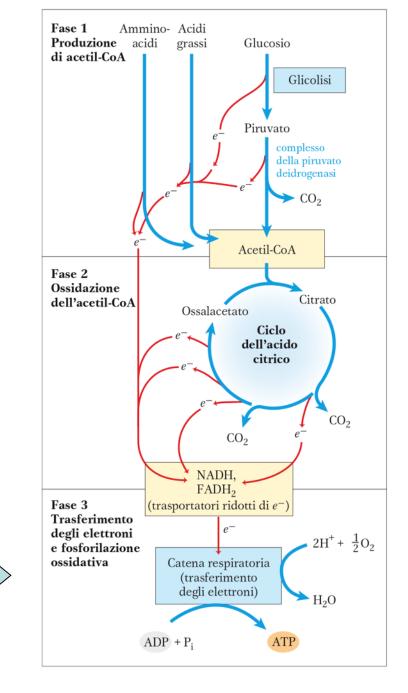

CATENA DI TRASPORTO DEGLI ELETTRONI E FOSFORILAZIONE OSSIDATIVA



Mitocondri del muscolo cardiaco (più creste)

Mitocondri del fegato

Le vie cataboliche intermedie (glicolisi, ciclo di Krebs, betaossidazione degli acidi grassi) sono state denominate aerobiche", ma O₂ non è mai stato coinvolto.

PERCHE'?

Le reazioni di ossidazione hanno portato alla riduzione di cofattori (FAD e NAD+ sono stati ridotti a FADH₂ e NADH+H+) che a loro volta andranno a ridurre O₂ riossidandosi.

LA CATENA DI TRASPORTO DEGLI ELETTRONI o CATENA RESPIRATORIA è localizzata nella membrana interna dei mitocondri. È il processo che riossida i trasportatori di elettroni e li rende di nuovo disponibili per le diverse vie metaboliche. O₂ è l'accettore finale di atomi di H e viene trasformato in H₂O.

CATENA: gli elettroni NON sono trasferiti direttamente a O_2 , MA attraverso una serie di trasportatori intermedi. **RESPIRATORIA**: perché c'è consumo di O_2 . **RESPIRAZIONE CELLULARE**

LA FOSFORILAZIONE OSSIDATIVA è il processo che sintetizza ATP mitocondriale. Avviene a livello della membrana mitocondriale interna. Dipende dalle reazioni redox della CATENA RESPIRATORIA

I DUE PROCESSI SONO ACCOPPIATI. In questo modo l'energia prodotta nelle reazioni redox viene convertita in ATP.

COME AVVIENE L'ACCOPPIAMENTO FRA I DUE PROCESSI?

Atomo di H = 1 protone e 1 elettrone (e⁻)

In alcuni punti della catena le due particelle prendono vie diverse:

- ➤e⁻ viaggia lungo la catena di trasporto degli elettroni fino a O₂;
- ➤II protone attraversa la membrana mitocondriale interna e va nello spazio intermembrana.

Il flusso di e⁻ procede secondo la scala di potenziale redox: da una coppia redox che ha maggior tendenza a cedere e- verso la coppia redox con maggior tendenza a ricevere e-. **Dalla coppia NAD**⁺/**NADH**+H⁺ a O₂/H₂O.

L'energia prodotta da questo flusso di e- serve a trasportare protoni contro gradiente dalla matrice allo spazio intermembrana.

Questo gradiente di carica produce ATP quando i protoni ritornano dallo spazio intermembrana nella matrice.

COMPONENTI DELLA CATENA RESPIRATORIA

Sono tutte proteine integrali di membrana ad esclusione dell'*ubichinone* e del *citocromo c* (proteina periferica solubile). Ogni componente può accettare e- dal trasportatore che lo precede e trasferirli a quello che lo segue.

- 1. Flavoproteine: contengono un cofattore flavinico, FAD o FMN
- 2. Citocromi: hanno come cofattore l'eme. L'atomo di Fe dell'eme trasporta e-.

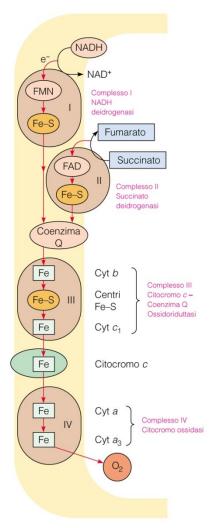
COMPONENTI DELLA CATENA RESPIRATORIA

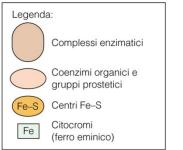
- Proteine ferro-zolfo (Fe-S): Ferro è associato ad atomi di zolfo inorganico o di residui di cisteina. Questi centri Fe-S partecipano a reazioni redox in cui viene trasferito un e- per volta utilizzando cambi dello stato di ossidazione del ferro.
- Ubichinone (coenzima Q, CoQ o UQ): piccolo e idrofobico, libero di diffondere nel doppio strato della membrana mitocondriale interna. (Forma ridotta UQH₂ ubichinolo)
- 5. citocromo c

Coenzima \mathbf{Q}_{10} ossidato (CoQ)

Coenzima Q_{10} ridotto (CoQH₂)

COMPONENTI DELLA CATENA RESPIRATORIA


Sono organizzati in 4 complessi multiproteici:


- NADH-ubichinone reduttasi (Complesso I)
- Succinato-ubichinone reduttasi (Complesso II)
- Ubichinolo-citocromo c reduttasi (Complesso III)
- Citocromo c ossidasi (Complesso IV)

Due punti di ingresso degli e-: Complesso I e II

I Complessi III e IV sono situati in sequenza sulla base della loro affinità progressivamente crescente per e-.

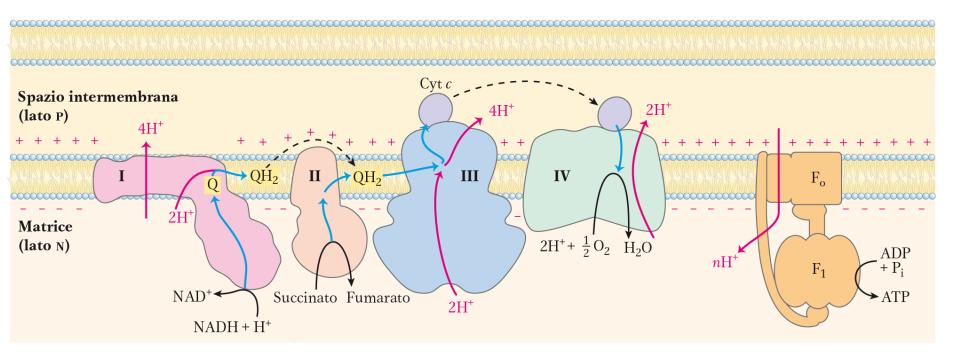
Ogni complesso riduce l'accettore di e- che lo segue. L'ultimo complesso si chiama ossidasi perchè O₂ funziona da ossidante.

Potenziali di riduzione standard di alcuni componenti della catena respiratoria mitocondriale

Redox reaction (half-reaction)	<i>E</i> ′° (V)
$2H^+ + 2e^- \longrightarrow H_2$	-0.414
$NAD^{+} + H^{+} + 2e^{-} \longrightarrow NADH$	-0.320
$NADP^+ + H^+ + 2e^- \longrightarrow NADPH$	-0.324
NADH dehydrogenase (FMN) + $2H^+ + 2e^- \longrightarrow NADH$ dehydrogenase (FMNH ₂)	-0.30
Ubiquinone + $2H^+ + 2e^- \longrightarrow ubiquinol$	0.045
Cytochrome b (Fe ³⁺) + $e^- \longrightarrow$ cytochrome b (Fe ²⁺)	0.077
Cytochrome c_1 (Fe ³⁺) + $e^- \longrightarrow$ cytochrome c_1 (Fe ²⁺)	0.22
Cytochrome c (Fe ³⁺) + $e^- \longrightarrow$ cytochrome c (Fe ²⁺)	0.254
Cytochrome a (Fe ³⁺) + $e^- \longrightarrow$ cytochrome a (Fe ²⁺)	0.29
Cytochrome a_3 (Fe ³⁺) + $e^- \longrightarrow$ cytochrome a_3 (Fe ²⁺)	0.55
$\frac{1}{2}O_2 + 2H^+ + 2e^- \longrightarrow H_2O$	0.816

COMPLESSO I: NADH-UBICHINONE REDUTTASI

Contiene: molte catene peptidiche, una flavoproteina complessa con gruppo prostetico FMN, almeno sei centri Fe-S. Si trova nella membrana mitocondriale interna con il sito che lega NADH verso la matrice.


NADH + H
$$^+$$
 + Q \longrightarrow NAD $^+$ + QH $_2$

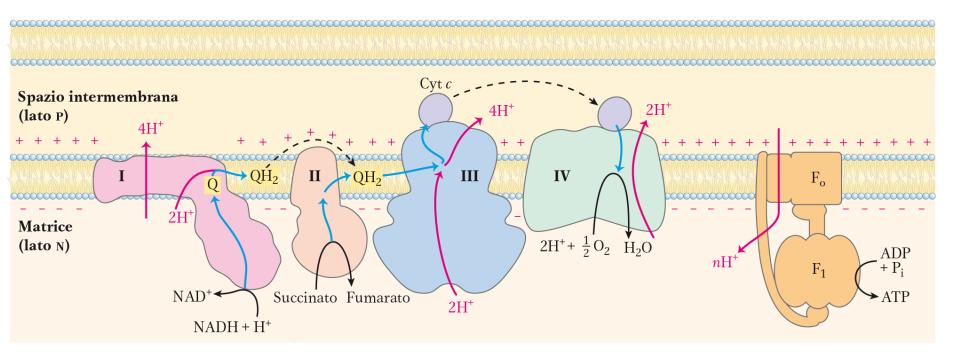
Percorso e-:

NADH \rightarrow FMN \rightarrow sei centri Fe-S \rightarrow Q

Il flusso di e- è accompagnato dallo spostamento di 4 H+ dalla matrice allo spazio intermembrana.

CATENA DI TRASPORTO MITOCONDRIALE E FOSFORILAZIONE OSSIDATIVA

COMPLESSO II: SUCCINATO-UBICHINONE REDUTTASI

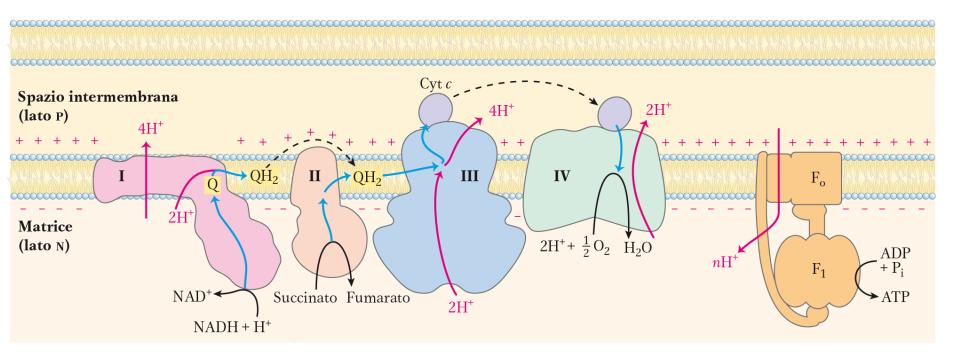

legato a membrana mitocondriale interna. contiene FAD, centri Fe-S, sito di legame per succinato percorso e-:

succinato \rightarrow FAD \rightarrow Fe-S \rightarrow Q

Riossida il FADH₂, cofattore dell'enzima succinato DH (ciclo di Krebs)

Non è una pompa protonica perché la reazione non fornisce sufficiente energia per spostare protoni.

CATENA DI TRASPORTO MITOCONDRIALE E FOSFORILAZIONE OSSIDATIVA


QH₂ DIFFONDE DAL COMPLESSO I E DAL COMPLESSO II AL COMPLESSO III

COMPLESSO III: UBICHINOLO-CITOCROMO C REDUTTASI

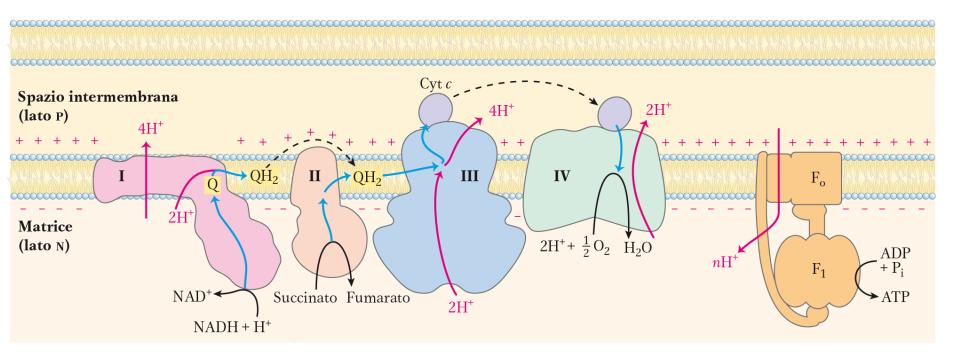
Punto di confluenza degli e- che vi arrivano tramite QH₂, che è un trasportatore mobile di elettroni.

Contiene 2 citocromi b, il citocromo c1, una proteina ferrozolfo ed almeno altre sei subunità proteiche. Trasferiscono e- al citocromo c solubile. Funziona come pompa di H⁺ che sono rilasciati nello spazio intermembrana, contribuendo alla generazione del gradiente protonico

CATENA DI TRASPORTO MITOCONDRIALE E FOSFORILAZIONE OSSIDATIVA

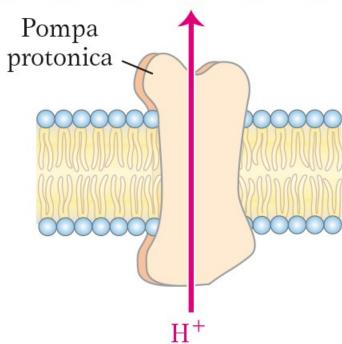
COMPLESSO IV: CITOCROMO C OSSIDASI

Contiene i citocromi a e a3 e due centri rame.


Catalizza il trasferimento di e- dal citocromo c a O₂.

H⁺ vengono spostati dalla matrice allo spazio intermembrana.

Parte dei H⁺ vengono usati per la sintesi di H₂O.


$$4 e- + 4H^+ + O_2 -> 2 H_2O$$

CATENA DI TRASPORTO MITOCONDRIALE E FOSFORILAZIONE OSSIDATIVA

Lato P

$$[H^+]_P = C_2$$
 H^+ H^+ H^+ H^+ H^+ H^+

Lato N

$$[H^+]_N = C_1$$
 OH OH OH OH OH OH OH

$$\Delta G = RT \ln (C_2/C_1) + Z\mathcal{F}\Delta\psi$$
$$= 2.3RT \Delta pH + \mathcal{F}\Delta\psi$$

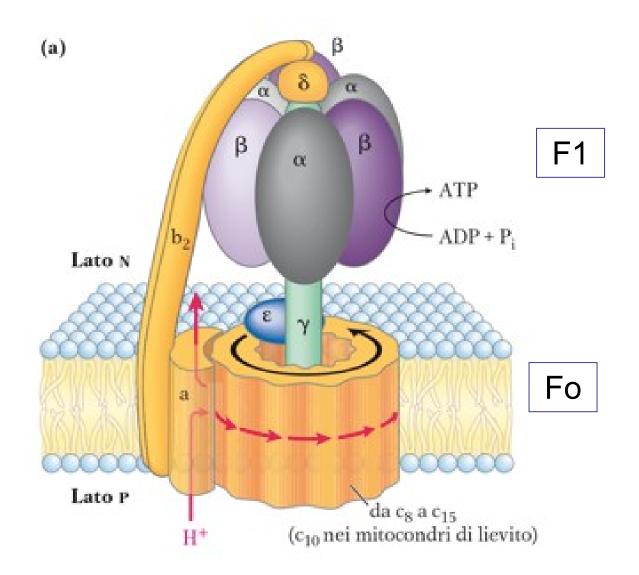
Gran parte di questa energia viene usata per pompare protoni fuori dalla matrice mitocondriale.

Energia elettrochimica dovuta al gradiente di concentrazione e alla separazione di cariche. Si chiama anche **forza motrice protonica** ed è formata da due componenti: 1) energia potenziale chimica (differenza di concentrazione dei protoni); 2) energia del potenziale elettrico.

Quando i protoni fluiscono spontaneamente secondo il loro gradiente elettrochimico, questa energia viene resa disponibile per produrre lavoro.

FOSFORILAZIONE OSSIDATIVA

Sintesi mitocondriale di ATP a partire da ADP e Pi.


I protoni accumulati nello spazio intermembrana fluiscono verso la matrice spinti dal gradiente elettrochimico (differenza di carica e differenza di pH transmembrana).

Questo flusso fornisce l'energia per formare e rilasciare ATP.

Avviene nel complesso multiproteico ATP sintasi (complesso FoF1 o complesso V)

ATP SINTASI

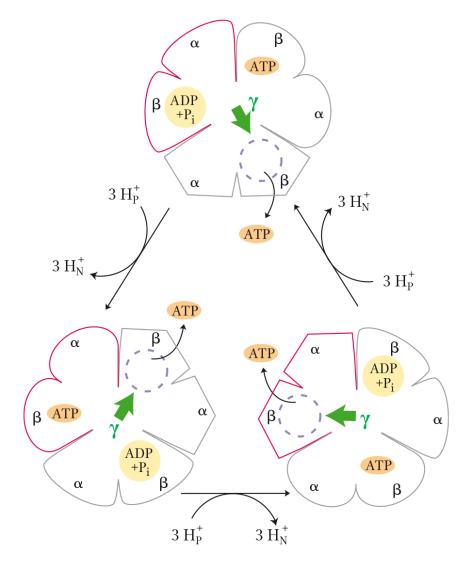
ATP sintasi è formata da due componenti: -Fo (porzione integrale di membrana) -F1 (porzione periferica di membrana). Fo possiede un canale per i protoni.

STRUTTURA DEL COMPLESSO FoF1

ATP SINTASI: UN MOTORE MOLECOLARE

I tre dimeri $\alpha\beta$ hanno la stessa struttura ma conformazioni differenti come conseguenza dell'interazione con la subunità γ con una sola delle subunità β alla volta.

Sulla base dell'interazione γ - β si hanno 3 diverse conformazioni e 3 diverse situazioni:


- 1. β-ADP (lega ADP e Pi)
- 2. β -ATP (viene sintetizzato ATP)
- 3. β -vuota (o aperta, viene rilasciato ATP)

Ciascun dimero $\alpha\beta$ assume una di queste 3 conformazioni in modo ciclico. I 3 dimeri hanno sempre conformazione diversa tra loro.

La forza motrice protonica causa la rotazione di 120 $^{\circ}$ di $_{\gamma}$, che viene a contatto con una delle subunità $_{\alpha}\beta$. Questo causa una modificazione conformazionale per cui

- •il sito β -ATP assume la conformazione vuota e dissocia l'ATP •il sito β -ADP assume la conformazione β -ATP che promuove la sintesi di ATP da ADP + Pi e forma ATP
- •il sito β-vuoto assume la conformazione β-ADP e lega ADP e Pi

La funzione della forza motrice protonica è quella di liberare ATP, perché la sintesi di ATP da parte di questo enzima richiede poca energia.

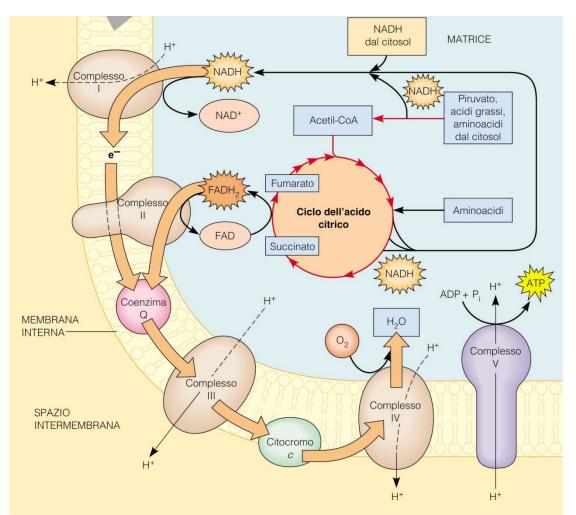
Modello della modificazione di legame dell'ATP sintasi

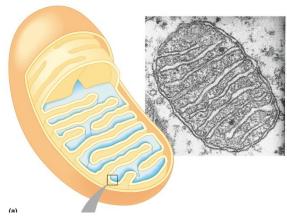
ATP SINTASI: COME FUNZIONA?

Il passaggio di protoni attraverso il cilindro Fo causa la rotazione del cilindro costituito dalle subunità c e di conseguenza ruota anche la proteina γ . La struttura $3\alpha3\beta$ è tenuta fissa rispetto al cilindro c ed all'asse γ dalle subunità b e δ. Perciò ogni rotazione di 120° mette in contatto γ con una diversa subunità β . Questo contatto induce conformazione β -vuota e il rilascio di ATP. I tre dimeri $\alpha\beta$ funzionano in contemporanea, e si trovano in ogni momento ciascuno in una delle 3 conformazioni.

 $xADP + xPi + 1/2O_2 + H^+ + NADH \longrightarrow xATP + H_2O + NAD^+$

Valore di x = rapporto P/O


Stabilito che:


- 10 H+ sono pompati fuori dal mitocondrio per 1 NADH e 6 per FADH₂
- Servono 4 H+ per la sintesi di 1 ATP (di cui 1 serve per trasportare Pi, ADP e ATP attraverso la membrana mitocondriale)

si è arrivati a concludere che il rapporto P/O è pari a 2,5 (10/4) per il NADH e 1,5 (6/4) per FADH₂.

RILEVANZA DEL PROCESSO

Una persona fa uso giornaliero di 40 Kg di ATP per la normale attività.

Biochimica, di C.K. Mathews, K.E. van Holde ©1998 C.E.A. Casa Editrice Ambrosiana 31

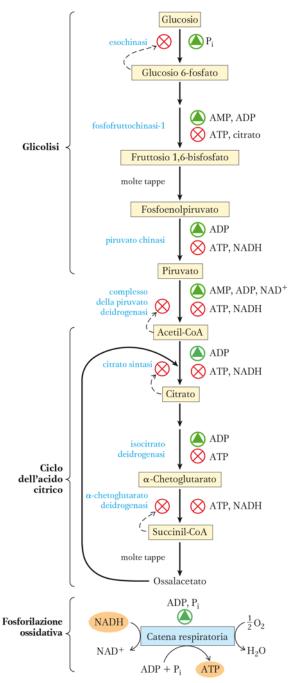
SISTEMI DI TRASPORTO SPECIFICI

membrana mitocondriale interna impermeabile a: H+, OH-, K+ e molti soluti ionici.

- 1) adenina nucleotide translocasi. Trasporta ADP³⁻ verso interno e ATP⁴⁻ verso esterno
- 2) trasportatore di fosfato o translocasi H₂PO₄- + H⁺ da esterno alla matrice
- 3) sistemi di trasporto per piruvato
- 4) sistemi di trasporto per dicarbossilati
- 5) sistemi di trasporto per tricarbossilati
- 6) Sistemi di trasporto di NADH + H⁺

REGOLAZIONE

La velocità della respirazione è limitata da [ADP] [ATP]/ [ADP] [Pi] esprime la situazione energetica cellulare. Normalmente ha un valore elevato.


se [ATP] / [ADP] [Pi] >> la velocità non è massima se [ATP] / [ADP] [Pi] << aumenta la velocità della fosforilazione ossidativa.

Normalmente la velocità viene regolata in modo preciso allo scopo di far variare poco il rapporto [ATP]/ [ADP] [Pi], anche durante variazioni delle richieste di energia.

La regolazione della velocità della fosforilazione ossidativa da parte di [ADP] si chiama controllo respiratorio o controllo da accettore.

[ADP] influenza anche la velocità del ciclo di Krebs.
Quando [ADP] <<, NADH e
FADH₂ NON sono ossidati
nella catena di trasporto degli
e-. La V del ciclo rallenta
([NAD+] e [FAD] basse).

Quando [ADP]>> la V della fosforilazione ossidativa aumenta, e la V del ciclo di Krebs aumenta (disponibilità di ([NAD+] e [FAD]).

DIAPOSITIVE DI SUPPORTO

Le reazioni che trasferiscono e- sono redox

donatore di elettroni coppia redox coniugata

gli e- vengono trasferiti.

1) come e

$$Fe^{2+} + Cu^{2+} \longrightarrow Fe^{3+} + Cu^{+}$$

$$Fe^{2+} \leftarrow Fe^{3+} + e^{-}$$

$$Cu^{2+} + e^{-} \longleftarrow Cu^{+}$$

2) come atomi H

$$AH_2 \stackrel{\longrightarrow}{\longleftarrow} A + 2e^- + 2H^+$$
 $B + 2e^- + 2H^+ \stackrel{\longrightarrow}{\longleftarrow} BH_2$
 $AH_2 + B \stackrel{\longrightarrow}{\longleftarrow} A + BH_2$

3) come ione idruro (:H-)

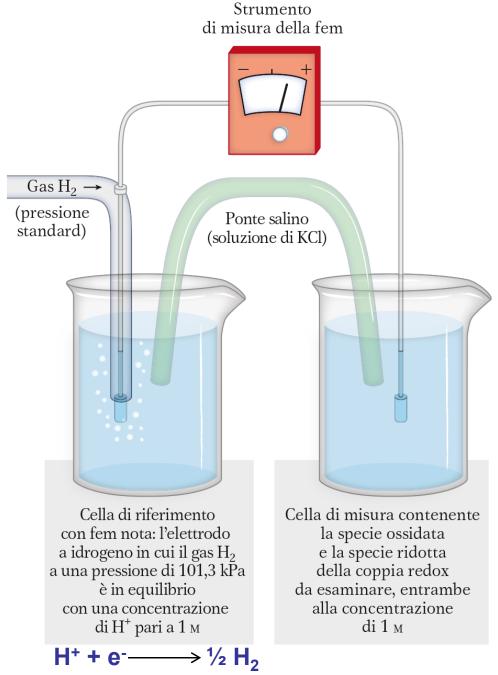
$$AH_2 + NAD^+ \longrightarrow A + NADH + H^+$$

 $A + NADPH + H^+ \longrightarrow AH_2 + NADP^+$

4) combinazione diretta di un riducente organico con l'O2

$$R-CH_3 + \frac{1}{2}O_2 \longrightarrow R-CH_2-OH$$

Analogia con coppia acido-base coniugata:


La tendenza di una coppia acido base coniugata a perdere un protone è definita dalla costante di dissociazione K'.

La tendenza di una coppia coniugata redox a perdere un elettrone è definita da una costante, il **potenziale standard di ossido riduzione**, E⁰. Questa costante è la **forza elettromotrice (fem)** espressa in Volt data da un elettrodo appropriato posto in una soluzione contenente il donatore e l'accettore di elettroni alla concentrazione 1 M, a 25°C. In biochimica si usa E'0, quando le condizioni standard sono considerate a pH=7.

Come si calcola E⁰ per una coppia redox coniugata?

- 1) Semi-cella di riferimento (è l'elettrodo a idrogeno, vedi figura successiva) a cui viene assegnato E⁰ = 0 V
- 2) Semi-cella della coppia redox coniugata di cui si vuole determinare la E⁰.
- Connessione delle due semi-celle con un ponte salino (contiene KCI, permette la continuità elettrica). Gli elettrodi di ciascuna semi-cella sono collegati ad un misuratore di corrente.
- 4) Il misuratore di corrente rivela in che verso si muovono gli elettroni e il valore della fem.
- NOTA: una semi-cella è costituita da una soluzione contenente una coppia redox coniugata e un elettrodo.

39

In biochimica si utilizza il potenziale di riduzione standard che assegna valori maggiormente negativi a sistemi che hanno una maggiore tendenza a perdere gli elettroni e valori progressivamente positivi ai sistemi che tendono ad accettare elettroni.

Per convenzione ΔE^0 di ogni reazione redox è la differenza fra l' E^0 dell'accettore di elettroni e l' E^0 del donatore di elettroni.

L'equazione di Nernst: mette in relazione il potenziale di riduzione standard con il potenziale redox a qualsiasi concentrazione di specie ossidata e ridotta.

I valori di E⁰ delle coppie redox permettono di predire la direzione del flusso di elettroni da una coppia redox ad un'altra quando entrambe si trovano in condizioni standard.

$$E = E^{\circ} + \frac{RT}{n^{\circ 7}} \ln \frac{\text{[electron acceptor]}}{\text{[electron donor]}}$$

Sostituendo i valori delle costanti e per T=298 K

$$E = E^{\circ} + \frac{0.026 \text{ V}}{n} \ln \frac{\text{[electron acceptor]}}{\text{[electron donor]}}$$

E potenziale di riduzione
 E⁰ potenziale di riduzione standard
 E'⁰ potenziale di riduzione standard a pH=7

I TRASFERIMENTI DI ELETTRONI SONO ACCOMPAGNATI DA VARIAZIONI DI ENERGIA LIBERA

In generale, gli e tendono a fluire verso la semi-cella che ha un valore di E⁰ più positivo da quella con E⁰ più negativo.

Nei sistemi biologici gli e passano da una coppia redox a un'altra in presenza di enzimi che catalizzano la reazione.

Questo flusso spontaneo di elettroni fornisce energia libera che può essere usata per produrre lavoro. Gli e- tendono sempre a muoversi in una direzione decrescente di energia libera

$$\Delta G = -nF\Delta E$$
 $\Delta G'^{\circ} = -nF\Delta E'^{0}$ (in condizioni standard e pH=7)

dove n = numero di e^- ; F = costante di Faraday; ΔE^{0} è la differenza fra il potenziale standard del sistema accettore di elettroni e quello del sistema donatore.