
Announcements

§ Project 1 is due Thursday, April 6th, 11:59 PM PT

§ Homework for CSPs (already stated during the lectures) will be
released after the class

§ Please follow announcements at the Teams chat

Quizz (CSPs)

272SM: Introduction to Artificial Intelligence
Adversarial Search

Instructor: Tatjana Petrov
University of Trieste, Italy

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Game Playing State-of-the-Art
§ Checkers: 1950: First computer player. 1994: First

computer champion: Chinook ended 40-year-reign
of human champion Marion Tinsley using complete
8-piece endgame. 2007: Checkers solved!

§ Chess: 1997: Deep Blue defeats human champion
Gary Kasparov in a six-game match. Deep Blue
examined 200M positions per second, used very
sophisticated evaluation and undisclosed methods
for extending some lines of search up to 40 ply.
Current programs are even better, if less historic.

§ Go: Human champions are now starting to be
challenged by machines. In go, b > 300! Classic
programs use pattern knowledge bases, but big
recent advances use Monte Carlo (randomized)
expansion methods.

Game Playing State-of-the-Art
§ Checkers: 1950: First computer player. 1994: First

computer champion: Chinook ended 40-year-reign
of human champion Marion Tinsley using complete
8-piece endgame. 2007: Checkers solved!

§ Chess: 1997: Deep Blue defeats human champion
Gary Kasparov in a six-game match. Deep Blue
examined 200M positions per second, used very
sophisticated evaluation and undisclosed methods
for extending some lines of search up to 40 ply.
Current programs are even better, if less historic.

§ Go: 2016: Alpha GO defeats human champion.
Uses Monte Carlo Tree Search, learned evaluation
function.

§ Pacman

Behavior from Computation

[Demo: mystery pacman (L6D1)]

Video of Demo Mystery Pacman

Adversarial Games

§ Many different kinds of games!

§ Axes:
§ Deterministic or stochastic?
§ One, two, or more players?
§ Zero sum?
§ Perfect information (can you see the state)?

§ Want algorithms for calculating a strategy (policy) which recommends a
move from each state

Types of Games

Deterministic Games

§ Many possible formalizations, one is:
§ States: S (start at s0)
§ Players: P={1...N} (usually take turns)
§ Actions: A (may depend on player / state)
§ Transition Function: SxA ® S
§ Terminal Test: S ® {t,f}
§ Terminal Utilities: SxP ® R

§ Solution for a player is a policy: S ® A

Zero-Sum Games

§ Zero-Sum Games
§ Agents have opposite utilities (values on

outcomes)
§ Lets us think of a single value that one

maximizes and the other minimizes
§ Adversarial, pure competition

§ General Games
§ Agents have independent utilities (values on

outcomes)
§ Cooperation, indifference, competition, and

more are all possible
§ More later on non-zero-sum games

Adversarial Search

Single-Agent Trees

8

2 0 2 6 4 6… …

Value of a State

Non-Terminal States:

8

2 0 2 6 4 6… … Terminal States:

Value of a state:
The best achievable

outcome (utility)
from that state

Adversarial Game Trees

-20 -8 -18 -5 -10 +4… … -20 +8

Minimax Values

+8-10-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:

Tic-Tac-Toe Game Tree

Adversarial Search (Minimax)

§ Deterministic, zero-sum games:
§ Tic-tac-toe, chess, checkers
§ One player maximizes result
§ The other minimizes result

§ Minimax search:
§ A state-space search tree
§ Players alternate turns
§ Compute each node’s minimax value:

the best achievable utility against a
rational (optimal) adversary

8 2 5 6

max

min2 5

5

Terminal values:
part of the game

Minimax values:
computed recursively

Minimax Implementation

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Implementation (Dispatch)

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is MIN: return min-value(state)

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v

Minimax Example

12 8 5 23 2 144 6

Minimax Properties

Optimal against a perfect player. Otherwise?

10 10 9 100

max

min

[Demo: min vs exp (L6D2, L6D3)]

Video of Demo Min vs. Exp (Min)

Video of Demo Min vs. Exp (Exp)

Minimax Efficiency

§ How efficient is minimax?
§ Just like (exhaustive) DFS
§ Time: O(bm)
§ Space: O(bm)

§ Example: For chess, b » 35, m » 100
§ Exact solution is completely infeasible
§ But, do we need to explore the whole

tree?

Resource Limits

Game Tree Pruning

Minimax Example

12 8 5 23 2 144 6

Minimax Pruning

12 8 5 23 2 14

Alpha-Beta Pruning

§ General configuration (MIN version)
§ We’re computing the MIN-VALUE at some node n
§ We’re looping over n’s children

§ n’s estimate of the childrens’ min is dropping

§ Who cares about n’s value? MAX

§ Let a be the best value that MAX can get at any choice
point along the current path from the root

§ If n becomes worse than a, MAX will avoid it, so we can
stop considering n’s other children (it’s already bad
enough that it won’t be played)

§ MAX version is symmetric

MAX

MIN

MAX

MIN

a

n

Alpha-Beta Implementation

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Alpha-Beta Pruning Properties

§ This pruning has no effect on minimax value computed for the root!

§ Values of intermediate nodes might be wrong

§ Important: children of the root may have the wrong value

§ So the most naïve version won’t let you do action selection

§ Good child ordering improves effectiveness of pruning

§ With “perfect ordering”:

§ Time complexity drops to O(bm/2)

§ Doubles solvable depth!

§ Full search of, e.g. chess, is still hopeless…

§ This is a simple example of metareasoning (computing about what to compute)

10 10 0

max

min

Alpha-Beta Quiz

Alpha-Beta Quiz 2

Resource Limits

Resource Limits

§ Problem: In realistic games, cannot search to leaves!

§ Solution: Depth-limited search
§ Instead, search only to a limited depth in the tree
§ Replace terminal utilities with an evaluation function for

non-terminal positions

§ Example:
§ Suppose we have 100 seconds, can explore 10K nodes / sec
§ So can check 1M nodes per move
§ a-b reaches about depth 8 – decent chess program

§ Guarantee of optimal play is gone

§ More plies makes a BIG difference

§ Use iterative deepening for an anytime algorithm
? ? ? ?

-1 -2 4 9

4

min

max

-2 4

Video of Demo Thrashing (d=2)

[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function) (L6D6)]

Why Pacman Starves

§ A danger of replanning agents!
§ He knows his score will go up by eating the dot now (west, east)
§ He knows his score will go up just as much by eating the dot later (east, west)
§ There are no point-scoring opportunities after eating the dot (within the horizon, two here)
§ Therefore, waiting seems just as good as eating: he may go east, then back west in the next

round of replanning!

Video of Demo Thrashing -- Fixed (d=2)

[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function) (L6D7)]

Evaluation Functions

Evaluation Functions
§ Evaluation functions score non-terminals in depth-limited search

§ Ideal function: returns the actual minimax value of the position
§ In practice: typically weighted linear sum of features:

§ e.g. f1(s) = (num white queens – num black queens), etc.

Evaluation for Pacman

[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function), smart ghosts coordinate (L6D6,7,8,10)]

Video of Demo Smart Ghosts (Coordination)

Video of Demo Smart Ghosts (Coordination) – Zoomed In

Depth Matters

§ Evaluation functions are always
imperfect

§ The deeper in the tree the
evaluation function is buried, the
less the quality of the evaluation
function matters

§ An important example of the
tradeoff between complexity of
features and complexity of
computation

[Demo: depth limited (L6D4, L6D5)]

Video of Demo Limited Depth (2)

Video of Demo Limited Depth (10)

Synergies between Evaluation Function and Alpha-Beta?

§ Alpha-Beta: amount of pruning depends on expansion ordering
§ Evaluation function can provide guidance to expand most promising nodes first

(which later makes it more likely there is already a good alternative on the path to
the root)
§ (somewhat similar to role of A* heuristic, CSPs filtering)

§ Alpha-Beta: (similar for roles of min-max swapped)
§ Value at a min-node will only keep going down
§ Once value of min-node lower than better option for max along path to root, can

prune
§ Hence: IF evaluation function provides upper-bound on value at min-node, and

upper-bound already lower than better option for max along path to root
THEN can prune

Next Time: Uncertainty!

