MICROSCOPIA OTTICA IN BIOLOGIA CELLULARE [6755M]

MICROSCOPY IN CELL BIOLOGY -

aa 2022/2023, 2nd semester

Aula 5A, edificio H2bis 14-17 15-18

Agnes Thalhammer agnes.thalhammer@units.it

date	lesson/lab	aula	time
			14-15 (GF and BT),
01/03/23	intro	aula5A, H2bis	16-17 (NS)
08/03/23	lesson1	aula5A, H2bis	15-18
15/03/23	lab1	sala microscopia F2, C1	15-18
22/03/23	lesson2	aula5A, H2bis	15-18
29/03/23	lab2	sala microscopia F2, C1	15-18
05/04/23	lesson3	aula5A, H2bis	15-18
19/04/23	lesson4	aula5A, H2bis	15-18
26/4/23	lesson5	aula5A, H2bis	15-18
3/5/23	lab3	CIMA center	15-18
10/5/23	lab4	aula5A, H2bis	15-18

2-PHOTON EXCITATION

Two-photon excitation occurs through the absorption of two lower energy

One-photon excitation

Two-photon excitation

Centro Interdipartimentale di Microscopia Avanzata

21

WIDE-FIELD VS. CONFOCAL VS. 2-PHOTON

Drawing by P. D. Andrews, I. S. Harper and J. R. Swedlow

FAR FIELD: TWO-PHOTON

- Non-linear 2-photon excitation and pinhole detection decrease SPF beyond classical limits
- 2^{1/2} improvement in resolution
- High penetration depth (IR wavelengths for stimulation)

STRUCTURED-ILLUMINATION MICROPSCOPY (SIM)

- Structural illumination for enhancing spatial resolution
- 100 nm resolution possible
- Software analysis of Moiré fringe effects

Advanced microscopy techniques

SIM-Structural illumination microscopy

Advanced microscopy techniques

CIMA SIM superresolution vs MP vs confocal

cima.services@units.it

	confocal	SIM	MP
Fixed sample	yes	yes	yes
Live sample	not ideal	yes dedicated incubation chamber with temperature, CO ₂ and humidity regulation	yes to be set up customized to needs
Sample thickness	tens of µm	tens of μm preferably monolayer of cells	up to 2 mm
Wavelengths (nm)	405/488/561/640	405/488/561/640	tuneable, range 700-1000 nm
strength	Multichannel imaging for colocalisation	Structural resolution and time series (1 fps)	Penetration depth, time series (> 1 fps)

(a) The process of stimulated emission. A ground state (S_0) fluorophore can absorb a photon from the excitation light and jump to the excited state (S_1) . Spontaneous fluorescence emission brings the fluorophore back to the ground state. Stimulated emission happens when the excited-state fluorophore encounters another photon with a wavelength comparable to the energy difference between the ground and excited state. (b) The excitation laser and STED laser are combined and focused into the sample through the objective. A phase mask is placed in the light path of the STED laser to create a specific pattern at the objective focal point. (c) In the *xy* mode, a donut-shaped STED laser is applied with the zero point overlapped with the maximum of the excitation laser focus. With saturated depletion, fluorescence from regions near the zero point is suppressed, leading to a decreased size of the effective point spread function (PSF).

SINGLE MOLECULE LOCALISATION MICROSCOPY (SMLM

 Induction of fluorescence emission of only a subset of molecules at a given time in order to localize each of them individually. By repeating this process, you can accumulate enough localizations to reconstruct a final super-resolved image.

STORM and PALM are based on SMLM principle. The only difference is the way to induce the stochastic emission of the fluorophores:
In STORM, fluorescent organic dyes (cyanines, rhodamines, ...etc.) together with a specific imaging buffer (abbelight's buffer) are used to allow blinking of the fluorescent molecules;

•In PALM, photoactivatable, photoconvertible or photoswitchable proteins are used (ex: PA-GFP, PA-mCherry, mEOS, mMAPLE, ...etc.);

ntro erdipartimentale Microscopia anzata

STORM-Stochastic Optical Reconstruction Microscopy

Figure 1 - Basic Principles of STORM Superresolution Imaging

https://www.microscopyu.com/tutorials/sto chastic-optical-reconstruction-microscopystorm-imaging

STORM-Stochastic Optical Reconstruction Microscopy

N-STORM images

50 nm resolution

Conventional widefield images

African green monkey kidney cells (BSC-1) labeled with Alexa Fluor® 647 (Tubulin) and ATTO 488 (Calreticulin) Photos courtesy of: Dr. Michael W. Davidson, National High Magnetic Field Laboratory, Florida State University

https://downloads.microscope.healthcare.nikon.com/phase4/literature/Brochures/Super-Resolution_2CE-SCJK-3.pdf

SUPER-RESOLUTION MICROSCOPY OF **BIOLOGICAL SAMPLES**

Schermelleh, Lothar, Rainer Heintzmann, and Heinrich Leonhardt. 2010. "A guide to super-resolution fluorescence microscopy." The Journal of Cell Biology 190 (2) (July 26): 165 -175. doi:10.1083/jcb.201002021.

Centro

Fluorescence Resonance Energy Transfer (FRET) Microscopy

DI TRIESTE

Fluorescence recovery after photobleaching

Principle of FRAP A) The bilayer is uniformly labeled with a fluorescent tag B) This label is selectively photobleached by a small (~30 micrometre) fast light pulse C) The intensity within this bleached area is monitored as the bleached dye diffuses out and new dye diffuses in D) Eventually uniform intensity is restored

COMPARISON

5	Ĩ	
	903	

method	excitation	detection	sectioning	use
Wide field	Whole sample	Whole sample	No sectioning	Simple fluorescence samples
confocal	Whole sample	One z-plane	350-500nm	High contrast images, optical sectioning
2-Photon	One z-plane	One z-plane	500-700nm	Deep tissue imaging, optical sectioning
FRET				Protein interactions
FRAP + photoactivation	405 laser (UV)			dynamics/mobility
TIRF	Only bottom plane	Only bottom plane	150-200nm	Membrane dynamics

Live imaging

microscopy

LIVE IMAGING

• Allows study of dynamic processes in real time in stead of snap-shot of one timepoint

- Results in movie instead of single image
- Dynamic processes of subcellular compartments, cells, cellular networks, organs, entire animals
- Examples for dynamic processes of interest
- Cell migration
- Morphological changes
- Physiological parameters (ion concentrations, vesicle dynamics)

o partimentale roscopia ata

LIVE IMAGING - CHALLENGES

Keeping cells alive

- physiological environment
 - Temperature
 - Ionic and osmotic environment
 - Oxigenation
 - pH (ev. CO₂ concentration for carbonate buffer)
- Mechanical stress
- Phototoxicity
- Chemical toxicity of dyes

LIVE IMAGING - INCUBATION

Cell Health Parameter	Short-Term Study	Longer-Term Study
рН	HEPES Buffer	CO ₂ Incubator
Temperature	Stage Warmers	Objective Lens Warmers Cell chambers with integrated heating elements Enclose microscope within a heated box
Humidity	Open cell chambers	Tightly sealed cell chambers
Oxygenation	Large volume of media	Media changes during study Large media volume
Osmolarity	Sealed chamber	Enclose system within a humidified chamber

LIVE IMAGING - INCUBATION

Incubation chambers can surround the microscope stand or just the cell dish. Both can maintain cells at the correct temperature for long periods of time.

LIVE IMAGING - INCUBATION

Incubation chambers can surround the microscope stand or just the cell dish. Both can maintain cells at the correct temperature for long periods of time.

INCUBATOR-MICROSCOPE

LCV110 Incubator Fluorescence Microscope

SMALL FORMAT CHAMBER

ZEISS

Optical Techniques to Enhance contrast:

Differential Interference Contrast (DIC) Phase Contrast

Darkfield

Polarized Light

Fluorescence

https://www.microscopyu.com/gallery-images/albino-swissmouse-embryo-fibroblasts-3t3-line

DIC

https://youtu.be/iKsUiyll2BM

48 Hours Live Cell Imaging of MDCK Cells

Phase contrast

https://www.youtube.com/watch? v=7HRVcHNsaks

Phase contrast

flourescence

PHOTOTOXICITY

The **central** challenge in live cell imaging – Cells are inherently photosensitive!

- Formation of free radicals by fluorophores only exacerbates the problem
- Free radical formation cannot be prevented, only <u>managed</u> by careful tuning of imaging parameters to reduce light exposure

Live cell imaging requires "gentle imaging" - short exposures of low intensity Illumination

PHOTOTOXICITY-EXAMPLES

Phototoxicity during live-cell imaging. (a)(RK13) cells expressing EYFP fused to a nuclear localization signal (green nucleus) were treated with the synthetic dye MitoTrackerTM (b)Same view field as panel a after time-lapse imaging for 2 hours at 15 second intervals.

(c)HeLa cells labeled with Hoechst 33342 imaged for 30 minutes at 10- second intervals Cells have detached from the coverslip and are rounding.

(d)Vacuole formation in a fibroblast cell after imaging for 8 hours at 30- second intervals using tungsten halogen illumination and DIC optics.

FLOURESCENCE LABELLING OF LIVE CELLS

- Detect specific molecules (immunocytochemistry, fluorescent proteins)
- Must keep the specimen transparent
- Targeting live cell (membrane permeability)
- Eventually detect multiple molecules at the same time

FLOURESCENCE LABELLING OF LIVE CELLS

Technique	Example	Pros	Cons
Cell Permeable Dyes	MitoTracker Red CMXRos DAPI BAPTA / FURA	 Simple In vivo labeling Short incubation times 	 Often toxic to cells, especially in higher concentrations
Fluorescent Proteins	EGFP	Simple; in vivoWell developedVery specific labeling	 Large tag Oligomerization Overexpression of exogenous protein
Direct labeling of Protein	FITC labeled actin	 Very specific labeling 	Highly purifiedprotein requiredDelivery into cell
Auto-labeling of protein fusions	HaloTag™ SnapTag™	 In vivo labeling 	Large tagLimited colors
Labeling peptide tags	FIAsH and ReAsH	Specific labelingSmall labelIn vivo labeling	•Limited colors

FLOURESCENCE LABELLING OF LIVE CELLS

➢ For live cell experiments, choose FPs with high photostability

ipartimento di

Scienze della Vita

Protein (Acronym)	Ex (nm)	Em (nm)	EC (x 10 ⁻³)	QY	Photostability	Quaternary Structure	Brightness (% of EGFP)
Green Fluo	rescent	Proteins					
EGFP	488	507	56.0	0.60	++++	Monomer*	100
Emerald	487	509	57.5	0.68	+++	Monomer*	116
Protein (Acronym)	E (n	Ex Em 1m) (nm)	EC (x 10 ⁻³)	QY	Photostability/	Quaternary Structure	Brightness (% of EGFP)
mApple	5	68 592	75.0	0.49	+++	Monomer	109
mStrawberry	5	74 596	90.0	0.29	+	Monomer	78
AsRed2	5	76 592	56.0	0.05	+	Tetramer	8
mRFP1	5	84 607	50.0	0.25	++	Monomer	37
JRed	5	84 610	44.0	0.20	++	Dimer	26
mCherry	5	87 610	72.0	0.22	+++	Monomer	47

CHANGES IN FLOURESCENCE

- Changes of flourescence intesity
 - Examples: calcium imaging, vesicle release

- Changes of flouresence localisation
 - Examples: Mitochondrial dynamics

MINIMIZING DAMAGE WHILE GETTING GOOG IMAGES

- Resolution vs Speed vs Sensitivity
- Light Gathering Power and Focus Maintenance
- Which immersion media
- Correct coverslip thickness
- 3D Imaging

RESOLUTION-SPEED-SENSITIVITY

- Spatial Resolution
 - Depends on application optical magnification and lens apperture
 - Smaller and more pixels = higher resolution
- Sensitivity
 - Larger pixels = higher sensitivity
 - Higher sensitivity = shorter exposure time
 - Shorter exposure time = higher frame rate
 - Larger pixels = lower resolution
- Speed
 - Less pixels = faster readout
 - Faster Readout = higher framerate
 - Less pixels = lower resolution
 - requires fast readout and high sensitivity

Sensitivity

CORRECTION IMMERSION MEDIA

SIGNAL-TO-NOISE

• Camera Sensitivity -

Scienze della Vita

• Signal needs to be 2-3x brighter than background noise to be detected.

• Increasing the exposure time (integration time) or increasing the illumination intensity produces more signal.

tale

SIGNAL-TO-NOISE

https://scientificimaging.com/knowledge-base/signal-and-noise-quantitative-explanation/

A fluorescence slide was imaged with the same excitation & filters, but with different camera exposures. The LOWER SNR image was obtained with a short=2.5ms exposure and the HIGHER SNR image was obtained with a long=1sec exposure.

RESOLUTION VS SPEED

512ms 1x1 binning

117ms 2x2 binning 28ms 4x4 binning

Using binning shortens exposure times reducing cell phototoxicity and fluorophore photobleaching

CHANGES IN FLOURESCENCE

- Changes of flourescence intesity
 - Examples: calcium imaging, vesicle release

- Changes of flouresence localisation
 - Examples: Mitochondrial dynamics

IMAGING CHANGES IN ION CONCENTRATIONS

A commonly performed live flourescence imaging method is ion imaging (calcium, chloride, magnesium, etc) using either fluorescent dyes or proteins especially designed to change their emission behavior upon binding of the respective ion.

ntro erdipartimentale Aicroscopia nzata

IMAGING CHANGES IN ION CONCENTRATIONS

Organotypic spinal cord culture at DIV 18. DH, dorsal horn; VF, ventral fissure.

Organotypic spinal cord cultures were infected with AAV1/2 at DIV13, expressed calcium indicator GCaMP7f under control of the neuron-specific promotor Syn1 for 4-6 days. Image of GCaMP7f fluorescence.

Thalhammer et al, 2022

Interdipartimentale di Microscopia

SYNAPTIC TARGETING OF GCaMPs

SyGCaMP3 CAN DETECT SINGLE ACTION POTENTIALS

Speed: 5x

OVEREXPRESSION OF P/Q-TYPE CALCIUM CHANNELS BOOSTS PRESYNAPTIC CALCIUM TRANSIENTS

Thalhammer et al, 2017

SYNAPTOPHYSIN-PHLUORIN (SYPHY) – IMAGING OF VESICLE RELEASE

CA_V2.1[EFA/B] ARE DIFFERENTIALLY COUPLED TO THE NEUROTRANSMITTER RELEASE MACHINERY

CHANGES IN FLOURESCENCE

- Changes of flourescence intesity
 - Examples: calcium imaging, vesicle release

- Changes of flouresence localisation
 - Examples: Mitochondrial dynamics

MITOCHONDRIAL PARTICLE DYNAMICS

MITOCHONDRIAL PARTICLE DYNAMICS

Mou et al, 2020

MITOCHONDRIAL PARTICLE DYNAMICS

OTHER LIVE IMAGING TECHNIQUES

- Vesicle fusion/release (TIRF or pH-sensitive GFP)
- FRAP
- FRET
- Photoactivation/Photoconversion

OTHER LIVE IMAGING TECHNIQUES

DETECTION

Point Scanning	Multi Point Scanner	Line Scanning	Area Scanning	
MAGE SCENE	MAGE SCENE	IMAGE SCENE	IMAGE SCENE	
Point Detector	Area Detector	Line Detector	Area Detector	
Photomultiplier	CCD camera	Photomultiplier Array	CCD camera	
Avalanche Photodiode	CMOS camera	CCD Line Array	CMOS camera	
GaAsP				

COMBINING TECHNIQUES

1	

Biological application	Microscopy Approach	Abbreviation
Cell shape – cell migration – organelle kinetics	Transmission Microscopy : Bright Field, Dark Field, Phase Contrast, Differential Interference Contrast	BF/ PH/ DIC
Protein colocalization - dynamics, organisation and structure of cells , organelles, proteins	Epifluorescence / Confocal / Spinning disk	
3D imaging of live cells	Confocal/ Spinning disk	
3D imaging of tissues, model organisms, small animals – study structure and development	Multiphoton microscopy/ light sheet microscopy	
Quantification of ion concentrations (calcium, magnesium)	ion imaging	
Biosensing and protein-protein interactions	Forster resonance energy transfer	FRET
Biosensing and protein-protein interactions without light excitation	Bioluminescence resonance energy transfer	BRET
Protein diffusion and kinetics	Fluorescence recovery after photo-bleaching	FRAP
Protein diffusion with high spatio-temporal accuracy (µs- s and 300-400nm)	Fluorescence correlation spectroscopy	FCS
Protein diffusion with single molecule mapping and high spatio-temporal resolution	Single particle tracking	SPT
Protein diffusion with single molecule mapping and high spatio-temporal resolution in dense samples	SPT photoactivated localisation microscopy	sptPALM

Туре	Common Application	Pro	Con
Fluorescent	Targeting probe to specific cellular compartments or	Direct in situ labeling	Large Size
Proteins (FP)	to interact with particular proteins FRET	Can be attached to a target genetically Very specific Low toxicity	Beta barrel shape may hinder molecules under study Photobleach Low signal intensity
Fluorescent Peptides	Similar applications as FP but utilized when size of FP may hinder study	Small size Low Toxicity	Targets Specific Interactions Often requires coupling to molecules
Organic Fluorophores	Can target cell structures Label mRNA sequences	Small Good for multiplexing Limited photostability Wide range of colors	Require coupling to another molecule Photobleach Hydrophobic Somewhat toxic Lower specificity
Indicator Probes	Indicate presence of ions and metals	Very specific	Often requires coupling to molecules
Quantum Dots	Long term imaging studies Real-time tracking over extended periods	Very photostable Good for multiplexing Intense signal Enable very sensitive detection	Coupling to another molecule necessary Interference

• •

DIIRIEDIE

Platform	To improve efficiency	To improve sensitivity and S/N	To minimize light exposure
All	Hard-coated filters (see Box 1).	General:	Keep excitation light levels low.
	Dye-specific filters.	Phenol-red-free medium.	Avoid blue dyes.
	Avoid excess optical elements (lenses,	Restorative deconvolution.	Minimum resolution ($60 \times$, 1.4 NA):
	DIC components).	Camera-based systems:	x, y ~0.1-0.2 μm
	100% light to detector port.	Avoid color cameras.	$z \sim 0.3-0.4 \ \mu m$ t=2.3× timescale of events.
	High NA objectives.	Bin high-resolution cameras 2×2	Minimum number of probes. Use oxygen-radical scavengers.
	Spectral un-mixing.	(exposure times of 200-500 ms). Slow camera read times.	
	Avoid phase objectives.		
		Use EM-CCD for high speed (exposure times of <100 ms).	
WFM	Remove DIC prism and analyzer when	Perform post-acquisition restorative	Find cells with transmitted light.
	imaging fluorescence.	deconvolution (Fig. 3C,D).	Use ND filters (<10% lamp power).
			Use UV- and IR-blocking filters.
Wide-field mic	roscopy		Use halogen lamps if possible.

Platform	To improve efficiency	To improve sensitivity and S/N	To minimize light exposure
CLSM	Use long-pass or wide band-pass filters and un-mix post acquisition.	High PMT voltage (≥800 V).	Low laser power.
		Restorative deconvolution.	AOTF laser blanking.
	Open the pinhole ≥ 2 Airy units.	Avoid spectral-array detectors.	No line or frame averaging.
	Remove DIC prism.		Fast scan speed (≥8 µs/pixel).
			Image regions of interest when possible.
			Recommended laser powers: 405 nm Avoid 488 nm <2% (30 mW) 514 nm <2% (30 mW) 543 nm <50% (1 mW)
Confocal laser scanning microscopy			633 nm <5% (5 mW)

RESOLUTION-SPEED-SENSITIVITY

- Spatial Resolution
 - Depends on application optical magnification and lens apperture
 - Smaller and more pixels = higher resolution
- Sensitivity
 - Larger pixels = higher sensitivity
 - Higher sensitivity = shorter exposure time
 - Shorter exposure time = higher frame rate
 - Larger pixels = lower resolution
- Speed
 - Less pixels = faster readout
 - Faster Readout = higher framerate
 - Less pixels = lower resolution
 - requires fast readout and high sensitivity

Sensitivity

