C. Pure Helium Burning. D. α Process. E. Succession of Nuclear Fuels in an Evolving Star. F. Burning of Hydrogen and Helium with Mixtures of Other Elements; Stellar Neutron Sources	559 559 560 560 560 560
IV.	e Process	57
v.	s and r Processes: General Considerations. A. "Shielded" and "Shielding" Isobars and the s, r, p Processes. B. Neutron-Capture Cross Sections. C. General Dynamics of the s and r Processes.	580 580 581 581
VI.	Details of the s Process.	58
* Sec	sported in part by the joint program of the Office of Naval Research and the U.S. Atomic Encome Commission	

547 Copyright () 1957 by the American Physical Society

"Man inhibits a universe composed of a great variety of elements and their isotopes ..."

REVIEWS OF MODERN PHYSICS

VOLUME 29, NUMBER 4

October, 1957

Synthesis of the Elements in Stars*

E. MARGARET BURBIDGE, G. R. BURBIDGE, WILLIAM A. FOWLER, AND F. HOYLE

Kellogg Radiation Laboratory, California Institute of Technology, and Mount Wilson and Palomar Observatories, Carnegie Institution of Washington, California Institute of Technology, Pasadena, California

> "It is the stars, The stars above us, govern our conditions"; (King Lear, Act IV, Scene 3)

> > but perhaps

"The fault, dear Brutus, is not in our stars, But in ourselves," (Julius Caesar, Act I, Scene 2)

```
Nucleosintesi
degli elementi più pesanti del Ferro
           s process [SLOW]
           T \approx 10^8 \text{ K}
           n<sub>n</sub>≈10<sup>8</sup> neutroni/cm<sup>3</sup>
           Tempi di cattura ≈ 1 anno
                          r process [RAPID]
                          T > 10^9 K
                          n<sub>n</sub>≈10<sup>20</sup> neutroni/cm<sup>3</sup>
                          Tempo di esposizione ≈ secondi
```

<u>50-50</u>

Nucleosintesi

degli elementi più pesanti del Ferro

H, He, Li

Espulsione di materia nel mezzo interstellare

•

Residui

(Supernova) Nucleosintesi

Black Hole Neutron Star White Dwarf

Big Bang

16

Il processo S procede lungo la valle di stabilità β

Il processo **r** procede *per via esotica* **processo r** procede *per via esotica* **r**

Eventi di supernova

Emissione di materia da *neutron star mergers*

Studio delle Condizioni stellari

Punti di diramazione lungo il processo s Z 🕇

Breve $\tau_{1/2}$ || Basso Φ_n

Meno breve $\tau_{1/2}$ || Sufficientemente alto Φ_n

Studio delle Condizioni stellari

Possibili scenari (in stelle massive)

Tecnologia nucleare

La richiesta energetica mondiale cresce rapidamente e con essa i problemi collegati al riscaldamento globale

Fonte OECD/NEA

L'utilizzo di fonti fossili ha un IMPATTO FORTEMENTE NEGATIVO Riscaldamento globale

Aumento dei livelli di CO₂ in atmosfera

Salute pubblica

Si stima che l'inquinamento atmosferico uccida 13 persone ogni minuto, a causa di tumori al polmone, malattie cardiache ed ictus (World health day 2022, OMS)

La chance del nucleare

A sfavore

Incidenti gravi (Three Mile Island, Chernobyl, Fukushima) Gestione delle scorie nucleari (immagazzinamento sicuro per milioni di anni) Proliferazione nucleare

Non produce gas serra Tecnologia consolidata

	Cm 238 2,4 h	Cm 239 3 h	Cm 240 27 d sf • 6.291; 6.248 sr	Cm 241 32,8 d * 5339 7472.431:132	Cm 242 162,94 d sf a5,113:6,008 sto 7,144):e ⁻ o ⁻²⁰ m ⁻⁵	Cm 243 29,1 a c 5785 5742 c 51 a r 278: 2281 210 er c 130: cg 620	Cm 244 18,10 a **** *******************************	Cm 245 8500 a α 5.351; 5.314 at g γ 175; 133 σ 350; η 2100	Cm 246 4730 a a 5,386; 5,343 st; g y (45); e ⁻ of 1,2; or 0,16	^{244, 245} Cm 1.5 Kg/yr	Scorie
Am 236 ? 3,7 m	Am 237 73,0 m * 6,942 * 280; 436; 474; 909 9	Am 238 1,63 h sf * 5.54 y 963; 919; 561: 6(5 0	Am 239 11,9 h sf * 5,774 7 278: 228 9	Am 240 50,8 h	Am 241 432,2 a 51 51,7 60,28 61,9 50+570, gt	Am 242 141 a 16 h 5505 07.4 151 141 a 16 h 5505 07.4 151 145 3 146 153 156 156 157 157 156 157 156 157 157 156 157 157 146 157	Am 243 7370 a = 5.275; 5.233 st. y 75; 44 75 + 5 n, 0.074	m 244 10,1 h β ^{-0.4} γ.004	Am 245 2,05 h sf #-0.9 241:296] e ^{-1.9}	²⁴¹ Am:11.6 Kg/yr ²⁴³ Am: 4.8 Kg/yr	radioattive
Pu 235 25,3 m	Pu 236 2,858 a st st.19 28 y 142 108;e ⁻ oy 160	Pu 237 45,2 d	Pu 238 87,74 a st st, 5k90; 5,496 y (43: 105); e ⁻ e 510; cp 17	Pu 239 2,411 · 10 ⁴ a st st;y;b2 · 144 e;m o;270: m;752	Pu 240 6563 a s ¹ (85,5,124 s ¹ (γ(65) e ⁻ ; 0 g202(c) ~ 0.04	Pu 241 4,35 a 51 51 51 51 51 51 51 51 51 51 51 51 51	Pu 242 3,750 · 10 ⁵ a = 4,601; 4,806 st; y 143) e1g, e1,400; e1g, e1,400;	Pu 243 4,956 h sf #06 764 **********************************	Pu 244 8,00 - 107 a 0 4,598, 4,546 8,17 e 0 1,7	²³⁹ Pu: 125 Kg/yr	quantità prodotte
Np 234 4,4 d «; β ⁺ γ 1559; 1528; 1602 α; 200	Np 235 396,1 d ε: α 5,025; 5,007 γ[26; 84]; e	Np 236 22,5 h 1,54 10 ⁵ 4 p 0.5. 4 p 7 4 7 10 ² 685 1, 6 - 10 ⁴ 6	Np 237 2.*44 - 10 ⁶ a sf - 4.790; 4. *4 7 ^{20:} 67	Np 238 2,117 d β ^{-1,2,} γ 984; 1029; 1026; 924, e ⁻ α, σ,2100	Np 239 à 355 d β ⁻ 0.4; 7 γ 106; 22 228e ⁻ B σ32 + 19.m.	Np 240 7,22 m 65 m β ⁻ 2.2. β ⁻ 0.9 γ 555. 576: 507 574: 67 601:	Np 241 13,9 m ^{β⁻1,3} γ ^{175;} (133)	Np 242 2,2 m 5,5 m 8 ^{-2,7} 8 ⁻ 7736, 7786, 945; 1473 159	Np 243 1,85 m ^{β⁻}	²³⁷ Np: 16 Kg/yr	LWR
U 233 1,592 • 10 ⁵ a α 4,824; 4,783 Ne 25: γ (42; 97); e σ 47: σ 530	U 234 0,0055 2,455 · 10 ⁹ c ^{9,475;4720} ; sl ^{9,4775;4720} ; sl ^{9,4775} ; sl ^{9,4755} ; sl ^{9,}	U 235 0,7200 25 = 7,038-10 4 4,38810 4,571 56 57 55	U 236 120 x 12 49 107 a 1445 1 4445 1 5 642 1 15 1 5 1 5 1 5 1 5	U 237 75 d γ 60; 208 σ ⁻ 100; στ < 0,3	U 238 99,2745 207 4,45 1910 133 455 1910 151 475 1910	U 239 3,5 m β ⁻¹ .2:1.3 γ 75:44 σ 22: m 15	U 240 14,1 h β ⁻ 0,4 γ 44: (190) e ⁻ m	9 9	U 242 16,8 m γ 68; 58; 585; 573 m	<	
Pa 232 1,31 d β ⁻ 0.3, 1,3; ε γ 959; 894; 150; ε ⁻ α 460; ε ₇ 700	Pa 233 27,0 d β ⁺ 0,3: 0,8 γ 312: 300: 341; e ⁻ α 20 + 19; α < 0,1	$\begin{array}{c c} Pa & 234 \\ \hline 1,17 m & 6,70 h \\ (r^2 2.3 r^{(1007)}, 12 r^{(1007)}, 12 r^{(107)}, 12 r^{(107)}, r^{(1$	ρ ₁ 235 24,2 m ^{β⁻14} ^{γ 123-659}	Pa 236 9,1 m β= 2.0; 3,1 γ 642: 587: 1763; g βsf ?	Pa 237 8,7 m β 1,4; 2,3 γ 854; 865; 529; 541	Pa 238 2,3 m β ⁻¹ ,7;2,9 γ 1015;635; 448;680 9	148		150		
Th 231 25,5 h ^{β⁻0,3;0,4} ^{γ 26;84}	Th 232 100 1,405-10 ¹⁹ a « 4,013,3350; st y [54; s 07,37; at 0,000005	Th 233 22,3 / 1 sf ^{g-12} 45.29 459 459 459 459 459 459 459 459 459 45	h 234 24,10 d β ⁻ 0.2 γ 3:92;93 e ⁻ m σ 5; σ < 0,01	Th 235 7,1 m ^{β^{-1,4} γ 417; 727; 696}	Th 236 37,5 m β ^{-1,0,} γ 111; (647; 196)	Th 237 5,0 m β ⁻				LLFP 76.2 Kg/yr	

	Cm 238 2,4 h	Cm 239 3 h	Cm 240 27 d st	Cm 241 32,8 d * * 5339 7 472; 431; 132	Cm 242 162,94 d st 45,113; 6,009 st 9 7 (44); 6 ⁻¹	Cm 243 29,1 a sf s785 5742 c.st.p 1 278: 228;	Cm 244 18,10 a sf *6405;6762	Cm 245 8500 a sf	Cm 246 4730 a a 5,386; 5,343 st; g
	ε α 6,52	γ 188 9	s/ 0	9- 0	σ-20 n _f -5	210; 9" a 130; ay 620	Υ(43); 6" #15. #11.1	γ 175, 133 σ 350, σ ₁ 2100	γ (45); e ⁻ σ 1,2; σι 0,16
Am 236 ? 3,7 m	Am 237 73,0 m sf ⁴ 909	Am 238 1,63 h sf 6 953,919,561: 605 0	Am 239 11,9 h \$5,774 1278:228 9	Am 240 50,8 h	Am 241 432,2 a st 432,2 a st 5496; 5443 st; y 60; 25 g; g g 50 + 570; g; 21	Am 242	Am 243 7370 a = 5275; 5233 st; y75; 544 e75; 55 0, 0,074	Am 244	Am 245 2,05 h sf (241,296) e ^{-1,9}
Pu 235 25,3 m	Pu 236 2,858 a st 49 28 y 148,108; e y 160	Pu 237 45,2 d sf *5.334 YBC* *1,2300	Pu 238 87,74 a st st, 54,99; 5,496 st, 54,99; 5,495 st, 54,99; 5,495 st, 54,99; 5,495 st, 54,99; 5,495 st, 54,99;	Pu 239 2,411 · 10 ⁴ a st st; 5; 5; 144 e; m o 270; oy 762	Pu 240 6563 a st «5.168:5.124 \$'\(16:5.) \$'\(20);e_1 = 0.044	Pu 241 14,35 a st *4890 *1149er *370.*;1010	Pu 242 3,750 · 10 ⁵ a a 4,901; 4,896 st; y (45) c; g c 19; cg < 0,2	Pu 243 4,956 h sf #-0.6 ye49 ex100;er200	Pu 244 sf 8,00 - 107 a o 4,588,4,546 st; 1 o 1,7
Np 234 4,4 d •; 6 ⁺ y 1559; 1528; 1602 g; 900	Np 235 396,1 d ε; α 5,025; 5,007 γ[26; 84]; e g; σ 160 + ?	Np 236 225 h 154 105 4 p 0.5. 4 p 7.0 1982 688. 1 e 1982 689. 1 e 1982 689. 1 e 1982 699. 1 e 1982	Np 237 2,144 - 10 ⁶ a # 4,790; 4,674 7,290; 67	Np 238 2,117 d β ⁻ 1,2 γ 984; 1029; 1026; 924; e ⁻ g; σ; 2100	Np 239 2,355 d β ⁺ 0.4; 0.7 γ 106; 278; 228e ⁻ ; g σ 32 + 19; σr < 1	Np 240 7,22 m 65 m (57 2.2.) 7565: 307 67 804 67 804 17	Np 241 13,9 m β ⁻ 1,3 γ 175; (133) 9	Np 242 2,2 m 5,5 m 9°2,7 5° 7738. 7786. 945: 1873 199 9	Np 243 1,85 m β ⁻ 7 288 9
U 233	U 234	U 235	U 236	U 237	U 238	U 239 23.5 m	U 240		U 242
α 4.824; 4 Ne 25; γ (42; 97); e σ 47: σ 530	o 4.775;4 22; 8 Mg 28; Ni n 33; 121; 47; #96; 14:1006	1	1y 1783. 642. Al Control (42) 11) Al Control (42)	γ 60; 208 e σ ~ 100; σt < 0,35	270 ns 4,458 10° a h 254 s 4.196s 375 h 106 d a e 27, e 1 1 1	β 1.2; 1,3 γ 75; 44 σ 22; σ; 15	β ⁻ 0,4 γ 44: (190) e ⁻ m		β ⁻ 7 68; 58; 585; 573 m
Pa 232 1,31 d	2 2 33 2 0 d	Pa 234	Pa 215 24,211	Pa 236 9,1 m	Pa 237 8,7 m	Pa 238 2,3 m			
8 0.3, 1,3; ε γ 969; 894; 150; e ⁻ σ 460; σ; 700	β ⁺⁻ 0, 10, . y 312 300 341, t e α 20 19; t < b	$\begin{array}{l} \beta^{-} 2.3 \dots & \beta^{-} 0.5; \\ \gamma \left(1001; & 1.2 \dots \\ 707 \dots \right) & \gamma \left(131; 001; \\ 1\gamma \left(74,, n \right) & 853 \dots , n^{-} \\ \alpha_{\gamma} < 500 & \alpha_{\gamma} < 5000 \end{array}$	β 1,4 γ 128 - 65 m	β ⁼ 2,0; 3,1 γ 642; 587; 1763; g βsf ?	β 1,4; 2,3 γ 854; 865; 529; 541	$\begin{array}{c} \beta^{-} 1.7; 2.9\\ \gamma \ 1015; 635;\\ 448; 680\\ 9\end{array}$	148		150
Th 231 25,5 h	Th 232	Th 233	Th 234 24,10	Th 235 7,1 m	Th 236 37,5 m	Th 237 5,0 m			MACANA.
β 0,3; 0,4 γ 26; 84 e	1,405-1,7 a a 4, 13: 3:82; sf 7 8; sf 7 7 8; ay 0,0 10095	8 12. 7 87.29; 459;e ⁻ o 1500; o ₁ 15	β ⁻ 0, 1 γ 63: 92; 92 e ⁻ ; r σ 1, ξ. στ < 0 01	β 1,4 γ 417; 727; 696	β ⁼ 1,0 γ 111: (647; 196)	β-			
	LLFP		LLFP		²³² Th(n	,γ) ²³³ Th	$\beta^{-}, t_{1/2} = 22$	m 233Pa	β ⁻ , t _{1/2} =27

²³³U

Reattori Gen-IV

I Reattori nucleari di nuova generazione *devono soddisfare una serie di criteri di base:*

- avere una maggiore efficienza di burn-up \rightarrow decisa riduzione delle scorie
- riutilizzo di parte del combustibile spento,
- produzione di energia bruciando scorie ad alta radiotossicità (Np, Am, Cm);
- presentare forme di sicurezza intrinseca;
- non consentire la proliferazione nucleare;
- ridurre tempi e costi di costruzione.

Trasmutazione delle scorie radioattive

Attraverso cattura neutronica (n, γ)

Per LLFF (⁷⁹Se, ⁹³Zr, ⁹⁹Tc, ¹²¹I, ¹³⁵Cs, ¹⁵¹Sm, ...)

 $n+^{99}Tc (2.1x10^5 y) \rightarrow ^{100}Tc (16 s) \rightarrow ^{100}Ru$

Attraverso cattura neutronica (n, γ) e fissione indotta da neutroni (n, f)

Per Pu e Attinidi minori (²⁴⁰Pu, ²³⁷Np, ^{241,243}Am, ^{244,245}Cm, ...)

Fisica medica

Boron neutron capture therapy (BNCT)

E' una tecnica per il trattamento del cancro in cui le cellule cancerose vengono eliminate per mezzo di una reazione nucleare. La reazione indotta dai neutroni si concentra sul tessuto malato grazie all'immissione in esso di un farmaco contenente atomi di Boro.

BNCT si basa sull'elevata selettività di interazione del ¹⁰B con neutroni termici, a bassa energia, per dare ¹¹B; tale specie è instabile e la sua fissione produce due particelle molto energetiche: ⁷Li ed ⁴He.

Queste provocano la morte delle cellule intorno all'atomo di ¹¹B.

Misura di sezioni d'urto neutroniche ad alta accuratezza per l'astrofisica nucleare e per le tecnologie nucleari emergenti

[n_TOF @ CERN]

La *facility* n_TOF (neutron Time Of Flight) si colloca all'interno delle tante opportunità offerte dal CERN di Ginevra

n_TOF è una sorgente di spallazione
che sfrutta un fascio di protoni da 20 GeV/c del PS

L'installazione rende disponibili neutroni in un ampio spettro energetico, dal termico fino al GeV.

> La peculiarità consiste nell'elevato flusso neutronico istantaneo e nella alta risoluzione energetica.

Ciò rende possibili misure molto accurate di sezioni d'urto indotte da neutroni.

Dispone di tre sale sperimentali collocate a diversa base di volo (≈185 m, ≈19 m, ≈2 m)

BERSAGLIO DI SPALLAZIONE

- Dimensioni: $80 \times 80 \times 40 \text{ cm}^3$ Piombo: 4 t
- H₂O moderatore: 5 cm
- Al-window: 1.6 mm
- Al-container: 140 l

Proton beam momentum

Intensity (dedicated mode)

Pulse width

n/p

20 GeV/c

7 x 10¹² protons/pulse

6 ns (rms)

300

Experimental Area 1 (EAR1)

La facility n_TOF @ CERN

Produzione e trasporto del fascio di neutroni

- Bersaglio di Pb 80x80x40 cm³ circondato da 5 cm di acqua per la moderazione (flusso isoletargico) e il raffreddamento
- 200 m time-of-flight tunnel
- Muri di ferro e cemento per schermare n, γ, μ, etc...
- Magnete deflettore per le particelle cariche
- Secondo collimatore

Experimental Area 2 (EAR2)

Base di volo di 19 m Flusso neutronico più intense rispetto ad EAR-1

Collaborazione internazionale

INFN Bari Bologna LNF LNL LNS Pavia Perugia Roma I Torino **Trieste** CNR Bari **ENEA** Bologna LNF INAF

Teramo

Torino

18 Nazioni
50 Istituti
≈ 130 ricercatori
≈ 40 PhD students

Timeline

Broad neutron energy range

meV → GeV

neutron energy (eV) \rightarrow mm 111111 10^{-10} 10^{-11} 10-13 10^{-14} 10^{-8} 10^{-12} 10^{-15} 10^{-9} ← wave length (m)

m 10^2 10^3 10^4 10^5 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{6} 10^{7} 10^{8} 10^{9}

Cosa offre ?

Qual è la ricaduta diretta sulle misure ?

Neutroni disponibili in un	Misura di sezioni d'urto di cattura fino a 1 MeV				
ampio intervallo di energia	Misura simultanea di sezioni d'urto di fissione				
(1 eV < E _n < 1 GeV)	dall'eV alle centinaia di MeV				
	Misura di piccole sezioni d'urto di cattura				
Elevato flusso istantaneo	Misura di campioni disponibili in modeste quantità				
(10 ⁵ -10 ⁸ n/cm²/bunch)					
	Misura di campioni radioattivi				
Risoluzione in energia	Studio accurato delle risonanze				
Low neutron sensitivity	Misura accurata di sez. d'urto anche nei casi in cui $\sigma_{el}/\sigma_{capture}$ » 1				
Basso background					

Monitor di fascio

- × Trasparenza al fascio
- **x** Basso background indotto
- × Semplicità d'uso

Foglio di Mylar con deposito di ⁶Li (200 μg/cm²) Rivelatori al Silicio fuori dal fascio Camera a vuoto in fibra di Carbonio

Le misure portate a termine ad n_TOF sono dedicate allo studio di sezioni d'urto neutroniche in funzione dell'energia dei neutroni.

Sperimentalmente viene determinato lo Yield: la probabilità che un neutrone dia luogo ad una determinata reazione nel campione di misura (numero di eventi normalizzato al numero di neutroni incidenti).

In ogni singolo esperimento ad n_TOF, quantità tipicamente misurate sono:

- time-of-flight (relativo ad un riferimento definito, i.e. γ-flash)
- L'energia depositata nel rivelatore
- L'identificazione del tipo di particella rivelata

L'energia del neutrone che ha dato luogo alla reazione è ricavata dal ToF:

$$\mathbf{E}_{n} = \left(\frac{72.2977 \cdot \mathbf{L}}{t - t_{0}}\right)^{2}$$

$$L = 185.2 m$$

 $t_0 = 68 ns$

Set-up di cattura

Scintillatori liquidi

- per misure a bassa neutron sensitivity

Total Absorption Calorimeter

- geometria 4π
- 40 cristalli BaF₂ (segmentazione)
- Buona risoluzione in energia
- Discriminazione di eventi spuri e background
- Utilizzato soprattutto per cattura su attinidi

FISSIONE NUCLEARE

Set-up di fissione

Multi-sample Fission Ionization Chamber

Parallel Plate Avalanche Counters

- Frammenti di fissione rivelati in coincidenza
- Ottima discriminazione delle $\boldsymbol{\alpha}$ emesse
- Poco sensibile ai $\boldsymbol{\gamma}$

Per dirimere tra i modelli stellari proposti serve una conoscenza delle sezioni d'urto di cattura con una accuratezza tra l'**1** e il **5%** per tutti gli isotopi che vanno dal ¹²C al ²¹⁰Po !

Maxwellian Averaged Cross Section (MACS)

$$\langle \sigma \rangle_{kT} = \frac{2}{\sqrt{\pi}} \frac{\int_{0}^{\infty} \sigma(E_n) \times E_n \times \exp(-E_n/kT) dE_n}{\int_{0}^{\infty} E_n \times \exp(-E_n/kT) dE_n}$$

Studio delle Condizioni stellari

90,91,92,93,94,96Zr(n, γ)

CRUST 7.1: Meteorites are important samples of

Polveri interstellari

7.1: Meteorites are important samples of extraterrestrial matter. The abundances of the elements within them may reflect the primitive composition of our Solar System. (American Meteorite Museum, USA)

L'isotopo ⁹³Nb è l'unico Nb stabile, la sua abbondanza dipende strettamente da 93 Zr(n, γ)

Studio delle Condizioni stellari

La diramazione ad A=151 (AGB)

- Il branching ratio al ¹⁵¹Sm dipende da:
- condizioni termodinamiche dei siti stellari (temperatura, densità neutronica, ...)
- sezione d'urto ¹⁵¹Sm(n,γ)

Il ¹⁵¹Sm ha un tempo di dimezzamento di 93 anni, che si riduce a 3 in condizioni stellari

Misura delle condizioni termodinamiche presso il sito di nucleosintesi

¹⁵²Gd e ¹⁵⁴Gd sono isotopi detti s-only: possono essere prodotti solo dal processo s, poiché gli isobari stabili del Sm li schermano dalla catena di decadimenti β dovuta al processo r

Applicazioni al campo della TECNOLOGIA NUCLEARE

Reattori Gen-IV

Utilizzo di burnable neutron poisons nei reattori nucleari.

Per aumentare l'efficienza e ridurre i costi risulta utile il poter aumentare l'arricchimento di ²³⁵U nel combustibile nucleare. Questa opzione pone forti limitazioni per questioni di sicurezza data l'alta reattività nella fase di accensione. Una possibile compensazione la si ottiene caricando il combustibile con *burnable neutron poisons*, cioè con isotopi la cui sezione d'urto di cattura neutronica sia elevata; burnable neutron poisons e isotopi fissili vengono così consumati insieme.

Gli isotopi dispari del Gd (¹⁵⁵Gd e ¹⁵⁷Gd) presentano una elevatissima sezione d'urto di cattura per neutron di bassa energia (dal termico a ≈10 eV).

Nonostante la loro importanza le sezioni d'urto di cattura neutronica non sono state studiate approfonditamente e non sono note con l'accuratezza richiesta dall'industria nucleare.

Referenza	Anno	Thermal xs (b)	Rispetto a ENDF
Pattenden	1958	264000	+3.9%
2 nd At. En. Conf. Geneva, 16			
Tattersall	1960	213000	-20%
Jour. Nucl. Ener. A 12, 32	1000	25 4000	
Nucl. Sci. Eng. 8, 183	1960	254000	=
Groshev	1962	240000	-6%
Izv. Akad. Nauk, SSSR, 26, 1118			
Sun	2003	232000	-9%
J. Radioanal. Nucl. Chem. 256, 541			
Leinweber Nucl. Sci. Eng. 154, 261	2006	226000	-12%
Mughabghab Evaluation (adopted in ENDF/B-VII)	2006	$254000 \pm 0.3\%$	=
Choi Nucl. Sci. Eng. 177, 219	2014	239000	-6% 6

171**Tm**

Isotopi stabili irradiati a ILL/Grenoble per 60 giorni a 1.5x10¹⁵ n/cm²/s

Bersaglio di ¹⁷⁰Er arricchito al 1.8% di ¹⁷¹Tm 3.6 mg (vita media 1.9 anni) Bersaglio di ²⁰³Tl arricchito al 5.3% di ²⁰⁴Tl 11 mg (vita media 3.8 anni)

Cosmocronologia

LA Big Bang Nucleosynthesis (BBN) propone la sequenza delle reazioni nucleari che portano alla sintesi degli elementi leggeri, fino al Na nei primi istanti di vita dell'Universo

(0.01-1000 sec).

- BBN si affida a 3 parametri:
- -the baryon-to-photon ratio,
- -the number of species of neutrino,
- -the lifetime of neutron.

⁷Be(n, p), (n, α)

BBN predice con successo l'abbondanza primordiale di elementi quali ⁴He, D ed ³He.

Una notevole discrepanza (fattore 2-4) si registra tra l'abbondanza predetta per il ⁷Li ed I valori ricavati da misure sperimentali.

Cosmological Lithium Problem

⁷Be(n, p), (n, α)

Il 95% di ⁷Li primordiale è prodotto attraverso la cattura elettronica del ⁷Be (T_{1/2}=53.2 d)

⁷Be è distrutto via (n, p) (\approx 97%) e (n, α) (\approx 2.5%)

Un tasso più elevato di distruzione ⁷Be potrebbe risolvere o almeno in parte ridurre il Cosmological Lithium Problem

Solo una misura diretta

n + ⁷Be ----> ⁸Be* ----> $\alpha + \alpha$ **Q 19** MeV

Rivelatori al Silicio direttamente sotto fascio

Due campioni di misura, 40 GBq attività

Target Accurc for Fast React	icies tors	Energy Range	Current Accuracy (%)	Target Accuracy (%)	
0000	inel	0.5 ÷6.1 MeV	10 ÷ 20	2 ÷3	
0238	capt	2.04 ÷24.8 keV	3 ÷9	1.5 ÷2	
Pu241	fiss	454. eV ÷1.35 MeV	8 ÷ 20	2 ÷ 5	
Pu239	capt	2.04 ÷498 keV	7 ÷15	4 ÷ 7	
Pu240	fiss	0.498 ÷1.35 MeV	6	1÷3	
Pu242	fiss	0.498 ÷2.23 MeV	19 ÷21	3 ÷5	
Pu238	fiss	0.183 ÷1.35 MeV	17	3 ÷5	
Am242m	fiss	67.4 keV ÷1.35 MeV	17	3 ÷4	
Am241	fiss	2.23 ÷6.07 MeV	9	2	
Am243	fiss	0.498 ÷6.07 MeV	12	3	
Cm244	fiss	0.498 ÷1.35 MeV	50	5	
Cm245	fiss	67.4 ÷183 keV	47	7	
Fe56	Inel	0.498 ÷2.23 MeV	16 ÷ 25	3 ÷ 6	
Na23	inel	0.498 ÷1.35 MeV	28	4 ÷10	
Pb206	inel	1.35 ÷2.23 MeV	14	3	
Pb207	Inel	0.498 ÷1.35 MeV	11	3	

M. Salvatores, Uncertainty and target accuracy assessment for innovative systems using recent covariance data evaluations, Nucl. Sc. NEA/WPEC-26 (2008) ISBN 978-92-64-99053-1, www.nea.fr/html/science/wpec/volume26/volume26.pdf

@n_TOF e.g. il caso dell'²⁴³Am(n, f)

EPJ A 110 022501 (2011 F.Belloni, et al.

È stato bello, teniamoci in contatto.