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Abstract

Imagine handling collisions in a hash table by storing, in each cell, the bit-wise exclusive-or of the set of
keys hashing there. This appears to be a terrible idea: For αn keys and n buckets, where α is constant, we
expect that a constant fraction of the keys will be unrecoverable due to collisions.

We show that if this collision resolution strategy is repeated three times independently the situation reverses:
If α is below a threshold of ≈ 0.81 then we can recover the set of all inserted keys in linear time with high
probability.

Even though the description of our data structure is simple, its analysis is nontrivial. Our approach can
be seen as a variant of the Invertible Bloom Filter (IBF) of Eppstein and Goodrich. While IBFs involve an
explicit checksum per bucket to decide whether the bucket stores a single key, we exploit the idea of quotienting,
namely that some bits of the key are implicit in the location where it is stored. We let those serve as an implicit
checksum. These bits are not quite enough to ensure that no errors occur and the main technical challenge is
to show that decoding can recover from these errors.

1 Introduction

Sketching is the idea of representing data in a compact, potentially lossy form. For this introduction imagine
that, for some sets X and Y, a long (typically sparse) sequence X ∈ Xu is represented via a short sequence
f(X) ∈ Yn — the sketch of X — where n≪ u and f is a (possibly randomized) function. We speak of linear
sketching when (X ,⊕) and (Y,⊕) are groups and f is a linear function, i.e. when f(X ⊕X ′) = f(X)⊕ f(X ′)
holds (component-wise) for all X, X ′.

Linear sketches of data have appealing properties for applications in streaming or distributed set-
tings [Woo14]. In particular, such sketches can be merged/updated to form a sketch of the combined
data. This paper considers the case of X = {0, 1}, meaning the input X ∈ {0, 1}u is conceptually a set
S ⊆ [u] := {1, . . . , u} of keys. We assume that u+ 1 is a power of 2.

We present a new extremely simple approach for linear sketching of sets. It uses Y = {0, . . . , u}, hence
an array A ∈ {0, . . . , u}n where n is the selected size of the sketch, as well as independent hash functions
h1, h2, h3 : [u] → [n]. Given a sketch A of S ⊆ [u] we can add x /∈ S to the sketch (i.e. obtain a sketch of
S ∪ {x}) by setting A[i]← A[i]⊕ x for i = h1(x), h2(x), h3(x), where ⊕ denotes bit-wise exclusive-or.

This is indeed a linear sketch if addition in X = {0, 1} and Y = {0, . . . , u} are both understood to be
bit-wise exclusive-or. Merging sketches of sets S1 and S2 will produce a sketch of the symmetric difference
S1△S2. As long as there is only one copy of each element in the sets represented by the sketches we merge,
we get a sketch of the union. We will see that from a sketch of a set S with n ≥ 1.23 |S| we can recover S with
high probability in linear time.

A simple scenario where this is useful is that of set reconciliation [MTZ03], where two parties, Alice and
Bob, have sets S1 and S2 with a large overlap, and want to compute the union S1 ∪ S2. If Alice computes a
sketch of S1 and sends it to Bob, he will be able to compute the sketch of S1△S2. If n ≥ 1.23 |S1△S2| then
Bob can recover S1△S2 and hence S1 ∪ S2 with high probability. Remarkably, the size n of the sketches and
hence the amount of information to be transferred is linear in |S1△S2| rather than being linear in |S1 ∪ S2|
and therefore close to the information-theoretical lower bound, which holds even if Alice knows which of her
elements Bob is missing.

There is a rich literature on streaming algorithms (see e.g. the surveys [CJ19, McG14, Woo14]). Most
streaming algorithms are linear sketches over the reals or integers, i.e. with X = Z or X = R. Linear sketches
over finite fields like considered in this paper are less well-studied, but are natural in some applications. For
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method year space
m tupdate tdecode techniques

randomized k-set structure [Gan07] 2005 O(logm) O(logm) O(m logm) A R – –M

deterministic k-set structure [GM08] 2006 2 2m Õ(m3) A – – –M

symmetric polynomials [EG11] 2007 1 m Õ(m2) A – – – –

IBF [EG11] 2007 O(log(m)) O(log(m)) Õ(m) – R P CM
IBLT (k = 3) [GM11] 2011 3.666 9 O(m) – R P CM

⟨this paper, k = 3⟩ 2023 1.222 3 O(m) – R P – –

Figure 1: Comparison of linear sketches for sets and multisets as discussed in Section 1.1, normalised such that
decoding is possible if the set size is at most m. The space-column counts how many entries have to be stored
and tupdate counts how many entries are touched by insertions and deletions. The last column indicates which
approaches use Algebraic techniques, Randomisation, Peeling and Checksums, and which approaches support
Multisets. All randomized sketches have a failure probability of O(1/m).

example, consider “straggler identification” [EG11], where there is a stream of events of the form enter(x) and
exit(x), for elements x ∈ [u] (e.g. think about employees entering and leaving a building, or locks being held
in a database system). We want to be able to keep track of which elements have an enter(x) event without a
matching exit(x) event, assuming that the number of such elements is low (e.g. employees left in the building
at the end of a working day). Similarly, for the set reconciliation problem mentioned above, working with a
sketch over the field of size two works just as well as working over the integers.

1.1 Related work. We summarise related work in Figure 1. Each of the listed competitors is a linear
set sketch that stores a set S of integers or elements of some finite field. The sketches support insertions
and deletions of elements as well as a decode operation that can reproduce S whenever |S| ≤ m for some
parameter m. For simplicity we measure required space by counting how many numbers have to be stored,
regardless of whether these are from Z, from a finite field or from [O(m)]. Crucially, the space requirement of
all sketches only depends on m, even though |S| is unlimited. Note that even though decoding is impossible
as long as |S| > m, it must become possible again if and when |S| ≤ m holds again at some later point.

The following ideas are shared by several of the listed approaches.

Multisets. Some approaches allow storing a multiplicity for each element in the set. Unsurprisingly, this
tends to double the space requirement.

Algebraic techniques. A set S ⊂ Z of size m is uniquely determined by its power sums (
∑

x∈S xi)i∈[m].
This directly leads to a construction in [EG11] using symmetric polynomials and – less directly – to
the k-set data structures in [GM08]. These approaches work deterministically, but have relatively slow
update and decode operations.

Randomisation. A rather primitive linear sketch of a set S of group elements is the sum of the elements.
Clearly, when |S| ≤ 1 and S does not contain the neutral element then S can be recovered from the
sketch.

All randomised approaches use a variant of such a primitive linear sketch in each of a large number of
buckets. For each key hash functions select a small number of buckets in which the key is stored. During
decoding the hope is that for every key x at least one of its buckets stores no key other than x, so that
x can be recovered from this bucket.

For randomised approaches decoding may fail even though |S| ≤ m. For better comparability we have
tuned all competitors to have failure probabilities of O(1/m) in Figure 1.1

Two further techniques are often combined with randomised approaches:

Checksums. The decoding algorithm has to decide whether a value x stored in a bucket corresponds to
the single key x or to the sum of several keys overlapping in the bucket. Both invertible Bloom filters
(IBFs) [EG11] and invertible Bloom lookup tables (IBLTs) [GM11] use explicit hash checksums in
each bucket to make this decision. A sanity check proposed in [EG11] that is central to our approach

1If an IBF [EG11] is tuned for failure probability ε, then space and update times are correspondingly reduced to O(log(1/ε)).
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Algorithm initialise:
A[1, . . . , n] = (0, . . . , 0)

Algorithm toggle(x):
for i ∈ h(x) do

A[i]← A[i]⊕ x

Algorithm merge(A′ ∈ {0, . . . , u}n):
for i ∈ [n] do

A[i]← A[i]⊕A′[i]

Algorithm looksPure(i ∈ [n]):
return A[i] ̸= 0 ∧ i ∈ h(A[i])

Algorithm decode:
Sdec ← ∅
Q← {i ∈ [n] | looksPure(i)}
while Q ̸= ∅ do

Qnext ← ∅
for i ∈ Q if looksPure(i) do

x← A[i] // detected key x

toggle(x) // S ← S△{x}
Sdec ← Sdec△{x}
Qnext ← Qnext ∪ {i ∈ h(x) | looksPure(i)}

Q← Qnext

if A[1, . . . , n] ̸= (0, . . . , 0) then
return failure

return Sdec // correct whp

Figure 2: Implementation of simple set sketches.

is that x can only be stored in a bucket i, if i is one of the buckets selected for x by the hash functions.
This check can act as an implicit checksum.

Peeling. Suppose that only a subset S′ ⊂ S of the elements in the sketch are directly recoverable due
to being alone in a bucket. However, after removing S′ from the sketch we obtain a sparser sketch
where further elements may be recoverable. Peeling is the natural iterative decoding algorithm
arising from the simple insight. It is used by IBFs (though not to its full potential), by IBLTs, and
in this paper.
Our technical contribution is related to the work of Jiang, Mitzenmacher, and Thaler [JMT16],
which studies parallel algorithms for peeling processes such as the one used in IBLTs. They show
that only O(log logn) rounds of peeling are needed in a “breadth-first” peeling approach, similar to
the one we use.

1.2 Contribution. We describe the simple set sketch, a randomised dynamic set data structure in the
spirit of the IBF [EG11] and the IBLT [GM11]. At any point in time the sketch represents a set S ⊆ [u] where
u = 2w − 1, i.e. keys are non-zero strings of w bits. Initially S = ∅. A toggle operation can be used to change
the membership status of a given key x ∈ [u], meaning that toggle(x) changes the represented set from S to
S△{x} where △ denotes the symmetric difference operator on sets. A merge operation takes another sketch
representing a set S′ as input and changes the represented set from S to S△S′.

While no direct membership queries are supported, a decode operation tries to reconstruct the represented
set S in its entirety, and succeeds with high probability under certain conditions discussed below.

The construction uses an array A = A[1, . . . , n] of n buckets, each of which can store exactly one element of
{0, . . . , u}, and a constant number k ≥ 3 of uniformly random hash functions h1, . . . , hk : [u]→ [n]. We define
h(x) := {h1(x), . . . , hk(x)} as a multiset of size exactly k, noting that h(x) is an ordinary set with probability
1−O(1/n).2 The operations are implemented as shown in Figure 2.

The toggle-operations are commutative and two toggle(x) operations with the same x cancel. Hence, the
state of the data structure is a function of h and the currently stored set S. Since A can assume at most un

states while there are 2u possibilities for S, the representation is necessarily “lossy” when S is large and n is
small. Like regular IBLTs [GM11], decode relies on peeling, meaning we attempt to identify buckets i such
that A[i] is the trivial sum of just one key x and hence A[i] = x. We call such buckets pure. If detected, the
key x is toggled – which removes it from the sketch – and x is recorded in the set Sdec to be returned in the
end. A fully successful decode will leave the sketch empty.

To decide whether a bucket i is pure and stores a single key A[i] = x or whether it stores a sum
A[i] = x1 ⊕ . . . ⊕ xℓ of several keys, the looksPure function checks whether A[i] hashes to i, i.e. whether
i ∈ h(A[i]). This exploits that when A[i] is single key then i ∈ h(A[i]) always holds, while if A[i] is the sum of

2We could have forced h1, . . . , hk to always produce distinct hashes and avoid multisets. However, then h1(x), . . . , hk(x) would
not be stochastically independent. So both choices involve mildly annoying (but ultimately inconsequential) technicalities.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited230

D
ow

nl
oa

de
d 

04
/2

7/
23

 to
 1

51
.4

8.
22

3.
14

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



A :
1 2 3 4 5 6 7 8

x⊕ z x⊕ y y x⊕ z y ⊕ z Q = {4, 6}
Sdec = {y, x⊕ z}

A′ :
1 2 3 4 5 6 7 8

x⊕ z z z x⊕ z Q = {7, 8}
Sdec = {y, z}

A′′ :
1 2 3 4 5 6 7 8

x x x Q = {1, 3, 6}
Sdec = {x, y, z}

Figure 3: Example of simple set sketch decoding. The sketch A stores S = {x, y, z}, assuming h(x) =
{1, 3, 6}, h(y) = {3, 4, 7}, h(z) = {1, 6, 7}. Moreover, assume h(x⊕ z) = {3, 6, 8}. Only y is alone in bucket 4, but
bucket 6 with the foreign key x⊕ z also looks pure, without actually being pure. In the first round we therefore
have Q = {4, 6} and toggle y and x⊕ z, resulting in A′. In the second round buckets Q = {7, 8} look pure, with
z and x⊕ z, so we toggle these keys and update the set of decoded keys to Sdec = {y, x⊕ z}△{z, x⊕ z} = {y, z}.
In the third and final round the remaining key x is recovered from A′′.

several keys then i ∈ h(A[i]) is a coincidence, albeit one that does occur, as we will show later, an expected
constant number of times overall. We leave decode oblivious of the issue of such anomalies and let it trust the
output of looksPure. That way, it will sometimes erroneously detect a foreign key, z, that is not actually in
the set3. The algorithm will try to remove z by calling toggle(z), but since z is not in the set, this will end
up adding z to the data structure. If in the long run the ordinary decoding steps outnumber the anomalous
decoding steps, i.e. when more keys are removed than added, then z will likely be isolated in a bucket at a
later point. At this point, z will be toggled a second time, this time amounting to an actual removal from
the sketch and from Sdec. This allows decode to rectify prior mistakes and return the correct set with high
probability. The implementation uses two nested loops and we call an iteration of the outer loop a round.
An example for the execution of decode is given in Figure 3. The main technical challenge will be to control
the number and properties of anomalous decoding steps so that a successful recovery from the corresponding
mistakes occurs with high probability.

In the following theorem the constant c△k is known as the peeling threshold or the threshold for the
occurrence of a 2-core in a random k-uniform hypergraph. The largest, and hence most interesting of these
values is c△3 ≈ 0.81, relevant for k = 3 hash functions.

Theorem 1.1. Assume we have a sketch as explained above with n buckets and k ≥ 3 hash functions
representing a set S0 of m keys where m

n
< c△k − ε for some ε > 0. Then decode returns S0 in time O(n) with

high probability (whp, meaning with probability 1− Õ(1/n)).

We remark that the error probability Θ(1/n) accounts for three ways in which decode can fail to return the
correct set.

(1) decode may return failure. This is a likely outcome when two keys x, y ∈ S0 satisfy h(x) = h(y), i.e.
when they share all 3 hash values. Such keys exist with probability Θ(1/n).

(2) decode may fail to terminate. Assume for instance that S0 = {1, 2} with h(1) = h(2) = {a, b, c} and
h(3) = {c, d, e} for some distinct buckets a, b, c, d, e ∈ [n]. The algorithm would erroneously select bucket
c for decoding since A[c] = 1⊕ 2 = 3 and c ∈ h(3) – hence looksPure(c) is satisfied. This leads to key 3
being added to the sketch. Afterwards 3 is correctly detected to be the only key stored in bucket d (or
e) and toggled a second time, bringing us back to the state we started in. A similar constellation of keys
exists with probability Ω(1/n2) in any set of Ω(n) keys.

(3) decode may return a set Sdec with Sdec ̸= S0. Assume for instance that for S0 = {1, 2, 3} we have
h(1) = h(2) = h(3), which happens with probability Ω(1/n6). We then get Sdec = ∅ since the
contributions 1⊕ 2⊕ 3 = 0 cancel out everywhere.

The second and third failure cases are more problematic than the first. A practical implementation can prevent
(2) by terminating the algorithm with “failure” when it runs unexpectedly long. Moreover, it can reduce
the probability of (3) to 2−r by introducing a corresponding r-bit checksum, i.e. maintaining C =

⊕
x∈S f(x)

3Our notion of a foreign key has nothing to do with the notion of the same name used in the database literature.
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together with the sketch where f : [u] → {0, 1}r is a random hash function. Note that C is much more
light-weight than the per-bucket checksums used in [EGUV11].

1.3 Technical Overview. From a high level, the analysis has four parts in corresponding subsections.

2.1 The Issue of Anomalies. We connect the “runtime” phenomenon of anomalous decoding steps to
the “offline” combinatorial structure of anomalies. An anomaly is a set of keys A = {x1, . . . , xℓ} ⊆ [u] with
x1 ⊕ . . .⊕ xℓ = 0 and a shared bucket i ∈ h(x1) ∩ . . . ∩ h(xℓ). The presence of any ℓ− 1 keys from A are, as
far as the centre bucket i of A is concerned, indistinguishable from the presence of the missing ℓth key from
A. This may cause i to lookPure, causing the missing key to be toggled and effectively added to the sketch.
Every anomalous decoding step has such an underlying anomaly.

2.2 Isolating Anomalies. An anomaly A becomes relevant at runtime, as soon as |A| − 1 of its keys are
present in the sketch. Initially only anomalies with at most one foreign key x ∈ A \ S0 are relevant in this
sense. We call such anomalies native anomalies. However, since native anomalies can cause foreign keys to be
added to the sketch, anomalies with two or more foreign keys can become relevant as well, causing additional
foreign keys to be added in an escalating cascade.

We show that no such cascade occurs whp. In fact, we show that only O(1) native anomalies exist
in expectation (and O(logn) whp) and that these take only the most harmless of forms with no mutual
interaction. Concretely, native anomalies have a “star-shape”, i.e. keys share only the centre bucket (formally
|h(A)| = (k − 1)|A|+ 1) and any two native anomalies have disjoint domains (h(A1) ∩ h(A2) = ∅).

2.3 Working Around Anomalies. Keys that are part of anomalies may be repeatedly toggled by decode,
i.e. inserted and deleted many times. To obtain a clearer view on the lasting progress that is made, we consider
a variant of decode where the dizzying commotion around anomalies is artificially frozen. More precisely, we
let SA be the set of anomalous keys, that is, the keys contained in native anomalies, and BA = h(SA) the
set of anomalous buckets. We then consider a variant decode’ of decode that is given BA as an input and is
banned from considering these buckets.

With the issue of anomalies out of the picture, decode’ can be analysed with known techniques, which we
postpone to Section 2.4. There we show that all buckets, except for those in BA, are cleared of keys whp.
While decode may (repeatedly) remove and add keys disregarded by decode’, we show that any key that is
removed by decode’ is also permanently removed by decode. From this we conclude that decode must reach a
state where only anomalous keys are left. It is then not hard to see that these anomalous keys cannot survive
in isolation. For each anomaly A and each remaining x ∈ A there are k − 1 pure buckets only containing x,
compared to only a single bucket (the centre of A) that could look pure without actually being pure. With
such a majority of helpful over deceptive information, what is left of the anomaly will unravel within two
rounds at most.

2.4 Analysis of decode’. We adapt the analysis of cores in hypergraphs by Molloy [Mol05] to our setting
with anomalous buckets. A crucial lemma by Molloy [Mol05, Lemma 3] shows that only a constant fraction of
hyperedges remain whp after a constant number of rounds when peeling a fully random k-uniform hypergraph.
In our setting, this corresponds to only a constant fraction of the keys remaining after a constant number of
iterations of the outer loop of decode if we have perfect information on which buckets are pure. We show that
since there are only O(log2 n) anomalous buckets whp, which we block from consideration in decode’, their
effect on the peeling process cannot be too large, and we still obtain that only a constant fraction of the keys
remain after a constant number of iterations of the outer loop of decode’.

We then employ a standard argument to show that if we have fewer than δn keys then at least a constant
faction of these keys are isolated in a bucket whp. Now if we have n′ isolated keys then we have at least
n′ − |BA| buckets that are detected as pure by decode’. This shows that decode’ will arrive at a point where
at most Ω(|BA|) keys from S \ SA are left. Finally, we need to argue that the last non-anomalous keys are
also removed by decode’, which is done by a technical counting lemma.

2 Analysis of the Decode Operation

2.1 The Issue of Anomalies. We begin by introducing concepts that will come in handy in the
subsequent analysis.

We denote by S0 ⊆ [u] the set stored in the sketch before the decode operation is executed. When discussing
states of the sketch while decode is in progress, S refers to the set of keys currently stored in the sketch and
Sdec refers to the current state of the corresponding variable. Both S and Sdec may contain native keys, i.e.
keys from S0, as well as foreign keys, i.e. keys from [u] \ S0. Since changes to S and Sdec happen in sync,
S0 = Sdec△S is an invariant of decode. It implies successful termination if and only if S = ∅ is reached.
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Each iteration of the while loop carries out a round and each iteration of the for-loop where i looks pure
(i.e. looksPure(i) holds) carries out a step at bucket i. We say the key x = A[i] seemingly stored in bucket
i is detected and toggled. If we in fact had x ∈ S, then S loses an element and we speak of a regular step,
otherwise S gains an element and we speak of an anomalous step.

Anomalies. An anomalous step occurs when bucket i stores several elements x1, . . . , xℓ−1 ∈ [u] \ {x} with
x1 ⊕ . . .⊕ xℓ−1 = x. An anomalous step is always linked to an anomaly of size ℓ.

Definition 2.1. A set A = {x1, . . . , xℓ} ⊆ [u] with
⊕

j∈[ℓ] xj = 0 and i ∈ h(xj) for all j ∈ [ℓ] is an anomaly

of size ℓ with centre i ∈ [n].4

An anomaly A of size ℓ is triggered if exactly ℓ− 1 of its keys are stored in the sketch, i.e. if A ∩ S = A \ {x}
for some x ∈ A, and no other key is stored in the centre bucket i. It then appears as though only x is stored
in bucket i, i.e. i looks pure. An anomalous step may then detect key x in i and add x to S. Note that x may
be native or foreign.

Native anomalies. Call an anomaly A a native anomaly if it contains at most one foreign key. A native
anomaly may already be triggered when decoding starts, or can be triggered simply by removing keys stored
in the centre of A. In principle, a foreign anomaly, i.e. an anomaly containing at least two foreign keys, can
be triggered, provided that at least one of its keys is added to S during decoding due to different anomalies
that are triggered prior to A. A non-trivial step in our argument is to show that only native anomalies are
triggered whp.

Breadth first decoding. It may seem puzzling how decoding could reliably recover from a state where
A ⊆ S for some anomaly A. Assume the centre of A stores exactly the keys from A and consider the next
time a key x ∈ A is removed from S. Then A is triggered and it will then appear as though x =

⊕
x′∈A\{x} x

′

is stored in bucket i. Since i looks pure, x may be detected at i and hence promptly readded to S. This would
indeed be a fatal problem if decode would maintain the set of buckets to be processed (i.e. those that look
pure) in a LIFO queue. Instead, decode proceeds in rounds and a bucket that attains the looksPure status is
only considered in the next round after all buckets that looked pure at the beginning of the round have been
processed. Such a “breadth first” way of considering buckets allows for useful work to be done (including the
removal of further keys from A) before the centre bucket i is considered.

2.2 Isolating Anomalies. Let A be the set of all native anomalies. In the following we prove that only
anomalies from A are triggered during decoding, that those anomalies have canonical properties and do not
interact. This will involve several union bound arguments that are similar to each other in structure. As a
warm-up we bound E[A].

Let us be precise about how a native anomaly arises from the underlying family (hj(x))x∈[u],j∈[k] of
independent random variables. For any ℓ ≥ 3, any set {x1, . . . , xℓ−1} ⊆ S0 and any sequence j1, . . . , jℓ ∈ [k]
we call ({x1, . . . , xℓ−1}, j1, . . . , jℓ) an anomaly blueprint. This blueprint is realised if hj1(x1) = . . . = hjℓ(xℓ)
where xℓ := x1 ⊕ . . . ⊕ xℓ−1. In that case A = {x1, . . . , xℓ} is a native anomaly. Conversely, every native
anomaly realises at least one blueprint (a native anomaly with no foreign key realises at least ℓ blue prints,
corresponding to its subsets of size ℓ − 1). Thus |A| is at most the number of realised blueprints. There are(

m
ℓ−1

)
kℓ blueprints with parameter ℓ and each is realised with probability exactly n−ℓ+1. Let P be the set of

all anomaly blueprints and let EP for P ∈ P be the event that blueprint P is realised. Recall that in the
context we are operating we have c := m

n
< c△k − ε < 1. We can compute

E[|A|] ≤ E[ |{P ∈ P | P is realised}| ] =
∑
P∈P

Pr[EP ] =
∑
ℓ≥3

(
m

ℓ− 1

)
kℓ · n−ℓ+1

≤
∑
ℓ≥3

mℓ−1

(ℓ− 1)!
kℓn−ℓ+1 = k

∑
ℓ≥3

(ck)ℓ−1

(ℓ− 1)!
≤ k

∑
ℓ≥0

(ck)ℓ

ℓ!
= keck = O(1).(2.1)

We now show that whp no anomaly A ∈ A is (ii) too large, (iii) contains keys sharing a bucket other than the
centre or (iv) intersects other anomalies in A. We use the notation h(A) :=

⋃
x∈A h(x).

Lemma 2.1. The following holds whp.

(i) ∀i ∈ [n] : |{x ∈ S0 | i ∈ h(x)}| ≤ logn.

(ii) ∀A ∈ A : |A| ≤ logn.

4More precisely: h(xj) should contain i an odd number of times.
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(iii) ∀A ∈ A : |h(A)| = (k − 1)|A|+ 1.

(iv) ∀A1 ̸= A2 ∈ A : h(A1) ∩ h(A2) = ∅.

Proof. (i) It is well-known that when n balls are randomly thrown into n bins then the expected maximum
load of a bin is O( logn

log logn
) whp [Gon81, Mit96], which implies that in our setting every bucket stores

O( logn
log logn

) keys whp. We give a short self-contained proof nonetheless. Let pij be the probability that
a specific bin i ∈ [n] stores at least j ∈ [n] keys. A union bound and Stirling’s formula gives

pij ≤

(
km

j

)
n−j ≤ (km)j

j!
n−j ≤ kj

j!
≤ (ke)j

jj
.

For j = 6 logn
log logn

we get for large n and using x
1

log x = 2 that

pij ≤
(k6e6)

log n
log log n

(6 logn
log logn

)
6 log n
log log n

≤ 2logn

(
√
logn)

6 log n
log log n

≤ n

23 logn
= n−2.

Summing over all i implies that no bin stores ω( logn
log logn

) keys whp.

(ii) Since a native anomaly of size ℓ with centre i requires ℓ − 1 keys from S0 to be stored in i, the claim
follows from (i).

(iii) Let A ∈ A be an anomaly and ℓ = |A|. There are kℓ relevant hash values. The centre of A occurs as a
hash value ℓ times, hence there are at most (k − 1)ℓ + 1 distinct hash values. For there to be at most
(k − 1)ℓ distinct hash values, an additional identity of two hash values is needed. Since there are at
most

(
kℓ
2

)
potential identities that are realised with probability 1

n
each, we get with calculations similar

to (2.1)

Pr[∃A ∈ A : h(A) ≤ (k − 1)|A|] ≤
∑
ℓ≥3

(
m

ℓ− 1

)
kℓn−ℓ+1

(
kℓ

2

)
1

n

≤
∑
ℓ≥3

nℓ−1

(ℓ− 1)!

kℓ

nℓ
k2ℓ2 ≤ 1

n

∑
ℓ≥3

kℓ+2ℓ2

(ℓ− 1)!
= O(1/n).

(iv) The main complication stems from the possibility that A1 and A2 may share some keys. We distinguish
four cases.

Case 1: Shared centres. Consider the event E1 that there exist A1, A2 ∈ A with A1 ̸= A2 and the
same centre. Assume |A1| = ℓ1, |A2| = ℓ2, |A1 ∩A2| = ℓ̄ and wlog A2 \A1 ̸= ∅.
The set A2 can be uniquely identified by ℓ̄ keys from A1 and ℓ2 − ℓ̄ − 1 keys from S0. We argue
similar to Equation (2.1).

Pr[E1] ≤
∑
ℓ1≥3

∑
ℓ2≥3

∑
0≤ℓ̄≤min(ℓ1,ℓ2−1)

(
m

ℓ1 − 1

)(
ℓ1
ℓ̄

)(
m

ℓ2 − ℓ̄− 1

)
kℓ1+ℓ2−ℓ̄nℓ1+ℓ2−ℓ̄−1

≤
∑
ℓ̄≥0

∑
ℓ1≥ℓ̄

∑
ℓ2≥ℓ̄+1

nℓ1−1

(ℓ1 − 1)!

ℓ1!

ℓ̄!(ℓ1 − ℓ̄)!

nℓ2−ℓ̄−1

(ℓ2 − ℓ̄− 1)!
kℓ1+ℓ2−ℓ̄nℓ1+ℓ2−ℓ̄−1

≤ 1

n

∑
ℓ̄≥0

∑
ℓ1≥ℓ̄

∑
ℓ2≥ℓ̄+1

ℓ1k
ℓ1+ℓ2−ℓ̄

ℓ̄! (ℓ1 − ℓ̄)! (ℓ2 − ℓ̄− 1)!

≤ 1

n

∑
ℓ̄≥0

kℓ̄

ℓ̄!

∑
ℓ1≥ℓ̄

ℓ1k
ℓ1−ℓ̄

(ℓ1 − ℓ̄)!

∑
ℓ2≥ℓ̄+1

kℓ2−ℓ̄

(ℓ2 − ℓ̄− 1)!

≤ k logn

n

(∑
ℓ≥0

kℓ

ℓ!

)3

= O
( logn

n

)
= Õ(1/n)

where we used ℓ1 ≤ log(n) towards the end which we may assume by (ii).

Case 2: |A1 ∩A2| ≥ 2. By (iii) the hashes h(x) and h(y) of two distinct keys x, y in any anomaly A
intersect exactly in the centre of A whp. If two anomalies A1 and A2 share two keys x and y, they
must therefore also share their centre whp. Therefore Case 2 implies Case 1 whp.
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Case 3: Distinct centres and |A1 ∩A2| = 1. Consider the event E3 that there exist anomalies A1

and A2 with distinct centres and one shared key. Let ℓ1 = |A1| and ℓ2 = |A2|. Now A2 is uniquely
identified by one of the ℓ1 keys from A1 and ℓ2 − 2 keys from S0. We get

Pr[E3] ≤
∑
ℓ1≥3

∑
ℓ2≥3

(
m

ℓ1 − 1

)
ℓ1

(
m

ℓ2 − 2

)
kℓ1+ℓ2n−ℓ1−ℓ2+2

≤
∑
ℓ1≥3

∑
ℓ2≥3

nℓ1−1

(ℓ1 − 1)!
ℓ1

nℓ2−2

(ℓ2 − 2)!
kℓ1+ℓ2n−ℓ1−ℓ2+2

≤ 1

n

∑
ℓ1≥3

kℓ1ℓ1
(ℓ1 − 1)!

∑
ℓ2≥3

kℓ2

(ℓ2 − 2)!
≤ O(1/n).

Case 4: Distinct centres and A1 ∩A2 = ∅∅∅. Consider the event E4 that there exist anomalies A1

and A2 with distinct centres sharing no key but sharing some i ∈ h(A1) ∩ h(A2). Let ℓ1 = |A1| and
ℓ2 = |A2| and assume wlog that i is not the centre of A1. One of the (k − 1)ℓ1 non-centre hashes of
keys in A1 must coincide with one of the kℓ2 hashes from keys in A2. We get

Pr[E4] ≤
∑
ℓ1≥3

∑
ℓ2≥3

(
m

ℓ1 − 1

)(
m

ℓ2 − 1

)
kℓ1+ℓ2n−ℓ1−ℓ2+2(k − 1)ℓ1kℓ2

1
n

≤
∑
ℓ1≥3

∑
ℓ2≥3

nℓ1−1

(ℓ1 − 1)!

nℓ2−1

(ℓ2 − 1)!
kℓ1+ℓ2n−ℓ1−ℓ2+2(k − 1)ℓ1kℓ2

1
n

≤ 1

n

∑
ℓ1≥3

kℓ1+1ℓ1
(ℓ1 − 1)!

∑
ℓ2≥3

kℓ2+1ℓ2
(ℓ2 − 1)!

= O(1/n).

We can now derive a concentration bound on the number of native anomalies.

Lemma 2.2. There are |A| = O(logn) native anomalies whp.

Proof. The challenge here is to navigate the fact that anomalies do not occur independently.
Recall the definition of anomaly blueprints. Let EP,i be the event that a blueprint P ∈ P is realised

at a bucket i ∈ [n]. Importantly, EP,i is simply the event that certain random variables in the family
(hj(x))x∈[u],j∈[k] turn out to be i. If we have a sequence EP1,i1 , . . . , EPb,ib of such events pertaining to pairwise
distinct buckets i1, . . . , ib ∈ [n] then these events either refer to pairwise distinct random variables and are
hence independent, or two events refer to the same random variable and are hence disjoint (i.e. inconsistent).
Therefore

(2.2) Pr
[ ⋂
j∈[b]

EPj ,ij

]
∈
{
0,

∏
j∈[b]

Pr[EPj ,ij ]

}
Now define Ei :=

⋃
P∈P EP,i to be the event that at least one native anomaly has centre i. We can now bound

the probability that at least b of these events occur.

Pr
[ ∑
i∈[n]

1Ei ≥ b
]
≤

∑
I⊆[n],|I|=b

Pr
[⋂
i∈I

Ei

]
sym
=

(
n

b

)
Pr
[ b⋂
i=1

Ei

]

=

(
n

b

)
Pr
[ b⋂
i=1

⋃
P∈P

EP,i

]
=

(
n

b

)
Pr
[ ⋃
P1,...,Pb∈P

b⋂
i=1

EPi,i

]

≤

(
n

b

) ∑
P1,...,Pb∈P

Pr
[ b⋂
i=1

EPi,i

] (2.2)

≤

(
n

b

) ∑
P1,...,Pb∈P

b∏
i=1

Pr[EPi,i]

=

(
n

b

)
b∏

i=1

∑
P∈P

Pr[EP,i] =

(
n

b

)( ∑
P∈P

Pr[EP,1]

)b

=

(
n

b

)(∑
ℓ≥3

(
m

ℓ− 1

)
kℓ

nℓ

)b

≤ nb

b!

(∑
ℓ≥3

nℓ−1

(ℓ− 1)!

kℓ

nℓ

)b

≤ 1

b!

(∑
ℓ≥3

kℓ

(ℓ− 1)!

)b

=
(kek)b

b!
≤ (kek+1)b

bb
.
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For b = Ω(logn) the last term is O(1/n), meaning that only O(logn) buckets are the centre of native anomalies
whp. Since no two native anomalies share a centre whp by Lemma 2.1 (ii) this implies that there are O(logn)
native anomalies whp as desired.

Lemma 2.3. During decoding, only native anomalies are triggered whp.

Proof. Assume there is a first time t when a foreign anomaly A2 is triggered. Let i2 be its centre and S the
set of keys stored in the sketch at time t.

The previously triggered native anomalies may already have introduced some foreign keys to S, but by
Lemma 2.1 (iv) these anomalies A ∈ A have pairwise disjoint domains h(A), so each bucket stores at most
one foreign key. The facts that A2 contains at least two foreign keys and that all but one of the keys from A2

must be present in S in order for A2 to be triggered imply that A2 contains exactly two foreign keys, one of
which is present in S, call it y1 ∈ A2 ∩ S \ S0, and one of which is absent, call it y2 ∈ A2 \ (S ∪ S0). The
presence of y1 in S is due to an anomaly A1 with some centre i1 that was triggered previously and must be
native by choice of t. We bound the probability for such a situation to exist, distinguishing two cases. For
both we define ℓ1 := |A1| and ℓ2 := |A2|.
Case 1: i1 ̸= i2. We have A1 ∩ A2 = {y1} because by Lemma 2.1 (iii) no two keys from A1 can share i2 as

a hash value. The pair (A1, A2) is uniquely determined by the ℓ1 − 1 native keys from A1 and the ℓ2 − 2
native keys from A2. The probability for such a pair to exist is

∑
ℓ1≥3

∑
ℓ2≥3

(
m

ℓ1 − 1

)(
m

ℓ2 − 2

)
kℓ1+ℓ2n−ℓ1−ℓ2+2

≤
∑
ℓ1≥3

∑
ℓ2≥3

nℓ1−1

(ℓ1 − 1)!

nℓ2−2

(ℓ2 − 2)!
kℓ1+ℓ2n−ℓ1−ℓ2+2 ≤ 1

n

∑
ℓ1≥3

kℓ1

(ℓ1 − 1)!

∑
ℓ2≥3

kℓ2

(ℓ2 − 2)!
= O(1/n).

Case 2: i1 = i2. Similar to the proof of Lemma 2.1 (iv) Case 1, there may now be some number ℓ̄ :=
|A1 ∩A2 ∩ S0| of shared native keys. Otherwise the computation is similar to Case 1.

∑
ℓ1≥3

∑
ℓ2≥3

∑
ℓ̄≤min{ℓ1−1,ℓ2−2}

(
m

ℓ1 − 1

)(
ℓ1 − 1

ℓ̄

)(
m

ℓ2 − ℓ̄− 2

)
kℓ1+ℓ2−ℓ̄−1n−ℓ1−ℓ2+ℓ̄+2

≤
∑
ℓ̄≥0

∑
ℓ1≥ℓ̄+1

∑
ℓ2≥ℓ̄+2

nℓ1−1

(ℓ1 − 1)!

(ℓ1 − 1)!

ℓ̄! (ℓ1 − ℓ̄− 1)!

nℓ2−ℓ̄−2

(ℓ2 − ℓ̄− 2)!
kℓ1+ℓ2−ℓ̄−1n−ℓ1−ℓ2+ℓ̄+2

≤ 1

n

∑
ℓ̄≥0

kℓ̄

ℓ̄!

∑
ℓ1≥ℓ̄−1

kℓ1−ℓ̄−1

(ℓ1 − ℓ̄− 1)!

∑
ℓ2≥ℓ̄−2

kℓ2−ℓ̄

(ℓ2 − ℓ̄− 2)!
≤ O(1/n).

Taken together, no such situation arises whp.

Lemma 2.4. Let SA :=
⋃

A∈A A be the set of anomalous keys. During decoding, we have S ⊆ S0 ∪ SA at all
times whp.

Proof. This follows from induction. Initially we have S = S0. Any regular decoding step removes an element
from S. Any anomalous decoding step adds a key y ∈ A for some anomaly A that has been triggered. By
Lemma 2.3 we have A ∈ A and hence y ∈ SA, maintaining the invariant.

2.3 Working around anomalies. Let SA :=
⋃

A∈A A be the set of anomalous keys and BA = h(SA)
the set of anomalous buckets. Consider a variant decode’ of decode (see Figure 2) that receives the set BA of
anomalous buckets as a parameter and ignores these buckets, say by pretending that no i ∈ BA ever satisfies
looksPure(i). Similar to S, we use S′ to track the set of keys stored in the sketch over time when decode’ is used.
No anomalous decoding steps can occur in decode’, because the first anomalous decoding step would have to
be at the centre of a native anomaly, but these centres are contained in BA and banned from consideration.
In particular, elements are only ever removed from S′, never added.

Recall that by a round of decode we mean one iteration of the while-loop. Rounds typically comprise
many decoding steps. To ensure the rth round is well-defined for each r ∈ N we imagine that if and when the
algorithm terminates (because both Q and Qnext are empty) an infinite number of further rounds take place
that contain no steps.
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We now show that decode correctly identifies at least as many keys from S0 as decode’. For this we define Sr

for r ∈ N0 to be the set of keys stored in the sketch at the start of round r+ 1 when decode is used and S′
r to

be the corresponding set when decode’ is used.

Lemma 2.5. We have Sr ∩ S0 ⊆ S′
r for all r ∈ N0 whp.

Proof. We proceed by induction. At the start of round 1 we have S0 = S′
0 so there is nothing to show. Now

assume that at the start of some round r we have Sr∩S0 ⊆ S′
r. To show Sr+1∩S0 ⊆ S′

r+1 we consider different
cases for x ∈ Sr+1 ∩ S0. We may assume that the high-probability guarantees from Lemmas 2.3 and 2.4 hold.

Case 1: x ∈ A for some A ∈ A. We have h(x) ⊆ BA, i.e. the buckets of x are banned from consideration
in decode’. Since x ∈ S0 = S′

0 and x can never be toggled in decode’ we have x ∈ S′
r+1 as well.

Case 2: x is not part of a native anomaly. Combined with Lemma 2.3, x is not contained in any
anomaly that is triggered and could not have been readded to S. It was therefore already in S when
round r started, meaning x ∈ Sr∩S0. The induction hypothesis gives x ∈ S′

r. We have to show x ∈ S′
r+1.

Assume for contradiction that x /∈ S′
r+1. Then x was removed in round r of decode’. Thus one of its

buckets b ∈ h(x) was in Q at the start of round r of decode’. Hence b /∈ BA and we had looksPure(b) at
some prior time. No anomaly can be triggered at b by Lemma 2.3 and looksPure(b) really means that
only one key is stored in b. Hence x is the only key in S′

r with b as a hash. By induction hypothesis,
x is the only key in Sr ∩ S0 with b as a hash. Moreover, since Sr \ S0 ⊆ SA by Lemma 2.4 we have
h(Sr \ S0) ⊆ BA ̸∋ b so x is the only key in Sr with b as a hash and looksPure(b) holds at the start
of round r + 1 of decode. This implies that b is in Q at the start of round r of decode. Again using
that no triggered anomaly can add keys to bucket b, we conclude that x is detected and removed during
round r+1 of decode. Moreoever, x cannot be readded afterwards since x /∈ SA. This implies x /∈ Sr+1,
contradicting the choice of x ∈ Sr+1 ∩ S0. Since the assumption x /∈ S′

r+1 led to this contradiction we
have x ∈ S′

r+1 as desired.

On the other hand we will show in Section 2.4 that decode’ succeeds in decoding everything except keys in SA
and in fact does so in a polylogarithmic number of rounds:

Lemma 2.6. With high probability, decode’ achieves S′
R ⊆ SA for some R = Õ(1).

Before showing how this implies our main theorem we deal with a technicality concerning the implementation
of Q and Qnext. As the names suggest, we have queues in mind, such as a LIFO or FIFO queue. However,
since we cannot afford to check if an element is already in Qnext whenever we are about to add something to
Qnext this effectively implements Q and Qnext as multisets. A duplicated bucket i in Qnext means a duplicated
execution of the for-loop for bucket i in the next round. None of the previous arguments hinge on this, but one
might worry that with excessive duplication the running time gets out of hand. We are reluctant to resolve
the issue by using a set data structure for Qnext, because this would compromise the simplicity of decode.
Moreover the issue can be resolved with the following simple Lemma.

Lemma 2.7. Assume an implementation of decode realises Q and Qnext as multisets, e.g. using FIFO queues.
Then whp the following is true for all A ∈ A. Together Q and Qnext never contain more than two copies of
the centre i of A. If they contain two copies of i, then i stores at most one key.

Proof. Since no anomaly other than A affects i by Lemma 2.1 (iv) and Lemma 2.3, there are only two reasons
for adding i to Qnext:

(i) The anomaly A is triggered, meaning the state of i changed such that i now stores |A| − 1 keys from A
and no other key, or

(ii) i stores only a single key.

Reason (i) may occur several times but the necessary state change in between two occurrences must include
the addition of a key and the removal of a key. A key can only be added to i due to an anomalous decoding
step at i, which consumes a copy of i from Q, maintaining the invariant. While reason (ii) may push a second
copy of i into Qnext, this can only happen once since no anomalous decoding steps can add keys to i afterwards
(recall that |A| ≥ 3).

Proof. [Proof of Theorem 1.1] We may assume that the high probability events from all previous lemmas hold.
Let R = Õ(1) be the number of rounds from Lemma 2.6 needed until S′

R ⊆ SA. Since SR ∩ S0 ⊆ S′
R by

Lemma 2.5 and SR \S0 ⊆ SA by Lemma 2.4 we have SR ⊆ SA as well, i.e. only anomalous keys might remain
after R rounds of decode. We now show that two more rounds suffice (i.e. SR+2 = ∅) by showing SR+2∩A = ∅
for any A ∈ A.
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Since native anomalies have non-overlapping domain h(A) we may consider each A in isolation. Let i be
the centre of A. Consider the beginning of round R + 1 (when Qnext = ∅). If Q contains two copies of i,
then by Lemma 2.7 we have |SR ∩A| = 1 and this single key is clearly removed in the next round. Otherwise
Lemma 2.7 guarantees that there is at most one copy of i in Q. Each x ∈ A is the only key stored in the k− 1
buckets h(x) \ {i} by Lemma 2.1 (iii). These buckets “lookPure” and are hence all contained in Q. Therefore,
every x ∈ A is removed within round R + 1 (at least once). When bucket i is processed, at most one key
from A is added. This leaves us with at most one key from A after R + 1 rounds and hence no key from A
after R + 2 rounds. This concludes the proof that S = ∅ after Õ(1) rounds of decode and hence that decode
terminates with Sdec = S0 whp.

A final issue is the running time. We assume Q and Qnext are implemented as queues. Let a be the total
number of anomalous decoding steps. By Lemma 2.2 there are Õ(1) native anomalies whp, by Lemma 2.3 no
other anomalies are ever triggered whp and by Lemma 2.7 each anomaly can lead to at most one anomalous
decoding step per round whp. Hence a = Õ(1) whp. Since regular decoding steps remove a key and anomalous
steps add a key, there are m+ a regular steps, giving m+ 2a decoding steps in total whp. The total number
of entries added to Q and Qnext is then at most n+ (k − 1)(m+ 2a) = O(n), which accounts for n additions
before the while-loop and k− 1 additions per decoding step. Since every iteration of the for-loop consumes an
element from Q, there are O(n) for-loop iterations whp.

2.4 Analysis of decode’. The arguments used in the following proof of Lemma 2.6 should not be regarded
as completely novel. The fact that most keys can be removed is closely related to the analysis of cores in
hypergraphs as discussed by Molloy [Mol05] and the required number of rounds of peeling has been studied in
a similar case in more detail by Jiang, Mitzenmacher and Thaler [JMT16] who prove that Θ(log logn) rounds
are necessary and sufficient. We adapt these existing works to our setting with anomalies.

We recall some facts about hypergraph peeling closely related to our setting. The hypergraph to consider
here is H = ([n], {h(x) | x ∈ S0}). To avoid parallel terminologies, we continue to call i ∈ [n] a bucket (rather
than a vertex) and speak of a key x (effectively referring to the hyperedge h(x)). We do however adopt graph
theoretic notions such as the incidence of a bucket i to a key x (meaning i ∈ h(x)), the degree of a bucket
(its number of incidences) or the r-neighbourhood of a bucket or key (the set of buckets and keys reachable
by traversing at most r hyperedges).

The peeling process on H proceeds in rounds. In every round the set of buckets B1 ⊆ [n] of degree 1
is determined. Then all keys incident to a bucket from B1 are removed. This may cause further buckets to
lose incidences, creating new buckets of degree 1, which are then handled in the next round. If this process
eventually removes all keys, then the original H is called peelable. Peelability is for instance exploited to decode
IBLTs [GM11], construct error correcting codes [LMSS01] and to solve random linear systems to construct
perfect hash functions [BPZ13] or Bloom filter alternatives [GL20].

A density threshold c△k for peelability is known, meaning a fully random k-uniform hypergraph (like H

above) is peelable whp if m
n

< c△k − ε and not peelable whp if m
n

> c△k + ε [Mol05]. Moreover, the following
lemma guarantees that below the threshold a constant number of rounds suffice to remove most keys whp:

Lemma 2.8. (Molloy [Mol05, Lemma 3]) For any ε, δ > 0, there exists R ∈ N such that after peeling a
k-uniform hypergraph with hyperedge density m

n
< c△k − ε for R rounds at most δn hyperedges remain whp.5

Our algorithm decode’ behaves almost exactly like a peeling algorithm. The only substantial difference is that
the buckets from BA are never considered regardless of their degree. As it turns out, this disturbance is too
weak to affect the guarantee given in Lemma 2.8, as we show now.

Lemma 2.9. For any δ > 0, there exists R ∈ N such that |h(S′
R)| ≤ δn whp.

Proof. The density condition m
n

< c△k − ε is part of the requirement of Theorem 1.1 – the context in which
we are operating. Without the complication of anomalous buckets we could obtain a constant R such that
|S′

R| ≤ δ
2k
n whp by Lemma 2.8. Since peeling is a local algorithm, a key x is only affected by the restriction

regarding BA if there is some i ∈ BA within the R-neighbourhood of x. Since the maximum degree of any
bucket is at most logn whp by Lemma 2.1 and because |BA| ≤ k|SA| ≤ k log(n)|A| = O(log2(n)) by Lemma 2.2
there are whp at most O(log2+R(n)) buckets in the R-neighbourhoods of buckets in BA that could be affected
in this way. We obtain |S′

R| ≤ δ
2k
n + O(log2+R(n)) ≤ δ

k
n whp and therefore |h(S′

R)| ≤ k|S′
R| ≤ δn whp as

desired.

For a set I ⊆ [n] of buckets let SI := {x ∈ S0 | h(x) ⊆ I} be the set of keys induced by I.

5Strictly speaking, Molloy’s Lemma only claims a probability of 1−o(1). However, the tool utilised in his proof (Azuma’s inequality
in his Lemma 7) is strong enough to support our “whp”.
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Lemma 2.10. There exist constants N ∈ N and δ, γ > 0 such that, whp, any set I ⊆ [n] of buckets with
N ≤ |I| ≤ δn satisfies |SI | ≤ (2− γ)|I|/k.

Proof. We start by bounding the probability pi that there exists a set I of size i := |I| with |SI | ≥ s where
s := s(i) := ⌈(2 − γ)i/k⌉, using a union bound. At the line break we use that i = Θ(s) and that hence
ei+s( s

i
)s ≤ Ci for a suitable constant C. We also use k ≥ 3 and choose γ = 1

4
.

pi ≤

(
n

i

)(
m

s

)( i

n

)ks
≤
(ne

i

)i(ne
s

)s( i

n

)ks
= ei+s

( i
s

)s
·
(n
i

)i(n
i

)s( i

n

)ks
≤ Ci

(n
i

)i( i

n

)(k−1)(2−γ)i/k

≤ Ci
( i

n

)−i+ 2
3
(2−γ)i

≤ Ci
( i

n

)( 1
3
− 2

3
γ)i

≤ Ci
( i

n

)i/6
=
( iC6

n

)i/6
.

We fix N := 18 and δ := C−6/2. This allows for the following union bound on the probability that a set I of
some size N ≤ |I| ≤ δn induces s or more keys.

δn∑
i=N

pi ≤
δn∑

i=N

( iC6

n

)i/6
=

√
n∑

i=N

( iC6

n

)i/6
+

δn∑
i=

√
n+1

( iC6

n

)i/6
(2.3)

≤

√
n∑

i=N

(√nC6

n

)N/6

+
δn∑

i=
√
n+1

(δnC6

n

)√n/6

≤
√
n ·
( C6

√
n

)3
+ n ·

(1
2

)√n/6

= O(1/n).

Lemma 2.11. There exists a constant δ > 0 such that the following holds whp. For any set of keys S∗ ⊆ S0\SA
and I := h(S∗), i := |I|, i ≤ δn, s := |S∗| we have s < (2i− |I ∩BA|)/k.

Proof. We use a union bound from the perspective of the set I. Concretely we bound for fixed i, a ∈ N the
probability pi,a that there exists a set I ⊆ [n] of size i that satisfies |I ∩ BA| ≥ a as well as |SI \ SA| ≥ s for
s := s(i, a) := max( i

k
, ⌈(2i − a)/k⌉), i.e. I contains at least a anomalous buckets and induces at least s keys

from S0 \ SA. It then suffices to show that the sum over all pi,a is O(1/n). Note that we may assume s ≥ i
k

because of “I = h(S∗)”. This ensures s = Θ(i).
We enumerate all ways in which I might arise (though including some inconsistent combinations in our

counting), thereby explaining Equation (2.4) below, from left to right.

� There are
(
n
i

)
ways to select I,

� and
(
m
s

)
ways to select a set of s keys from S0 \ SA to be induced by I.

� We specify a number d ≤ a of disjoint native anomalies that are to contribute to I ∩ BA (note that by
Lemma 2.1 (iv) we need not worry about the possibility of intersecting native anomalies).

� For each j ∈ [d] we specify properties of the jth anomaly Aj , namely:

– A number aj ≥ 1 of elements from I ∩ BA that Aj accounts for. These numbers should satisfy∑
j aj = a. Each aj is a lower bound on |I ∩ h(Aj)|.

– The size ℓj := |Aj | of Aj .

– A set of ℓj − 1 keys from S0 that uniquely determine Aj itself.

– For each x ∈ Aj , which of its k hashes should point to the anomaly’s centre.

– And finally, which subset of the k hashes of x ∈ Aj must fall within I.

The probability for such a precisely specified constellation is either 0 (if the specification is inconsistent) or has
a simple form shown in the following formula. The term ( i

n
)ks accounts for the selected keys being induced

by I, n−ℓj+1 accounts for the keys in Aj forming an anomaly and ( i
n
)aj accounts for the selected hashes from

keys in Aj actually falling into I. It should be clear that these three probabilities are independent. We obtain
the following.

pi,a ≤
(
n
i

)(
m
s

)∑
d≤a

∑
a1+...+ad=a

∑
ℓ1≥3

(
m

ℓ1−1

)
(k2k)ℓ1 . . .

∑
ℓd≥3

(
m

ℓd−1

)
(k2k)ℓd

︸ ︷︷ ︸
sum over all events contributing to the union bound

· ( i
n
)ks

∏
j∈[d]

n−ℓj+1( i
n
)aj

︸ ︷︷ ︸
probability of the event

(2.4)

≤
(
n
i

)(
m
s

)
( i
n
)ks
∑
d≤a

∑
a1+...+ad=a

∏
j∈[d]

∑
ℓj≥3

(
m

ℓj−1

)
(k2k)ℓjn−ℓj+1( i

n
)aj

︸ ︷︷ ︸
(∗)
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Let us continue to simplify (∗), using the constant C := k2kek2
k

.

(∗) ≤
∑
ℓj≥3

nℓj−1

(ℓj − 1)!
(k2k)ℓjn−ℓj+1( i

n
)aj ≤

( i

n

)aj ∑
ℓj≥3

(k2k)ℓj

(ℓj − 1)!
≤ C

( i

n

)aj

.

We continue the computation in Equation (2.4) using that any a ≥ 1 can be written as the sum of a sequence
of positive integers in precisely 2a−1 ways, and a = 0 can be written in precisely one way as the empty sum.

pi,a ≤
(
n
i

)(
m
s

)
( i
n
)ks
∑
d≤a

∑
a1+...+ad=a

∏
j∈[d]

C
( i

n

)aj

≤
(
n
i

)(
m
s

)
( i
n
)ks
∑
d≤a

∑
a1+...+ad=a

Ca
( i

n

)a
≤
(
n
i

)(
m
s

)
( i
n
)ks2aCa

( i

n

)a
≤
(en

i

)i(en
s

)s( i

n

)ks
2aCa

( i

n

)a
≤ ei+s

( i
s

)s
2aCa ·

(n
i

)i(n
i

)s( i

n

)ks( i

n

)a
≤ (C′)i ·

( i

n

)(k−1)s+a−i

where C′ is another constant (here we use a ≤ i and s = Θ(i)). We bound the exponent using s ≥ (2i− a)/k
(and hence ks+ a ≥ 2i) as well as k ≥ 3 as follows.

(k − 1)s+ a− i = k−1
k

(ks+ a) + a/k − i ≥ k−1
k
· 2i+ a/k − i = k−2

k
i+ a/k ≥ i/3 + a/k.

Considering that the exponent was an integer we finally obtain

pi,a ≤ (C′)i ·
( i

n

)⌈i/3+a/k⌉
=: qi,a.

To conclude the prove we need to bound P :=
∑

1≤i≤δn

∑
a≥0 pi,a for some δ > 0 of our choosing. The sum

over a is effectively a geometric sum with

P ≤
∑

1≤i≤δn

∑
a≥0

qi,a ≤
∑

1≤i≤δn

k · qi,0
∑
a≥0

( i

n

)a
≤ k ·

∑
1≤i≤δn

qi,0 ·
1

1− i/n
≤ k

1− δ
·
∑

1≤i≤δn

qi,0.

To bound the sum over the qi,0 we have to make use of the “⌈·⌉” for the leading terms, e.g. like this:

∑
1≤i≤δn

qi,0 ≤ O(1/n) +
∑

9≤i≤δn

( i(C′)3

n

)i/3
.

To bound the remaining sum the same idea as in Equation (2.3) works.

Proof. [Proof of Lemma 2.6.] We assume that the high probability guarantees from Lemmas 2.9 to 2.11 hold.
Let N and γ be the constants from Lemma 2.10. Moreover, Lemmas 2.10 and 2.11 each guarantee the existence
of a constant named “δ”. Let δ be the smaller of the two and apply Lemma 2.9 for this δ. This yields another
constant R = R(δ) such that |h(S′

R)| ≤ δn. We refer to the first R rounds as the early rounds of peeling.
Now consider any round r ≥ R such that S′

r \ SA ̸= ∅. We define I := h(S′
r \ SA) and i := |I|. Since

S′
r ⊆ S′

R we have i ≤ |h(S′
R)| ≤ δn so we may apply both Lemmas 2.10 and 2.11 to I (see below). It is useful

to distinguish three kinds of buckets in I.

� IA := I ∩BA: anomalous buckets in I.

� I1 := {b ∈ I | ∃!(x, j) ∈ SI × [k] : hj(x) = b} where “∃!” means “there exists exactly one”. These are
buckets not in IA that have degree 1 with respect to SI .

� I2+ := I \ (IA ∪ I1): Buckets not in IA that have degree 2 or more with respect to SI .

Denote the numbers of these buckets with iA, i1, i2+, respectively. We have

(i) i = i1 + i2+ + iA by definition.

(ii) k|SI | ≥ k|SI \ SA| ≥ i+ i2+ since each b ∈ I is hashed to at least once and each b ∈ I2+ is hashed to at
least twice, both by keys from SI \ SA.

(iii) |SI | ≤ (2− γ)i/k and equivalently 2i ≥ 2
2−γ

k|SI | by Lemma 2.10 if i ≥ N .

(iv) |SI \ SA| < (2i− iA)/k by Lemma 2.11.

We distinguish two further types of rounds depending on i. We show i1 > 0 in both cases.
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Intermediate rounds with i = ω(log2 n). We compute

i1
(i)
= i− i2+ − iA = 2i− i− i2+ − iA

(iii)

≥ 2
2−γ

k|SI | − i− i2+ − iA

(ii)

≥ 2
2−γ

(i+ i2+)− (i+ i2+)− iA ≥ γ
2−γ

(i+ i2+)− |BA| ≥ γ
2−γ

i−O(log2 n) = Ω(i).

In the end we used the case assumption and a bound of O(logn) on both the size and the number of
native anomalies that hold whp by Lemma 2.1 (ii) and Lemma 2.2.

Late rounds with i = Õ(1). We proceed similarly:

i1
(i)
= i− i2+ − iA = (2i− iA)− i− i2+

(iv)
> k|SI \ SA| − i− i2+

(ii)

≥ (i+ i2+)− (i+ i2+) = 0.

The fact that i1 > 0 holds in both cases guarantees a bucket b /∈ IA storing one key. In the next round of
decode’ at least this bucket will be cleared of its key. Progress only stops when S′

r \ SA = ∅, i.e. when our
goal S′

r ⊆ SA is reached. Concerning the number of rounds we have

� R = O(1) early rounds.

� O(logn) intermediate rounds since i1 = Ω(i) actually guarantees that a constant fraction of the buckets
in I are cleared by the round.

� Õ(1) late rounds since each clears at least one of the Õ(1) remaining buckets from I.

The sum is Õ(1) rounds as claimed.
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