Quizz (Games intro)

■ Please write your name when you submit the answer!

■ Link:<https://app.wooclap.com/CFIHFO?from=instruction-slide> (code **CFIHFO**)

Announcements

■ Homework CSP:

- Has been released, due 25th May, but early submissions are highly encouraged (even if not perfect!).
- Project 1: due 6th April at 11:59pm
- Project 2:
	- Will be released in about two weeks time
- Exam:
	- Dates will be announced soon

University of Trieste, Italy

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Uncertain Outcomes

Worst-Case vs. Average Case

Idea: Uncertain outcomes controlled by chance, not an adversary!

Expectimax Search

- Why wouldn't we know what the result of an action will be?
	- Explicit randomness: rolling dice
	- Unpredictable opponents: the ghosts respond randomly
	- Actions can fail: when moving a robot, wheels might slip
- Values should now reflect average-case (expectimax) outcomes, not worst-case (minimax) outcomes
- Expectimax search: compute the average score under optimal play
	- § Max nodes as in minimax search
	- § Chance nodes are like min nodes but the outcome is uncertain
	- Calculate their expected utilities
	- § I.e. take weighted average (expectation) of children
- Later, we'll learn how to formalize the underlying uncertainresult problems as Markov Decision Processes

Video of Demo Minimax vs Expectimax (Min)

Video of Demo Minimax vs Expectimax (Exp)

Expectimax Pseudocode

def value(state):

if the state is a terminal state: return the state's utility if the next agent is MAX: return max-value(state) if the next agent is EXP: return exp-value(state)

def exp-value(state): initialize $v = 0$ for each successor of state: p = probability(successor) v += p * value(successor) return v

Expectimax Pseudocode

 $v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10$

Expectimax Example

Expectimax Pruning?

Depth-Limited Expectimax

Probabilities

Reminder: Probabilities

- § A random variable represents an event whose outcome is unknown
- § A probability distribution is an assignment of weights to outcomes
- Example: Traffic on freeway
	- Random variable: $T =$ whether there's traffic
	- § Outcomes: T in {none, light, heavy}
	- Distribution: $P(T=none) = 0.25$, $P(T=light) = 0.50$, $P(T=heavy) = 0.25$
- Some laws of probability (more later):
	- § Probabilities are always non-negative
	- § Probabilities over all possible outcomes sum to one
- As we get more evidence, probabilities may change:
	- $P(T=heavy) = 0.25, P(T=heavy | Hour=8am) = 0.60$
	- We'll talk about methods for reasoning and updating probabilities later

Reminder: Expectations

ယ္ပ

- The expected value of a function of a random variable is the average, weighted by the probability distribution over outcomes
- Example: How long to get to the airport?

What Probabilities to Use?

- In expectimax search, we have a probabilistic m of how the opponent (or environment) will behaving any state
	- Model could be a simple uniform distribution (roll a die)
	- Model could be sophisticated and require a great deal of computation
	- We have a chance node for any outcome out of our control: opponent or environment
	- The model might say that adversarial actions are likely!
- For now, assume each chance node magically comes along with probabilities that specify the distribution over its outcomes

Having a probabilistic belief about another agent's action does not mean that the agent is flipping any coins!

 \bullet

œ

 $\bullet\bullet$

E

Quiz: Informed Probabilities

- Let's say you know that your opponent is actually running a depth 2 minimax, using the result 80% of the time, and moving randomly otherwise
- Question: What tree search should you use?

Expectimax!

- To figure out EACH chance node's probabilities, you have to run a simulation of your opponent
- This kind of thing gets very slow very quickly
- Even worse if you have to simulate your opponent simulating you…
- § … except for minimax, which has the nice property that it all collapses into one game tree

Modeling Assumptions

The Dangers of Optimism and Pessimism

Dangerous Optimism Assuming chance when the world is adversarial

Dangerous Pessimism Assuming the worst case when it's not likely

Assumptions vs. Reality

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble Ghost used depth 2 search with an eval function that seeks Pacman

[Demos: world assumptions (L7D3,4,5,6)]

Assumptions vs. Reality

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble Ghost used depth 2 search with an eval function that seeks Pacman

[Demos: world assumptions (L7D3,4,5,6)]

Video of Demo World Assumptions Random Ghost – Expectimax Pacman

Video of Demo World Assumptions Adversarial Ghost – Minimax Pacman

Video of Demo World Assumptions Adversarial Ghost – Expectimax Pacman

Video of Demo World Assumptions Random Ghost – Minimax Pacman

Other Game Types

Mixed Layer Types

- E.g. Backgammon
- Expectiminimax
	- Environment is an extra "random agent" player that moves after each min/max agent
	- Each node computes the appropriate combination of its children

Example: Backgammon

Schematic game tree for a backgammon position.

Image: (Russell, Norvig: AI, A Modern Approach) and the state of t

Example: Backgammon

- Dice rolls increase *b*: 21 possible rolls with 2 dice
	- Backgammon \approx 20 legal moves
	- Depth $2 = 20 \times (21 \times 20)^3 = 1.2 \times 10^9$
- As depth increases, probability of reaching a given search node shrinks
	- So usefulness of search is diminished
	- So limiting depth is less damaging
	- § But pruning is trickier…
- Historic AI: TDGammon uses depth-2 search + very good evaluation function + reinforcement learning: world-champion level play
- 1st AI world champion in any game!

Monte Carlo Tree Search

Monte Carlo Tree Search

- Methods based on alpha-beta search assume a fixed horizon
	- Pretty hopeless for Go, with **> 300**
- MCTS combines two important ideas:
	- **Evaluation by rollouts** play multiple games to termination from a state *s* (using a simple, fast rollout policy) and count wins and losses
	- **Selective search** explore parts of the tree that will help improve the decision at the root, regardless of depth

Rollouts

■ For each rollout:

- Repeat until terminal:
	- **Play a move according to** a fixed, fast rollout policy
- Record the result
- Fraction of wins correlates with the true value of the position!
- **Having a "better"** rollout policy helps

MCTS Version 0

- Do *N* rollouts from each child of the root, record fraction of wins
- Pick the move that gives the best outcome by this metric

MCTS Version 0

- Do *N* rollouts from each child of the root, record fraction of wins
- Pick the move that gives the best outcome by this metric

MCTS Version 0.9

■ Allocate rollouts to more promising nodes

MCTS Version 0.9

■ Allocate rollouts to more promising nodes

MCTS Version 1.0

- Allocate rollouts to more promising nodes
- Allocate rollouts to more uncertain nodes

UCB heuristics

■ UCB1 formula combines "promising" and "uncertain":

$$
UCB1(n) = \frac{U(n)}{N(n)} + C \times \sqrt{\frac{\log N(\text{PARENT}(n))}{N(n)}}
$$

- \blacksquare *N*(*n*) = number of rollouts from node *n*
- \blacksquare $U(n)$ = total utility of rollouts (e.g., # wins) for Player(Parent(n))
- § A provably not terrible heuristic for *bandit problems*
	- (which are not the same as the problem we face here!)

MCTS Version 2.0: UCT

■ Repeat until out of time:

- Given the current search tree, recursively apply UCB to choose a path down to a leaf (not fully expanded) node *n*
- § Add a new child *c* to *n* and run a rollout from *c*
- Update the win counts from *c* back up to the root
- Choose the action leading to the child with highest N

UCT Example

MCTS Version 2.0: UCT

function MONTE-CARLO-TREE-SEARCH(state) returns an action $tree \leftarrow \text{NODE}(state)$ while IS-TIME-REMAINING() do $leaf \leftarrow$ SELECT(tree) $child \leftarrow$ EXPAND(leaf) $result \leftarrow$ SIMULATE(*child*) BACK-PROPAGATE(result, child) **return** the move in ACTIONS(*state*) whose node has highest number of playouts

The Monte Carlo tree search algorithm. A game tree, tree, is initialized, and then we repeat a cycle of SELECT / EXPAND / SIMULATE / BACK-PROPAGATE until we run out of time, and return the move that led to the node with the highest number of playouts.

UCT Example

Image: (Russell, Norvig: AI, A Modern Approach)

Why is there no min or max?

- "Value" of a node, $U(n)/N(n)$, is a weighted sum of child values!
- \blacksquare Idea: as $N \rightarrow \infty$, the vast majority of rollouts are concentrated in the best child(ren), so weighted average \rightarrow max/min
- **Theorem: as** $N \rightarrow \infty$ **UCT selects the minimax move**
	- (but *N* never approaches infinity!)

Exercise: Game transformation

Prove that with a positive linear transformation of leaf values (i.e. transforming a value x to ax+b where a>0), the choice of move remains unchanged in a game tree, even when there are chance nodes.

Exercise: Minimax tree pruning

In a full-depth minimax search of a tree with depth D and branching factor B, with alphabeta pruning, what is the minimum number of leaves that must be explored to compute the best move?

Exercise: Implementation

Describe and implement state descriptions, move generators, terminal tests, utility functions, and evaluation functions for one of the games: tic-tac-toe, connect4, backgammon.

Implement a Monte-Carlo Search of the game tree and compare the performance wrt. other techniques (e.g. 2-limited-depth search)

Use as inspiration the following projects:

<http://blog.gamesolver.org/solving-connect-four/01-introduction/> *(connect4 implementation)*

<https://github.com/thomasahle/sunfish/blob/master/README.md> (competitive Chess engine in only 131 lines of Python code)

Summary

- Games require decisions when optimality is impossible
	- § Bounded-depth search and approximate evaluation functions
- Games force efficient use of computation
	- § Alpha-beta pruning, MCTS
- Game playing has produced important research ideas
	- Reinforcement learning (checkers)
	- Iterative deepening (chess)
	- Rational metareasoning (Othello)
	- § Monte Carlo tree search (chess, Go)
	- Solution methods for partial-information games in economics (poker)
- Video games present much greater challenges lots to do!
	- **•** $b = 10^{500}$, $|S| = 10^{4000}$, $m = 10,000$, partially observable, often > 2 players

Next Time: MDPs!