
Optimal resizable arrays

Robert E. Tarjan ∗ Uri Zwick †

Abstract

A resizable array is an array that can grow and shrink by the addition or removal of items from its end, or
both its ends, while still supporting constant-time access to each item stored in the array given its index. Since
the size of an array, i.e., the number of items in it, varies over time, space-efficient maintenance of a resizable
array requires dynamic memory management. A standard doubling technique allows the maintenance of an
array of size N using only O(N) space, with O(1) amortized time, or even O(1) worst-case time, per operation.
Sitarski and Brodnik et al. describe much better solutions that maintain a resizable array of size N using only
N + O(

√
N) space, still with O(1) time per operation. Brodnik et al. give a simple proof that this is best

possible.
We distinguish between the space needed for storing a resizable array, and accessing its items, and the

temporary space that may be needed while growing or shrinking the array. For every integer r ≥ 2, we show
that N +O(N1/r) space is sufficient for storing and accessing an array of size N , if N +O(N1−1/r) space can
be used briefly during grow and shrink operations. Accessing an item by index takes O(1) worst-case time
while grow and shrink operations take O(r) amortized time. Using an exact analysis of a growth game, we
show that for any data structure from a wide class of data structures that uses only N + O(N1/r) space to
store the array, the amortized cost of grow is Ω(r), even if only grow and access operations are allowed. The
time for grow and shrink operations cannot be made worst-case, unless r = 2.

1 Introduction

Arrays and resizable arrays are perhaps the most widely used data structures. Surprisingly, we show that
apparently not everything was already said about them. We describe simple new implementations of resizable
arrays that in many cases are more memory-efficient than all implementations proposed so far. Our perspective
is theoretical, but our proposed implementations may have some practical implications.

An array of size N is a data structure that holds a sequence of items a0, a1, . . . , aN−1. The i-th item in the
sequence, for any 0 ≤ i < n, can be retrieved or modified in constant time. An array is naturally implemented
as a contiguous block of N words of memory, where each word holds an item, or a pointer to an item. Items
are retrieved or modified in constant time using the random access capabilities of the machine used. Arrays as
defined here are inherently of a fixed size.

A resizable array, also known as a dynamic array or dynamic table, is an array whose size can increase or
decrease, while still allowing the retrieval or the modification of the i-th item for any i in constant time. Decreasing
the size of an array is easy. We simply do not use some of the memory allocated to the array. This, however, is
not memory-efficient. Increasing the size of an array is harder, since the word just beyond the contiguous block
allocated to the array may be in use for a different purpose. Thus, maintaining a resizable array requires dynamic
memory management.

For simplicity, we assume throughout most of the paper that the resizable arrays grow and shrink only at
their ‘far end’. Thus, when the size of the array is increased from N to N + 1 a new item aN is added to the
array. Similarly, when the size is decreased from N to N − 1, the item aN−1 disappears. Such resizable arrays
form a generalization of a stack. All our results extend to resizable arrays that can grow and shrink at both ends,
however, and thus they give a generalization of a double-ended queue (deque). This follows easily: one caneasily
implement a double-ended resizable array using two single-ended resizable arrays.

∗Department of Computer Science, Princeton University, NJ, USA. E-mail: ret@princeton.edu. Research at Princeton University

partially supported by an innovation research grant from Princeton and a gift from Microsoft.
†Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel. E-mail: zwick@tau.ac.il. Research supported by

ISF grant no. 2854/20.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited285

D
ow

nl
oa

de
d

04
/2

7/
23

 to
 1

51
.4

8.
22

3.
14

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

The standard textbook solution for resizable arrays (see, e.g., Cormen et al. [3, Section 17.4]) is the doubling,
or geometric expansion/shrinking technique. Start by allocating an array of some initial size. If the array is full,
allocate a new array of, say, twice the size and copy all the items into it. When the array is, say, less than a
quarter full, allocate a new array of, say, half the size and again copy all items into it. In both cases, the memory
used by the old array is released and can be used for other purposes. A simple amortization argument shows that
the amortized cost of each size increase or decrease is O(1). Each item can still be accessed and modified in O(1)
worst-case time. Furthermore, the time for an increase or decrease operation can be made O(1) worst-case by a
standard background-rebuilding technique.

According to Wikipedia [13], the geometric expansion/shrinking technique, with growth factors ranging
from 1.25 to 2, is used to implement Java’s ArrayList, Python’s PyListObject, C++ STL’s Vector and more.

The doubling technique allows storing a resizable array of size N using O(N) space. This is nice, and may be
sufficient in many applications. But it also means that at various times as much as 50% of the memory allocated
for an array is not used, even if only grow operations are considered. More generally, if a growth factor of 1 + α
is used, a 1

1+α fraction of memory may be wasted. By choosing a small value of α the fraction of wasted storage

can be made arbitrarily small, but the amortized cost for a size increase becomes O(1+α
α), i.e., larger and larger.

Is it possible to store a resizable array of size N using N + o(N) space while still maintaining O(1) time
per operation? Sitarski [12] and Brodnik et al. [2] answered this question affirmatively by describing simple
implementations that use only N + O(

√
N) space. (See more details in Section 3.) Brodnik et al. [2] also show

that in a certain sense this is optimal. More specifically, they show that any resizable array implementation must
sometime use N +Ω(

√
N) space. (We review their simple argument in Section 4.)

We propose distinguishing between the amount of space needed to store a resizable array currently of size N ,
supporting retrieving and modifying items in O(1) worst-case time, and the space that may be needed temporarily
to increase or decrease the size of the array, in O(1) amortized time. In many settings it is preferable to have
a more compact representation of the array, even if more storage is required, temporarily, for resizing the array.
For example, an application may use many resizable arrays, only one of which is resized at any given moment.

Our first implementation to ‘break’ the lower bound of Brodnik et al. [2] is a simple implementation that uses
only N +O(N1/3) space to store an array, while temporarily using N +O(N2/3) space to resize it. Items can be
accessed in O(1) worst-case time, and increasing or decreasing the size of the array takes O(1) amortized time.
Furthermore, we show that this is essentially optimal. Any implementation that uses only N +O(N1/3) space for
storing an array must, at certain times, use N +Ω(N2/3) space during resizing.

More generally we show that, for every r ≥ 2, it is possible to store a resizable array using N + O(N1/r)
space, while needing only N +O(N1−1/r) space to resize it. Retrieving and modifying items by index takes O(1)
worst-case time, while resizing takes O(r) amortized time. Since background rebuilding cannot be used, the O(r)
amortized time for resizing, which we show is optimal, cannot be made worst-case, unless r = 2, in which case
the implementation becomes very similar to the implementations of Sitarski [12] and Brodnik et al. [2].

The rest of the paper is organized as follows. In Section 2 we give a more precise definition of the problem
and the computational model used. In Section 3 we describe previous work, mostly that of Sitarski [12] and
Brodnik et al. [2]. In Section 4 we describe the simple lower bound of Brodnik et al. [2] and our extension of
it. In Section 5 we give our simple r = 3 solution, i.e., N + O(N1/3) space for storing, N + O(N2/3) space for
resizing. In Section 6 we describe, for any r ≥ 2, an implementation that uses N + O(rN1/r) space to store the
array, while using only N + O(N1−1/r) space during resize operations. The amortized cost of grow and shrink
operations is O(r). In Section 7 we give a simple transformation that can be used to tune the implementation
of Section 6 and reduce the space needed for storing the array to N +O(N1/r) while maintaining constant time
access and O(r) amortized time for grow and shrink operations. (Note that this is significant only if r = r(N)
is considered to grow with N .) To prove that the O(r) amortized time of resizing operations is optimal, at least
for a wide class of data structures that we call standard, we introduce in Section 8 an abstract growth game and
analyze it completely. In Section 9 we rely on the analysis of the growth game to obtain an Ω(r) lower bound
on the amortized cost of grow operations, if only N + O(N1/r) space can be used to store the array. We end in
Section 10 with some concluding remarks.

2 Resizable arrays

A resizable array is an abstract data type that supports the following operations:

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited286

D
ow

nl
oa

de
d

04
/2

7/
23

 to
 1

51
.4

8.
22

3.
14

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

A← Array() - Create and return an initially empty array.
A.Length() - Return the current length of the array A.
A.Get(i) - Return the i-th item ai in the array A. It is assumed that 0 ≤ i < A.Length().
A.Set(i, a) - Change the i-th item in the array A to a. It is assumed that 0 ≤ i < A.Length().
A.Grow(a) - Increase the length of array A by 1 and set the new and last item in it to a.
A.Shrink() - Decrease the length of array A by 1, discarding its last item.

Note that items can only be added to or removed from the end of the array. Allowing items to be added
or removed from arbitrary places of the array, updating the indices of the higher-index items accordingly, makes
the problem much harder, even if space efficiency is not required. The best time bound that can be obtained
simultaneously for all operations is then O(logN/ log logN), where N is the size of the array (Dietz [4]), and this
is tight, as follows from Fredman and Saks [5]. For any r ≥ 1, it is possible to implement access operations in
O(r) worst-case time, but with insertions and deletions taking O(N1/r) amortized time. (See, e.g., Goodrich and
Kloss [6], Joannou and Raman [7], Katajainen [9] and Bille et al. [1].) We stress again that we only allow adding
or removing items at the end of the array.

We assume that a memory management system allows us to allocate and deallocate fixed-length arrays
of arbitrary size. (As an example, consider the malloc and free functions of C or C++.) We assume, for
simplicity, that each such call takes only constant time. All our amortized bounds hold, however, if allocating
or deallocating a fixed-length array of size N requires O(N) time. We do not consider the inner workings of the
memory management system.

An implementation of a resizable array must use a collection of dynamically allocated fixed-length arrays,
sometimes referred to as blocks. Typically, each one of these blocks is either a data block, containing items of the
resizable array, each item in a separate word, or an index block, containing pointers to other blocks, each pointer
in a separate word, or an auxiliary block, containing auxiliary information used by the data structure, such as the
lengths of the various blocks. All the data structures presented in this paper are of this form. If the resizable
array is currently of size N , then the total size of all the data blocks must be at least N . (See also the discussion
after the proof of Theorem 4.1 in Section 4.) Each block, except one index block referred to as the main index
block, must be indicated by a pointer in one of the index blocks, since otherwise the block would be inaccessible.
The space used by the data structure is the sum of the lengths of all the blocks allocated.

To simplify the discussion of the various data structures considered in this paper, we introduce the following
definition.

Definition 2.1. ((s(N), t(N))-implementation) Let s(N), t(N) be two non-decreasing functions. A resizable
array data structure is said to be an (s(N), t(N))-implementation if it uses at most N + s(N) space to store an
array of size N , and at most N + t(N) space during a grow or shrink operation on an array of size N .

3 Previous work

The problem of designing space-efficient implementations of resizable arrays belongs of course to the area of
succinct data structures. See, e.g., Raman et al. [11], Munro and Srinivasa [10] and the references therein. But
only a handful of papers, which we describe next, seem to address the basic resizable arrays problem as defined
here.

3.1 Basic data structures. A basic data structure for resizable arrays uses only a single fixed-size array to
implement a resizable array. When the fixed-size array is full, a basic data structure needs to allocate a larger
array, copy all items from the old array to the new array, add the new item, and release the old array. A basic
data structure is free to choose the size of the new fixed-size array. Following some shrink operations, a basic
data structure may decide that the fixed-size array is too empty, in which case it can allocate a small array and
copy all items into it, releasing the old array.

The most space-efficient basic data structure keeps a fixed-size array whose size is exactly equal to the size of
the resizable array. A new array needs to be allocated following each grow and shrink operation. The space used
to store an array of size N is N +O(1). (We need to store the length of the array and a pointer to the fixed-size
array.) However, the (amortized) cost of grow and shrink operations is Ω(N). Furthermore, while implementing a
grow or shrink operation, the data structure temporarily needs 2N +O(1) space, since two arrays need to stored
together. Such a data structure should only be used if grow or shrink operations are rare.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited287

D
ow

nl
oa

de
d

04
/2

7/
23

 to
 1

51
.4

8.
22

3.
14

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Figure 1: Sitarski’s HAT data structure.

A more practical basic data structure uses the geometric expansion/shrinking technique discussed in the
introduction. Choose a fixed parameter α > 0. When the allocated array is full, allocate a new array of size
(1 + α)N , copy all items into it and release the old array. When an allocated array of size N contains only
N/(1 + α)2 items, allocate a new array of size N/(1 + α), copy all items into it and release the old array. Simple
calculations show that the amortized cost of a grow operation is 1+α

α and that the amortized cost of a shrink
operation is 1

α .
1 A judicious choice of α provides a satisfactory solution for many practical situations.

3.2 The data structure of Sitarski. Sitarski [12] (see also [14]) described a nice and simple implementation
of resizable arrays that he calls a hashed array tree (HAT). This name is a bit unfortunate since no hashing is
involved and the tree used by the data structure is actually a list.

The HAT data structure maintains an index block I of size B, where
√
N ≤ B < 4

√
N , and ⌈N/B⌉ or

⌈N/B⌉ + 1 data blocks each of size B, as shown in Figure 1. The N items currently in the array are stored, in
a sequential manner, in the first ⌈N/B⌉ data blocks. The ⌈N/B⌉-th data block is only partially full if N is not
divisible by B. The (⌈N/B⌉+ 1)-th data block, if it exists, is empty. The i-th entry in the index block contains
a pointer to the i-th data block.

The data structure uses only N+3B+2 = N+O(
√
N) words of memory. (The 3B term accounts for the size

of the index block and the two possibly empty data blocks.) The i-th item is stored at the (i mod B)-th position
of the ⌊i/B⌋-th data block, so accessing or modifying it takes O(1) worst-case time. If B is chosen to be a power
of 2, computing these indices is especially easy.

If
√
N < B, or equivalently N < B2, then extending the array is simple. If the ⌈N/B⌉-th data block is

not full, the new item is added as the last item of this data block. If the ⌈N/B⌉-th data block is full but an
(⌈N/B⌉+ 1)-st data block is allocated, the new item becomes the first item in this array. Otherwise, a new data
block of size B is allocated, and the new item becomes its first item. The extension takes O(1) worst-case time,
if allocating a new array is assumed to take O(1) time, or O(1) amortized time, if allocating the new array is
assumed to take O(B) time.

When the data structure is full, i.e., N = B2, the data structure is rebuilt with B doubled. If B is initially
chosen to be a power of 2, it will stay a power of 2, simplifying the indexing operations. The amortized cost is
still O(1) since the O(N) cost of the rebuilt operation can be charged to, say, the last 3

4N grow operations that

must have occurred since the last rebuild. (Note that if B =
√
N and B is doubled, then the capacity of the data

structure increases from N to 4N .)
The implementation of a shrink operation is similar. To avoid the deallocation and the immediate reallocation

of a data block, the last data block is deallocated only if the last two data blocks are empty. When B = 4
√
N , or

equivalently N = B2/16, the value of B is halved and the data structure is rebuilt. The amortized cost of grow
and shrink operations is still O(1), since at least Ω(N) operations must occur between two rebuild operations.

It is important to note that a rebuild operation can be carried out while using only O(
√
N) extra storage.

The new and old data blocks are allocated and deallocated one by one.
It is possible to deamortize the HAT data structure by keeping data blocks of two possible sizes and doing

a background rebuilding, but the resulting data structure becomes more complicated. A simpler data structure

1More specifically, the amortized cost of a grow operation is
(1+α)N

αN
while the amortized cost of a shrink operation is

N
(1+α)2

/
(N
1+α

− N
(1+α)2

). Note that following each resize operation, if N is the current number of items in the array then the

size of the array is (1 + α)N .

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited288

D
ow

nl
oa

de
d

04
/2

7/
23

 to
 1

51
.4

8.
22

3.
14

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

(a)

(b)

Figure 2: Two variants of the data structure of Brodnik et al. (a) The basic version of the data structure. (b) A
version in which the sizes of blocks are powers of 2.

with worst-case bounds is described next.

3.3 The data structures of Brodnik et al. Brodnik et al. [2], apparently unaware of the HAT data structure
of Sitarski [12], described an elegant data structure that uses only N + O(

√
N) space and achieves O(1) worst-

case time bounds for grow and shrink operations (assuming that memory allocation takes O(1) worst-case time).
Appealing features of the data structure are that no rebuild operations are necessary and data items are never
moved.

The data structure of Brodnik et al. [2] comes in two variants, depicted schematically in Figure 2. In the first
variant, shown in Figure 2(a), the items of the array are stored consecutively in data blocks of sizes 1, 2, 3, As

1 + 2 + · · · + k = k(k+1)
2 ≈ k2

2 , about
√
2N blocks are needed to store the N items. More precisely, the number

is k = ⌈
√
8N+1−1

2 ⌉. The last data block may be only partially filled. An additional, (k + 1)-st data block may be
allocated, in which case it is completely empty. (This last data block once contained items that were subsequently
removed.) An index block of size B = Θ(

√
N) stores pointers to the data blocks. This index block is in fact a

resizable array implemented using the näıve method.
Growing and shrinking the array are fairly simple operations. A new item is added as the last item of the

partially filled block, if there is one, or as the first item of the empty block, if there is one. Otherwise, a new data
block is allocated and the new item becomes its first item. A pointer to the new data block is added to the index
block. If the index block is full, a larger index block is allocated and all pointers are copied to it. The old index
block is deallocated. To obtain an O(1) worst-case time bound, this copying should be done ‘in the background’.
A shrink operation is similar.

The i-th item in the array can be accessed in O(1) worst-case time, but calculating the index of the data
block in which this item resides requires taking a square root. More precisely, the i-th item is stored in the ℓ-th

data block, where ℓ = ⌈
√
8i+1−1

2 ⌉, and it is the (i− ℓ(ℓ−1)
2)-th item in this block.

To avoid the need to compute square roots, Brodnik et al. [2] described a variant of their data structure,
shown in Figure 2(b). Here the size of each data block is a power of 2. More precisely, for k = 0, 1, . . ., there is a
virtual super block composed of 2⌊k/2⌋ blocks of size 2⌈k/2⌉. Computing the block in which the i-th block resides,
and its position in this block, can now be done using simple shift operations. For the exact details see [2].2

2Actually, there is a small inaccuracy in the details given in [2], but they can easily be fixed.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited289

D
ow

nl
oa

de
d

04
/2

7/
23

 to
 1

51
.4

8.
22

3.
14

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

4 The lower bound of Brodnik et al. and its extension

We describe a slightly modified version of a lower bound of Brodnik et al. [2].

Theorem 4.1. Any data structure for maintaining a resizable array must at certain times use N+Ω(
√
N) space,

where N is the current length of the array, even if only grow and access operations are performed.

Proof. Let k be the number of contiguous memory blocks used by the data structure after a sequence of N grow
operations. These blocks must contain all N items, since otherwise not all items can be accessed. Hence the total
size of the blocks is at least N . (See the discussion after the proof.) The data structure must also maintain a
pointer to each such block, since otherwise it would not be able to access the block. Thus, if k ≥

√
N , the data

structure uses at least N + k ≥ N +
√
N space.

If k <
√
N , then the the largest allocated block must be of size ℓ >

√
N . This block is allocated when the

array contained N ′ ≤ N items. Just after this block was allocated, and its size included in the total space used
by the data structure, the N ′ items must be stored in other blocks. Thus, the total space used at that moment
was N ′ + ℓ > N ′ +

√
N ′.

The lower bound assumes that storing N items requires N words of memory. This assumption holds if each
word of memory is w-bit long and an item is an arbitrary w-bit string. The lower bound also assumes that
storing k pointers requires k words of memory. This holds if memory is assumed to be of size 2w. If the memory
is only of size 2cw, where 0 < c < 1, then only cw bits are required to represent a pointer, and k pointers can be
represented using about ck words. This changes the lower bound on the extra space used, but by only a constant
factor.

The lower bound of Brodnik et al. [2] can be easily extended to a lower bound that considers separately the
space used for storing a resizable array and the temporary space needed while growing or shrinking it. Recall
from Definition 2.1 that an (s(N), t(N))-implementation of resizable arrays is an implementation that uses only
N + s(N) space to store an array of size N , and at most N + t(N) space during resize operations.

Theorem 4.2. Any (s(N), t(N))-implementation of resizable arrays must have s(N)t(N) ≥ N , even if only grow
and access operations are supported.

Proof. Consider the state of the data structure after N grow operations. All N items must be spread among a
certain number of contiguous memory blocks. Since a pointer must be kept for each such block, and since the
extra space used is at most s(N), the number of blocks is at most s(N). Hence at least one of the blocks, call
it B, is of size at least N/s(N). Let N ′ ≤ N be the index of the grow operation that allocated B. Just after B
was allocated it contained no items. Thus the temporary extra space used by the data structure at that time was
at least n/s(N). Thus t(N) ≥ t(N ′) ≥ N/s(N), as required. (Note the use of the monotonicity of t(N).)

Corollary 4.1. For any integer r ≥ 1, any data structure for that uses only N + O(N1/r) space for storing a
resizable array of size N must occasionally use N + Ω(N1−1/r) space during a grow operation, even if only grow
and access operations are performed.

In the next sections we show that this lower bound is tight.

5 Simple (O(N1/3), O(N2/3))-implementations

In this section we describe simple (O(N1/3), O(N2/3))-implementations with O(1) worst-case access time and
O(1) amortized time for grow or shrink operations.

The basic idea is simple. Start by considering the HAT data structure but with data blocks of size
roughly N2/3. The length of the index block is roughly N1/3. Unfortunately, since the last data block may
be almost empty, the total space used by the data structure is N + O(N2/3). To fix this, we use a HAT data
structure to handle the last partially filled data block of size N2/3. The extra space used to store the array is
now only O((N2/3)1/2) = O(N1/3). When the size of the last data block reaches N2/3, it is copied into a new
data block of size N2/3. During this copy operation Ω(N2/3) extra space is used.

It is also easy to obtain a similar data structure based on the data structure of Brodnik et al. [2]. The data
structure uses blocks of size 1, 4, . . . , i2, . . . , k2 and then 1, 2, 3,

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited290

D
ow

nl
oa

de
d

04
/2

7/
23

 to
 1

51
.4

8.
22

3.
14

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Figure 3: A simple (O(N1/3), O(N2/3))-implementation.

A complete, non-recursive, description of the first data structure is given in Figure 3. The data structure
maintains a parameter B such that N1/3 ≤ B ≤ 4N1/3. It uses about N/B2 data blocks of size B2, which we call
large blocks, and at most 2B data blocks of size B, which we call small blocks. There are now two index blocks,
one for the large data blocks and one for the small data blocks. Large blocks are always full. At most one small
block is partially filled, and at most one small block is empty. When 2B small blocks are full, B of them are
copied into a new allocated large block. When there are no non-empty small blocks, a large block is split into B
newly allocated small blocks. It is easy to see that all operations require only O(1) time, amortized for grow and
shrink, and worst-case for access and modify. A formal proof is given in the next section.

6 An (O(rN1/r), O(N1−1/r))-implementation, for every r ≥ 2

Generalizing the construction of Section 5, we obtain an (O(rN1/r), O(N1−1/r))-implementation, for every r ≥ 2.
It is possible to get such implementations in a recursive manner, as was done in the beginning of Section 5. In
this section we obtain non-recursive versions of these implementations. The data structure for a given r ≥ 2
maintains a parameter B such that N1/r ≤ B < 4N1/r. It keeps the items in blocks whose sizes are powers of B,
i.e., B,B2, . . . , Br−1. (See Figure 4.)

If only grow, and not shrink, operations are to be supported, we can maintain the invariant that there are
always at most B blocks of each size. (To allow efficient shrink operations we shall soon relax this condition and
allow at most 2B blocks of each size, as shown in Figure 4.) Blocks of sizes B2, . . . , Br−1 are always full. All
blocks of length B, except possibly the last one, are also full. If the last block of size B is not completely full,
then a grow operations is easy. If it is full, and there are less than B blocks of size B, then a new block of size B
is allocated and the new item is placed in it. If there are B full blocks of some size Bi, a new block of size Bi+1

is allocated, the items in these B blocks are copied, in the appropriate order, to the new block, and the B blocks
of size Bi are deallocated. A new block of size B is now allocated and the new item is placed in it. Note that
this mimics the operation of a base-B counter.

When N = Br, the value of B is doubled and the whole data structure is rebuilt. (We can delay the rebuilding

until the data structure is completely full, i.e., N = Br + Br−1 + . . .+ 1 = Br+1−1
B−1 , but nothing much is gained

by it. For simplicity, we rebuild when N = Br.)
The data structure maintains r − 1 index blocks, one for each possible block size. The total space used to

store an array containing N items is at most N + (2r − 1) + 2(r − 1)B + B = N + O(rN1/r). The maximum
amount of extra space used by the implementation is O(N1−1/r), when a new block of size Br−1 is allocated.

It is easy to see that each item can be accessed in O(r) worst-case time. With some more care, this can be
reduced to O(1) worst-case time, as we show in Section 6.3.

The amortized cost of a grow operation is O(r) since each item is first placed in a block of size B and eventually
moved to blocks of size Bi, for i = 2, . . . , r − 1. A complete rebuilding adds only a constant to the amortized
cost of a grow operation since the total number of items in the data structure increases by some constant factor
between two rebuild operations.

Allowing shrink operations while maintaining an O(r) amortized cost per grow and shrink operation is not
difficult. A standard solution is to use a redundant base-B counter. We allow up to 2B blocks of each size, not
just B. When there are 2B full blocks of a given size Bi, for 1 ≤ i < r − 1, a new block of size Bi+1 is allocated,
The first B blocks of size Bi are copied into it and then deallocated. If a shrink operation occurs when there
are no blocks of size B, a block of size Bi, for the smallest possible i, is split into B − 1 blocks of each size

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited291

D
ow

nl
oa

de
d

04
/2

7/
23

 to
 1

51
.4

8.
22

3.
14

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Figure 4: An (O(rN1/r), O(N1−1/r))-implementation, for every r ≥ 2.

Bi−1, . . . , B2 and B blocks of size B. We show in Section 6.2 that the amortized cost of both grow and shrink
operations is again O(r). A similar redundant base-B counter in used in a different setting by Kaplan et al. [8].

6.1 Implementation details. Pseudocode for grow and shrink operations is given in Figure 5. As in Figure 4,
we assume that ni, for i ∈ [r − 1], is the number of data blocks of size Bi. We denote these blocks by
A[i][0], . . . , A[i][ni − 1]. If n1 > 0, we let n0 be the number of items in A[1][n1 − 1], the last data block of
size B. With this notation, A[i], for 1 ≤ i ≤ r − 1, is the i-th index block, with size is 2B, and A is the block
of pointers to the index blocks, with size r. Indices in each block start from 0. (For convenience, we leave the
cell A[0] empty.) The numbers n0, n1, . . . , nr−1 are kept in a block n of size r. (For simplicity we write ni instead
of n[i].) The blocks A and A[i], for 1 ≤ r ≤ r − 1, are allocated and deallocated only during rebuild operations.

The pseudocode assumes the existence of a procedure Allocate(ℓ) that allocates a new block of size ℓ and
returns a pointer to the newly allocated block, and a procedure Deallocate(X) that deallocates a previously
allocated block X. It also assumes that Copy(X,x, Y, y, ℓ) copies the items of X[x..x+ ℓ− 1] to Y [y..y + ℓ− 1],
where X[x..x+ ℓ− 1] is shorthand for X[x], X[x+ 1], . . . , X[x+ ℓ− 1]. (In other words, it does the assignments
Y [y+ i]← X[x+ i], for i = 0, 1, . . . , ℓ− 1.) A procedure Rebuild(B′), not shown, rebuilds the data structure with
the new parameter B′, usually either 2B or B/2.

Grow(a) works as follows. If N = Br, the data structure is rebuilt with B ← 2B. If the first level is completely
full, i.e., n1 = 2B and n0 = B, Combine-Blocks() is called. This procedure finds the smallest index k ∈ [r − 1]
for which nk < 2B. (Such an index must exist.) For i ← k − 1, k − 2, . . . , 1, it combines B blocks of size Bi

into a new block of size Bi+1, allocating and deallocating blocks as needed. More specifically, to maintain order,
the first B blocks of size Bi, i.e., A[i][0], . . . , A[i][B − 1], are combined to form a new last block A[i+ 1][ni+1] of
size Bi+1. The blocks A[i][B], . . . , A[i][2B − 1] become blocks A[i][0], . . . , A[i][B − 1]. (This only involves pointer
changes. No items are moved. It is possible to avoid these pointer changes by considering A[i] to be a cyclic
array.) Finally, the number of blocks of size Bi is set to B and the number of blocks of size Bi+1 is increased by
one, i.e., ni ← B and ni+1 ← ni+1 + 1.

If Rebuild or Combine-Blocks are not called, Grow(a) checks whether there is a vacant position in a block of
size B. If not, i.e., if n1 = 0 (no blocks of size B), or n1 > 0 but n0 = B (all blocks of size B are full), a new
empty block of size B, A[1][n1], is allocated, n1 is incremented and n0 is set to 0. Finally, in all cases, the new
item a is placed in the first vacant position of the empty or partially filled B block, namely, A[1][n1 − 1][n0]← a
and n0 and N are incremented.

Shrink is similar. If N = (B/4)r, the data structure is rebuilt with B ← B/2. Otherwise, if n1 = 0, i.e., there
are no blocks of size B, Split-Blocks finds the smallest k ∈ [r − 1] such that ni > 0. The last block of size Bk is
split into B − 1 blocks of each size Bk−1, . . . , B2 and into B blocks of size B. Finally, in all cases, the last item

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited292

D
ow

nl
oa

de
d

04
/2

7/
23

 to
 1

51
.4

8.
22

3.
14

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Grow(a):

if N = Br :
Rebuild(2B)

else if n1 = 2B and n0 = B :
Combine-Blocks()

else if n1 = 0 or n0 = B :
A[1][n1]← Allocate(B)
n1 ← n1 + 1
n0 ← 0

A[1][n1 − 1][n0]← a
n0 ← n0 + 1
N ← N + 1

Combine-Blocks():
k ← min{ i ∈ [r − 1] | ni < 2B }
if k =∞ : error
for i← k − 1 downto 1 :

A[i+ 1][ni+1]← Allocate(Bi+1)
for j ← 0 to B − 1 :

Copy(A[i][j], 0, A[i+ 1][ni+1], jB
i, Bi)

Deallocate(A[i][j])
A[i][j]← A[i][j +B] // Shift indices.

ni ← B
ni+1 ← ni+1 + 1

Shrink():

if N = (B/4)r :
Rebuild(B/2)

else if n1 = 0 :
Split-Blocks()

n0 ← n0 − 1
N ← N − 1

if n0 = 0 :
Deallocate(A[1][n1 − 1])
n0 ← B
n1 ← n1 − 1

Split-Blocks():
k ← min{ i ∈ [r − 1] | ni > 0 }
if k =∞ : error
for i← k − 1 downto 1 :

ni+1 ← ni+1 − 1
for j ← 0 to B − 1 :

A[i][j]← Allocate(Bi)
Copy(A[i+ 1][ni+1], jB

i, A[i][j], 0, Bi)

Deallocate(A[i+ 1][ni+1])

Figure 5: Pseudocode of grow and shrink operations of the (O(rN1/r), O(N1−1/r))-implementation.

in the last block of size B is discarded and n0 and N are decremented. If n0 = 0, the empty block of size B is
deallocated, n1 is decremented and n1 is set to B. (It is actually better to delay the deallocation of the last block
of size B, as done for r = 2 in Section 3.2 and for r = 3 in Section 5. It is not difficult to change the pseudocode
accordingly.)

Theorem 6.1. The implementation is an (O(rN1/r), O(N1−1/r))-implementation of resizable arrays. The
amortized cost of grow and shrink operations is O(r). Access operations can be supported in O(1) worst-case
time.

Proof. The correctness of the implementation and the O(rN1/r) and O(N1−1/r)) space bounds follow from the
discussion above. The O(r) bound on the amortized cost of grow and shrink operations is proved in Lemma 6.1
below. A way of implementing access operations in O(1) worst-case time is described in the proof of Lemma 6.2
below.

By letting r = logN , we get the following interesting corollary:

Corollary 6.1. There is a resizable array implementation that uses N + O(logN) space to store and array
of size N , supporting grow and shrink operations in O(logN) amortized time and access operations in O(1)
worst-case time.

6.2 Amortized cost of grow and shrink operations

Lemma 6.1. The amortized cost of grow and shrink operations in the (O(rN1/r), O(N1−1/r))-implementation
is O(r).

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited293

D
ow

nl
oa

de
d

04
/2

7/
23

 to
 1

51
.4

8.
22

3.
14

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Proof. We define the cost of a Grow or a Shrink operation to be the number of item assignments it performs, and
obtain an O(r) amortized bound on these costs. Since the total number of operations performed by a Grow or a
Shrink operation is proportional to this defined cost plus one, this is enough to prove the lemma. (The plus one
is required to deal with Shrink operations that do no item assignments.)

The cost of a Grow operation is 1, plus the cost of Combine-Blocks, if called. Similarly, the cost of a
Shrink operation is 0, plus the cost of Split-Blocks, if called. (Most Shrink operations only decrease N and n0

and do no item assignments.) If a Combine-Blocks operation creates a block of size Bk, then its cost is
B(B + B2 + . . .+ Bk−1) ≤ 2Bk (assuming B ≥ 2). If a Split-Blocks operation splits a block of size Bk, then its
cost is Bk.

An item currently in level i, i.e., in a data block of size Bi, is assigned r− i credit units. Each credit unit can
pay for one item assignment. The cost of a Grow operation, excluding the cost of Combine-Blocks, if called, is 1.
The credit assigned to the new item is r − 1, since it is always placed at level 1, so the amortized cost of a Grow
operation, excluding the cost of Combine-Blocks, is r.

The amortized cost of a Combine-Blocks operation is 0, since each item assignment moves an item from level i
to level i+ 1, which reduces the credit of the item by 1, paying for the assignment. Hence, the amortized cost of
Grow is at most r.

To handle Shrink operations we also assign credits to levels. Each Shrink operation adds 3 units of credit to
each level. Hence the amortized cost of Shrink, excluding the cost of Split-Blocks, is at most 3r.

We next show that the amortized cost of a Split-Blocks operation is at most 0. We first note that at least Bk

Shrink operations must have been performed between two consecutive splits of a block of size Bk. Indeed, following
such a split, levels 1 to k−1 contain exactly Bk items. Furthermore, after a Combine-Blocks operation that creates
a new block of size Bk, levels 1 to k − 1 also contain at least Bk items. Thus, there must be at least Bk Shrink
operations between a Split-Blocks operation at level k and the previous Combine-Blocks or Split-Blocks operation
at level k. Similarly, there must be least Bk Shrink operations before the first Split-Blocks operation at level k.
Therefore, when a Split-Blocks occurs at level k, the level has accumulated at least 3Bk unused units of credit.

The actual cost of a Split-Blocks operation at level k is Bk. The total amount of extra credit that needs to
be added to items that are moved from level k to smaller levels is

B(k − 1) + (B − 1)
∑k−1

i=1 (k − i)Bi ≤ B
∑k−1

i=1 (k − i)Bi ≤ Bk+1
∑

j≥1 jB
−j = Bk+2

(B−1)2 ≤ 2Bk ,

where the last inequality assumes that B ≥ 4. Thus, the 3Bk units of credit of level k are sufficient to cover the
cost of the Split-Blocks operation and its amortized cost is therefore at most 0.

Finally, we need to account for the cost of rebuilding. Each Grow or Shrink operation now adds 2r units of
credit to the whole data structure. (This, of course, increases the amortized cost of Grow and Shrink by 2r.) The
number of Grow operations between a Rebuild operation that doubles B and the previous Rebuild operation is
at least Br − (B/2)r = N(1 − 2−r)N ≥ N

2 . The number of Shrink operation between a Rebuild operation that
halves B and the previous rebuild operation is at least (B/2)r − (B/4)r = (2r − 1)N ≥ N . Thus, when a Rebuild
is about to take place, the data structure has accumulated at least rN unused credit units. The actual cost of a
Rebuild is exactly N . The total amount of credit that needs to be assigned to items is at most (r − 1)N . Thus,
the amortized cost of Rebuild is 0.

The amortized analysis of Rebuild given above is very loose. When a Rebuild doubles B, the total credit of
all items is actually decreased. Thus, each Grow operation needs to add only 1/(1 − 2−r) ≤ 2 units of credit to
the data structure. Similarly, each Shrink needs to add only r/(2r − 1) ≤ 1 units of credit to the data structure.
This, of course, does not change the O(r) amortized cost of Grow and Shrink operations.

The analysis above implicitly assumes that r is a constant, i.e., that it does not vary with N . It is easy to
adapt the analysis to the case of non-constant r = r(N).

6.3 Accessing items in O(1) worst-case time

Lemma 6.2. The (O(rN1/r), O(N1−1/r))-implementation can support access operations in O(1) worst-case time.

To simplify the efficient implementation of access operations we make some slight changes to the data
structure. The first is that we assume that the number of data blocks at each level is at most 2(B − 1), instead
of 2B. This comes in handy: See Lemma 6.3 below. The amortized analysis of the previous section can be easily

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited294

D
ow

nl
oa

de
d

04
/2

7/
23

 to
 1

51
.4

8.
22

3.
14

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

adapted and the amortized cost of resize operations is still O(r). We also assume that B is a power of 2. The
second small change is that we consider n1 to be the number of full data blocks of size B. With this change
N = (n0, n1, . . . , nr−1)B =

∑r−1
j=0 njB

j , i.e., (n0, n1, . . . , nr−1) is a redundant base-B representation of N . (Note

that we list the least significant digit first.) We also let Nk = (0, . . . , 0, nk, . . . , nr−1)B =
∑r−1

j=k njB
j . (Note that

Nr = 0.) We assume that the numbers N = N0, N1, . . . , Nr are maintained by the data structure. This is easy to
do in O(r) time per resize operation, i.e., without affecting the asymptotic amortized cost of these operations.

To access the i-th item in the resizable array, where 0 ≤ i < N , we need to find the unique 0 ≤ k ≤ r−1 such
that Nk+1 ≤ i < Nk. The i-th item is then in position (i −Nk+1) mod Bk of the ⌊ i−Nk+1

Bk ⌋-th block of size Bk.

(Recall that indices start from 0.) Since Bk is a power of 2, the i-th item can be easily accessed in constant time,
using logical and shift operations, once k is known.

The index k satisfying Nk+1 ≤ i < Nk can be easily found in O(r) time, or in O(log r) time using binary
search. This is, of course, sufficient if r is a (small) constant. We show that k can also be found in O(1) time.

Let (i0, i1, . . . , ir−1) be the standard base-B representation of i, i.e., 0 ≤ ij < B, for 0 ≤ j < r, and
i = (i0, i1, . . . , ir−1)B . If (n0, n1, . . . , nr−1) happens to be the standard base-B representation of N , i.e.,
0 ≤ nj < B, for 0 ≤ j < r, then k is the largest index for which ik < nk. (Since i < N , this means that
ij = nj , for k < j < r. Also, such an index k must exist.) Finding k in this case can be easily done in constant
time using standard operations. (This index is easily inferred from the position of the leading 1 in the binary
representation of N − i.)

The general case, in which 0 ≤ nj ≤ 2(B − 1), for 0 ≤ j < r, is slightly more complicated. We first need the
following lemma, which relates a redundant base-B representation of N to the standard representation.

Lemma 6.3. Let (n0, n1, . . . , nr−1) and (n′
0, n

′
1, . . . , n

′
r−1) be such that 0 ≤ nj ≤ 2(B − 1) and 0 ≤ n′

j ≤ B − 1,

for 0 ≤ j < r. Let Nk =
∑r−1

j=k njB
j and N ′

k =
∑r−1

j=k n
′
jB

j, for 0 ≤ k < r. If N0 = N ′
0, then

Nk ≤ N ′
k ≤ Nk + Bk, for 0 ≤ k < r. Furthermore, if N ′

k = Nk + Bk, then for some 0 ≤ ℓ < k we have
nℓ ≥ B and nℓ+1 = · · · = nk−1 = B − 1.

Proof. The claim Nk ≤ N ′
k is equivalent to the claim that the standard base-B representation of a number N

is lexicographically maximal among all base-B representations of N . More formally, let N<k =
∑k−1

j=1 njB
j and

N ′
<k =

∑k−1
j=1 n

′
jB

j , for 0 ≤ k < r. If Nk > N ′
k then Nk ≥ N ′

k +Bk. Now

N ′
<k −N<k ≤ N ′

<k ≤ (B − 1)
∑k−1

j=0 B
j = Bk − 1 < Bk .

This is a contradiction, since Nk +N<k = N ′
k +N ′

<k.
Similarly, if N ′

k > Nk +Bk then N ′
k ≥ Nk + 2Bk. But,

N<k −N ′
<k ≤ 2(B − 1)

∑k−1
j=0 B

j = 2(Bk − 1) < 2Bk ,

again a contradiction.
Finally, suppose that N ′

k = Nk +Bk. Let 0 ≤ ℓ < k be the largest such that nℓ ̸= B − 1. If nℓ < B − 1 then

N<k −N ′
<k ≤ N<k ≤ 2(B − 1)

∑ℓ−1
j=0 B

j + (B − 2)Bℓ + (B − 1)
∑k−1

j=ℓ+1 B
j = Bk − 2 < Bk ,

again a contradiction.

Let (n′
0, n

′
1, . . . , n

′
r−1) be the non-redundant base-B representation of N . We begin by finding, as before, the

largest k for which ik < n′
k. Then N ′

k+1 ≤ i < N ′
k. By Lemma 6.3 we have Nk+1 ≤ i. If Nk+1 ≤ i < Nk, then

we have found the right index. Otherwise, we have Nk ≤ i < N ′
k = Nk + Bk. By Lemma 6.3 again, there exists

0 ≤ ℓ < k such that nℓ ≥ B and nℓ+1 = · · · = nk−1 = B − 1. It follows that
∑k−1

j=ℓ njB
j ≥ Bk. Thus the i-th

item is in one of these levels. Since levels ℓ+ 1, . . . , k − 1 contain exactly B − 1 blocks each, it is possible to find
the appropriate level, and then the appropriate block within this level, in O(1) time.

7 A data structuring transformation

If r is a constant, then the (O(rN1/r), O(N1−1/r))-implementation of the previous section is optimal, both in
the amount of temporary storage used and in its O(r) = O(1) amortized cost of grow and shrink operations. If

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited295

D
ow

nl
oa

de
d

04
/2

7/
23

 to
 1

51
.4

8.
22

3.
14

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

r = r(N) is a (slowly) growing function of N , it is interesting to ask whether the O(rN1/r) extra space needed
for storing the array can be reduced to O(N1/r), and whether the amortized cost of grow and shrink operations
must be Ω(r). We may assume that r(N) = O(logN), since N1/O(logN) = O(1).

We show here that the amount of extra space can be reduced to O(N1/r), at least if r(N) ≤ 1
2

logN
log logN . In

Section 9 we show that the amortized cost of grow and shrink operations must be Ω(r).
We reduce the extra space needed from O(rN1/r) to O(N1/r) using a surprisingly simple transformation. To

state the transformation, we need the following definition:

Definition 7.1. (Standard (s(N), t(N))-implementation) An (s(N), t(N))-implementation is standard if it
satisfies the following conditions: (i) When a new block B is allocated, items from some other blocks A1, A2, . . . , Ak

are immediately copied into it in sequential order. More specifically, first all the items of A1 are copied into the
first positions of B and then A1 is released, then the items of A2 are copied to the next positions of B, and A2 is
released, and so on. (ii) Following each such operation, the total space used by the data structure is N + s(N).

In other words, an (s(N), t(N))-implementation is standard if the t(N) temporary extra space is only briefly
needed following the allocation of new blocks. It is not difficult to check that all implementations given in the
paper are standard. We can now obtain the following result.

Lemma 7.1. A standard (s(N), O(N))-implementation can be converted into an (s(N)+O(N
t(N)), s(N)+O(t(N)))-

implementation, for any non-decreasing function t(N), without increasing the asymptotic worst-case cost of access
operations and the asymptotic amortized cost of grow and shrink operations.

Proof. Given the definition of standard implementations, we only need to consider the allocation of a new block B
that is to receive the items currently stored in A1, A2, . . . , Ak. Let b be the length of B. If b ≤ t(N), there is no
problem. Otherwise, instead of allocating B, we sequentially allocate and fill ⌈b/t(N)⌉ blocks B1, B2, . . . , B⌈b/t(N)⌉
of size t(N). We of course need to keep pointers to these blocks. Since the total size of all blocks allocated at
any given time is at most N + s(N), the number of extra pointers needed is at most (N + s(N))/t(N). The total
space needed to store an array of size N is at most N + s(N) +O(N

t(N)). The total space needed at any time by

the data structure is at most N + s(N) + O(N
t(N)) + t(N), which is s(N) + O(t(N)) since we may assume that

t(N) ≥
√
N .

Using the lemma, we easily get the following theorem:

Theorem 7.1. For any integer r = r(N) ≤ 1
2

logN
log logN , there exists an (O(N1/r), O(N1−1/r))-implementation that

supports access and modify operations in O(1) worst-case time and grow and shrink operations in O(r) amortized
time.

Proof. Apply the transformation of Lemma 7.1, with t(N) = N1−1/r, to the standard (O(rN1/(2r)),
O(N1−1/(2r)))-implementation of Section 6. The result is an (O(rN1/(2r) + N1/r), O(N1−1/r))-implementation.
If r ≤ 1

2
logN

log logN then 2r log r ≤ log n and hence rN1/(2r) ≤ N1/r. Thus the obtained implementation satisfies the
requirements of the theorem.

8 The growth game

To get an indication as to how a truly optimal data structure should handle grow operations, and to obtain
an Ω(r) lower bound on the amortized cost of the grow operations of a standard data structure that is only
allowed N + O(N1/r) space to store an array of size N , we define and analyze an interesting solitaire, i.e., a
one-player, game called the growth game, which is an abstraction of the way standard data structures can handle
grow operations. (See Definition 7.1.)

8.1 The (N, k, ℓ)-growth game. Let N, k and ℓ be fixed parameters. We are required to insert N items, one
by one, into k initially empty subarrays A1, A2, . . . , Ak that represent a resizable array A. The first items of A are
stored in Ak, the next in Ak−1, and so on. (This apparent reversal turns out to simplify things.) Let a1, a2, . . . , ak
be the number of items in A1, A2, . . . , Ak, respectively.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited296

D
ow

nl
oa

de
d

04
/2

7/
23

 to
 1

51
.4

8.
22

3.
14

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

w� w� w�

(a) (b) (c)

Figure 6: Possible moves in the growth game. (a) If the first non-empty subarray has vacant positions, a new
item is inserted into its first vacant position. The cost of the operation is 1. (b) If there are no vacant positions,
but there is at least one empty subarray, then a new array of size ℓ + 1 is allocated. (c) If there are no vacant
positions, the subarrays A1, A2, . . . , Ai, for some i ∈ [k], are merged into a newly formed Ai, initially with ℓ+ 1
vacant positions. The new item is placed in the first vacant position, leaving ℓ vacant positions. The subarrays
A1, A2, . . . , Ai−1 become empty. The cost of the operation is 1 +

∑i
j=1 aj . (In the example, i = 3.)

Some of the subarrays A1, A2, . . . , Ak may be empty, i.e., contain no items. (If Ai is empty then ai = 0.)
Empty subarrays, if any, are assumed to be the first subarrays, i.e., if ai = 0 then a1 = a2 = · · · = ai = 0. The
first nonempty subarray may contain up to ℓ vacant positions. All other subarrays are full, i.e., the number of
items stored in them is equal to the size of the memory block allocated for them. The extra space used to store
the items is thus always at most k + ℓ.

A grow operation, which adds a new item to the array, is implemented as follows. If the first non-empty
subarray has vacant positions, the item is simply placed in its first vacant position. (See Figure 6(a).) If all
non-empty subarrays are full, but there is at least one empty subarray, a new subarray of size ℓ + 1 is allocated
and the new item is placed in its first position. The remaining ℓ positions are left vacant. This subarray replaces
the last empty subarray. (See Figure 6(b).) The cost of inserting the new item in both these cases is defined to
be 1. (For simplicity, we ignore the cost of allocation.) Note that in these first two cases the player of the game
has no real choice.

The game is more interesting when all k subarrays are full. We now have k possible moves. For each
i ∈ [k] = {1, 2, . . . , k}, we can allocate a new subarray of size (ℓ+1)+

∑i
j=1 aj , copy the items in Ai, Ai−1, . . . , A1,

in this order, to the new subarray, and then place the new item in the first vacant position of the new subarray.
(The new subarray will still have ℓ vacant positions.) The old subarrays A1, . . . , Ai are deallocated. The new
subarray becomes Ai while A1, A2, . . . , Ai−1 become empty. (See Figure 6(c).) The cost of the operation is defined

to be 1 +
∑i

j=1 aj . (Again we count only item assignments and ignore the cost of allocations and deallocations.)
A move of the second type is actually a move of the third type, but i is forced to be the largest index for which
ai = 0.

Definition 8.1. (Total and amortized cost) Let CN,k,ℓ be the minimum total cost required to play the

(N, k, ℓ)-growth game. Let AN,k,ℓ =
CN,k,ℓ

N be the corresponding amortized cost of a single grow operation.

We are interested in finding CN,k,ℓ, and hence AN,k,ℓ, and an optimal sequence of moves that achieves these
values. The solution to these problems turns out to be fairly simple, and also fairly interesting.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited297

D
ow

nl
oa

de
d

04
/2

7/
23

 to
 1

51
.4

8.
22

3.
14

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

The values of AN,cN1/r,cN1/r , for some constant c > 0, can be used, as we shall see, to bound from below

the amortized cost of a grow operation when only cN1/r extra space is allowed. We are more liberal here, since
we assume that N is known in advance and we allow cN1/r extra space even when the array contains many
fewer than N items. We also do not impose any bound on the amount of space used temporarily during grow
operations. All this only makes our lower bound stronger.

8.2 Reduction to the case ℓ = 0. It might seem that allowing up to ℓ vacant positions in one of the subarrays
is an important feature of the game that helps reduce the amortized cost of growth operations. We begin by
showing, perhaps surprisingly, that vacant positions do not help much, at least for most values of the parameters.
More specifically, we describe a reduction from the ℓ > 0 case to the ℓ = 0 case.

Lemma 8.1. For every N divisible by ℓ+ 1, CN,k,ℓ = (ℓ+ 1)C N
ℓ+1 ,k,0

and AN,k,ℓ = A N
ℓ+1 ,k,0

.

Proof. Playing the (N, k, ℓ)-growth game amounts to playing the (N
ℓ+1 , k, 0)-growth game on blocks of ℓ+1 items.

To see this, note that when a grow operation in the (N, k, ℓ)-growth game leaves ℓ vacant positions, the next ℓ
grow operations must immediately fill these positions.

8.3 Analysis of the ℓ = 0 case. Given the simple reduction of Section 8.2, it is enough to consider the case
ℓ = 0. To simplify the notation, let CN,k = CN,k,0 and AN,k = AN,k,0. We refer to the corresponding game as
the (N, k)-growth game. Let N = {0, 1, . . .} be the set of non-negative integers.

Definition 8.2. (States and their cost) Let

PN,k =

{
a = (a1, a2, . . . , ak) ∈ Nk

∣∣∣∣∣
k∑

i=1

ai = N and ai = 0 ⇒ ai−1 = 0 , i = 2, . . . , k

}
,

be the set of all states of total size N in the (N, k)-growth game. For a ∈ PN,k, let C(a) = Ck(a) be the minimum
total cost needed to reach state a = (a1, a2, . . . , ak), i.e., |Ai| = ai, for i ∈ [k], starting from state (0, 0, . . . , 0).
Clearly CN,k = min{C(a) | a ∈ PN,k}.

The following lemma gives simple recurrence relations for computing the costs of states. These relations by
themselves do not provide an efficient way of computing CN,k and C(a), for every a ∈ PN,k. They allow us to
obtain explicit formulas for these quantities, however.

Lemma 8.2. For every a = (a1, a2, . . . , ak) ∈ PN,k:
(i) Ck(a1, a2, . . . , ak) = Ck(0, . . . , 0, ak) + Ck−1(a1, a2, . . . , ak−1).

(ii) Ck(a1, a2, . . . , ak) =
∑k

j=1 Cj(0, . . . , 0, aj).

(iii) Ck(0, . . . , 0, ak) = Cak−1,k + ak.

(iv) C(a) = N +
∑k

j=i Caj−1,j, if 0 = ai−1 < ai.

Proof. Let (a1, a2, . . . , ak) ∈ PN,k. Consider a sequence of moves from (0, 0, . . . , 0) to (a1, a2, . . . , ak). The last
move to change Ak must be to the state (0, . . . , 0, ak). The minimum cost of reaching this state is Ck(0, . . . , 0, ak).
The minimum cost of moving from state (0, . . . , 0, ak) to (a1, a2, . . . , ak) is Ck−1(a1, a2, . . . , ak−1), since only
A1, A2, . . . , Ak−1 can be used. This establishes (i); (ii) follows by induction.

The move to (0, . . . , 0, ak) must be from a state (b1, b2, . . . , bk) with
∑k

j=1 bj = ak − 1. The minimum cost of
reaching such a state is exactly Cak−1,k and the cost of the move to (0, . . . , 0, ak) is ak. This establishes (iii); (iv)
follows by induction.

The exact formula that we obtain for CN,k involves binomial coefficients. It is thus convenient to start by
stating two well known binomial-coefficient identities.

Lemma 8.3. For every n, k ≥ 0: (i)
(
n
k

)
=

(
n−1
k−1

)
+

(
n−1
k

)
and (ii)

∑k
i=0

(
n+i−1

i

)
=

(
n+k
k

)
.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited298

D
ow

nl
oa

de
d

04
/2

7/
23

 to
 1

51
.4

8.
22

3.
14

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Proof. (i) is well known. (It may even be used as the definition of the binomial coefficients, along with
(
0
0

)
= 1.)

(ii) is obtained by an easy induction on k. For k = 0, both terms are 1. (Note that
(
n
0

)
= 1 for every n.) The

induction step follows easily:∑k
i=0

(
n+i−1

i

)
=

(∑k−1
i=0

(
n+i−1

i

))
+
(
n+k−1

k

)
=

(
n+k−1
k−1

)
+
(
n+k−1

k

)
=

(
n+k
k

)
.

The following theorem gives an exact formula for computing the total cost CN,k and a characterization of
all the states in PN,k that achieve this minimum total cost. (The corresponding optimal sequences of moves are
considered in Section 8.4.)

Theorem 8.1. (i) If
(
n+k−1

k

)
− 1 ≤ N ≤

(
n+k
k

)
− 1, for some n ≥ 0, then

CN,k = (N + 1)n−
(
n+k
k+1

)
.

(ii) If
(
n+k−1

k

)
≤ N <

(
n+k
k

)
, for some n ≥ 1, then

CN,k − CN−1,k = n .

(iii) If
(
n+k−1

k

)
− 1 ≤ N <

(
n+k
k

)
− 1, for some n ≥ 0, and a ∈ PN,k, then

CN,k = C(a) ⇐⇒
(
n+i−2

i

)
≤ ai ≤

(
n+i−1

i

)
, for every i ∈ [k] .

Both inequalities in claim (i) are weak inequalities. Thus if N =
(
n+k
k

)
− 1 for some n ≥ 0, then condition (i)

is satisfied by both n and n+ 1. This is consistent since for this value of N ,

(N + 1)(n+ 1)−
(
n+k+1
k+1

)
= (N + 1)n+ (N + 1−

(
n+k+1
k+1

)
)

= (N + 1)n+ (
(
n+k
k+1

)
−
(
n+k+1
k+1

)
) = (N + 1)n−

(
n+k
k+1

)
,

where the last equality follows by Lemma 8.3(i).
Theorem 8.1(iii) can be stated more succinctly using the following definition:

Definition 8.3. (QN,k) If
(
n+k−1

k

)
≤ N <

(
n+k
k

)
, let

QN,k =
{
a = (a1, a2, . . . , ak) ∈ PN,k

∣∣ (n+i−2
i

)
≤ ai ≤

(
n+i−1

i

)
, for every i ∈ [k]

}
.

Theorem 8.1(iii) says that if a ∈ PN,k, then CN,k = C(a) if and only if a ∈ QN,k. That is, QN,k is the
set of optimal final positions in the (N, k)-growth game. For most values of N there are many optimal final
positions. If N =

(
n+k
k

)
− 1, then (

(
n
1

)
,
(
n+1
2

)
, . . . ,

(
n+k−1

k

)
) is the only optimal final state and the total cost is(

n+k
k

)
n−

(
n+k
k−1

)
= kn

k+1

(
n+k
k

)
. (We say more about this in Section 8.4.)

We prove Theorem 8.1 by induction on N and k. We say that (N ′, k′) < (N, k) if N ′ < N and k′ ≤ k. We
say that (N ′, k′) ≤ (N, k) if N ′ ≤ N and k′ ≤ k. We break the proof into small pieces, each stated as a separate
claim. The basis of the induction is established by the following claim:

Claim 8.1. Theorem 8.1 holds for n = 1, i.e., when 0 ≤ N ≤ k.

Proof. If 0 ≤ N ≤ k, then CN,k = N , i.e., the insertion of each item costs exactly 1, and if a ∈ PN,k, then
C(a) = N if and only if 0 ≤ ai ≤ 1, for every i ∈ [k].

Before establishing the induction step we prove that, in a sense, Theorem 8.1(iii) implies Theorem 8.1(i), and
that Theorem 8.1(i) implies Theorem 8.1(ii).

Claim 8.2. If Theorem 8.1(i) holds for (N, k) and (N − 1, k), then Theorem 8.1(ii) holds for (N, k), i.e., if(
n+k−1

k

)
≤ N <

(
n+k
k

)
, for some n ≥ 1, then CN,k − CN−1,k = n.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited299

D
ow

nl
oa

de
d

04
/2

7/
23

 to
 1

51
.4

8.
22

3.
14

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Proof. If
(
n+k−1

k

)
≤ N <

(
n+k
k

)
, for some n ≥ 1, then(

n+k−1
k

)
− 1 < N ≤

(
n+k
k

)
− 1 ,

(
n+k−1

k

)
− 1 ≤ N − 1 <

(
n+k
k

)
− 1 .

Theorem 8.1(i) applied to (N, k) and (N − 1, k) gives CN,k − CN−1,k = n. (Note that here we use the fact that

Theorem 8.1(i) requires only the weak inequality N ≤
(
n+k
k

)
− 1.)

Claim 8.3. If Theorem 8.1(i) holds for every (N ′, k′) < (N, k),
(
n+k−1

k

)
− 1 ≤ N <

(
n+k
k

)
− 1, for some n ≥ 1,

and a ∈ QN,k, i.e., a ∈ PN,k and
(
n+i−2

i

)
≤ ai ≤

(
n+i−1

i

)
for every i ∈ [k], then C(a) = (N +1)n−

(
n+k
k+1

)
. (Note

that this is the claimed value of CN,k.)

Proof. Suppose that a ∈ PN,k and that
(
n+i−2

i

)
≤ ai ≤

(
n+i−1

i

)
, for every i ∈ [k]. Then,

C(a) = N +
∑k

i=1 Cai−1,i

= N +
∑k

i=1(ai(n− 1)−
(
n+i−1
i+1

)
)

= (N + 1)n− (1 + (n− 1) +
∑k

i=1

(
n+i−1
i+1

)
)

= (N + 1)n−
∑k+1

j=0

(
n+j−2

j

)
= (N + 1)n−

(
n+k
k+1

)
,

In the first line we used Lemma 8.2, using the fact that ai ≥ 1 for every i ∈ [k]. In the second line we used
Theorem 8.1(i) for (ai − 1, i) < (N, k). The third line is obtained by a simple rearrangement. The fourth line
follows by Lemma 8.3. Note that∑k+1

j=0

(
n+j−2

j

)
=

∑k+1
j=0

(
(n−1)+j−1

j

)
=

(
(n−1)+(k+1)

k+1

)
=

(
n+k
k+1

)
.

Claim 8.4. Suppose that
(
n+k−1

k

)
− 1 ≤ N ≤

(
n+k
k

)
− 1, for some n ≥ 1, and that a ∈ PN,k.

(i) If ai <
(
n+i−2

i

)
for some i ∈ [k], then there exists j ∈ [k] such that aj >

(
n+j−2

j

)
.

(ii) If aj >
(
n+j−1

j

)
for some j ∈ [k], then there exists i ∈ [k] such that ai <

(
n+i−1

i

)
.

Proof. (i) If aj ≤
(
n+j−2

j

)
for every j ∈ [k], then

N =
∑k

j=1 aj <
∑k

j=1

(
n+j−2

j

)
=

(
n+k−1

k

)
− 1 ,

contradicting the definition of n.
(ii) Similarly, if ai ≥

(
n+i−1

i

)
for every i ∈ [k], then

N =
∑k

i=1 ai >
∑k

i=1

(
n+i−1

i

)
=

(
n+k
k

)
− 1 ,

again contradicting the definition of n.

Claim 8.5. If Theorem 8.1(ii) holds for every (N ′, k′) < (N, k),
(
n+k−1

k

)
− 1 ≤ N <

(
n+k
k

)
− 1, for some n ≥ 1,

and a ∈ PN,k \QN,k, i.e., a ∈ PN,k but
(
n+i−2

i

)
≤ ai ≤

(
n+i−1

i

)
is not satisfied for some i ∈ [k], then there exists

b ∈ PN,k such that C(a) > C(b). As a consequence, C(a) > CN,k.

Proof. There are two (non-exclusive) cases:
Case 1: There exists i ∈ [k] for which ai <

(
n+i−2

i

)
.

By Claim 8.4(i), there exists j ∈ [k] such that aj >
(
n+j−2

j

)
. Let b = (b1, b2, . . . , bk) ∈ PN,k be such that

bi = ai + 1, bj = aj − 1, and bℓ = aℓ for ℓ ∈ [k] \ {i, j}. As Theorem 8.1(ii) is assumed to hold for (ai, i) and
(aj − 1, j), we have Cai,i − Cai−1,i ≤ n− 2 while Caj−1,i − Caj−1,i ≥ n− 1. Thus

C(b)− C(a) = (Cai,i − Cai−1,i)− (Caj−1,j − Caj−2,j) < 0 .

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited300

D
ow

nl
oa

de
d

04
/2

7/
23

 to
 1

51
.4

8.
22

3.
14

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Case 2: There exists j ∈ [k] for which aj >
(
n+j−1

j

)
.

By Claim 8.4(ii), there exists i ∈ [k] such that ai <
(
n+i−1

i

)
. Again, let b = (b1, b2, . . . , bk) ∈ PN,k be such

that bi = ai + 1, bj = aj − 1, and bℓ = aℓ for ℓ ∈ [k] \ {i, j}. As Theorem 8.1(ii) is assumed to hold for (ai, i) and
(aj − 1, j), we have Cai,i − Cai−1,i ≤ n− 1 while Caj−1,i − Caj−1,i ≥ n. Thus,

C(b)− C(a) = (Cai,i − Cai−1,i)− (Caj−1,j − Caj−2,j) < 0 .

We now have all the pieces needed to prove Theorem 8.1 by induction.

Proof. [Proof of Theorem 8.1] The basis of the induction is established by Claim 8.1, which shows that the theorem
holds for 0 ≤ N ≤ k. We thus need to show that if the theorem holds for every (N ′, k′) < (N, k), for some N > k,
then it also holds for (N, k). Note that if N > k and N ≤

(
n+k
k

)
, then n ≥ 2. Claim 8.3 shows that for every

a ∈ QN,k we have C(a) = (N + 1)n−
(
n+k
k+1

)
. Claim 8.5 shows that if a ∈ PN,k \QN,k then C(a) > CN,k. It thus

follows that CN,k = (N +1)n−
(
n+k
k+1

)
, establishing Theorem 8.1(i) and (iii) for (N, k). Claim 8.2 then establishes

Theorem 8.1(ii). This completes the proof of the induction step and hence the proof of Theorem 8.1.

A convenient corollary of Theorem 8.1 is the following:

Corollary 8.1. (i) If N =
(
n+k
k

)
− 1, then CN,k = kn

k+1 (N + 1).

(ii) If
(
n+k−1

k

)
≤ N ≤

(
n+k
k

)
− 1, then CN,k ≥ k

k+1 (n− 1)N and thus AN,k ≥ k
k+1 (n− 1) ≥ 1

2 (n− 1).

Proof. To prove (i) note that if N =
(
n+k
k

)
− 1 then

CN,k =
(
n+k
k

)
n−

(
n+k
k+1

)
=

(
n+k
k

)
n− n

k+1

(
n+k
k

)
= kn

k+1

(
n+k
k

)
= kn

k+1 (N + 1) .

For each n ≥ 1 we prove (ii) by induction on N . If N =
(
n+k−1

k

)
then, CN,k > CN−1,k = k(n−1)

k+1 N . Now, if(
n+k−1

k

)
< N <

(
n+k
k

)
, then by Theorem 8.1(ii),

CN,k = CN−1,k + n ≥ k(n−1)
k+1 (N − 1) + n ≥ k

k+1 (n− 1)N .

8.4 Playing optimally - the binomial counter. An optimal solution of the (N, k)-growth game, i.e., a
sequence of moves of minimum total cost, can be easily reconstructed with the help of Theorem 8.1 and Lemma 8.2.
In general such sequences are not unique. The optimal sequence is unique only if N =

(
n+k
k

)
− 1 for some n ≥ 0.

Lemma 8.4. The (N, k)-growth game has a unique optimal sequence if and only if N =
(
n+k
k

)
−1 for some n ≥ 0.

Proof. Recall that QN,k is the set of optimal final states. We first show that |QN,k| = 1 if and only if N =
(
n+k
k

)
−1

for some n ≥ 0. This follows easily as
∑k

i=1

(
n−i+1

i

)
=

(
n+k
k

)
− 1 = N . Thus, if N =

(
n+k
k

)
− 1, then the only

optimal final state is ai =
(
n−i+1

i

)
, for i ∈ [k]. If N is not of this form then |QN,k| > 1 as there is some freedom

in choosing the individual ai’s. Finally, if N =
(
n+k
k

)
− 1, then by Lemma 8.2, all intermediate states are also of

this form and the optimal sequence is unique.

The unique optimal sequence of moves for N =
(
n+k
k

)
− 1 can be expressed using a binomial counter whose

pseudocode is given in Figure 7. In addition to (a1, a2, . . . , ak), the sizes of the subarrays, we also keep a counter
(b1, b2, . . . , bk). Initialize(k) sets a1, a2, . . . , ak and b1, b2, . . . , bk to 0. It also sets bk+1 to ∞. Increment(k)
increments the counter and performs a move in the (N, k)-growth game as follows: it finds the smallest i for
which bi < bi+1. (It will follow, as we shall see, that b1 = b2 = · · · = bi < bi+1.) It then performs the i-th move

in the game, i.e., ai ← 1 +
∑i

j=1 aj while a1, a2, . . . , ai−1 ← 0. (This corresponds to merging A1, A2, . . . , Ai.) It
then increments the counter by letting bi ← bi + 1 and b1, b2, . . . , bi−1 ← 0. An example of a binomial counter in
action, for k = 4, is given in Figure 8.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited301

D
ow

nl
oa

de
d

04
/2

7/
23

 to
 1

51
.4

8.
22

3.
14

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Initialize(k):
a1, a2, . . . , ak ← 0
b1, b2, . . . , bk ← 0
bk+1 ←∞

Increment(k):
i← min{j ∈ [k] | bj < bj+1}

ai ← 1 +
∑i

j=1 ai
bi ← bi + 1

a1, a2, . . . , ai−1 ← 0
b1, b2, . . . , bi−1 ← 0

Figure 7: Pseudocode of the binomial counter.

Figure 8: The binomial counter for k = 4.

Lemma 8.5. At any time, ai =
(
bi+i−1

i

)
for every i ∈ [k].

Proof. By induction on the number of steps of the counter. The condition is satisfied initially, since
(
i−1
i

)
= 0 for

i ∈ [k]. Suppose that the claim holds for the current (a1, a2, . . . , ak) and (b1, b2, . . . , bk) and that b1 = b2 = · · · =
bi = n < bi+1. Let a

′i = 1+
∑i

j=1 aj and b′i = bi + 1 be the new values of ai and bi. By the induction hypothesis
and Lemma 8.3(ii) we get

a′i = 1 +
∑i

j=1 aj = 1 +
∑i

j=1

(
n+i−1

i

)
=

∑i
j=0

(
n+i−1

i

)
=

(
n+i
i

)
=

(
b′i+i−1

i

)
.

We thus get:

Lemma 8.6. If b1 = b2 = · · · bk = n for some n ≥ 0, then N =
∑k

i=1 ai =
(
n+k−1

k

)
− 1 and the sequence of moves

of the binomial counter is the unique optimal solution of the (N, k)-growth game.

8.5 Extended rules. In this section we show that the rules of the (N, k)-growth game can be slightly
extended without changing the optimal values. The third rule of the game, shown in Figure 6(c) can be

written as (a1, a2, . . . , ak) → (0, . . . , 0, 1 +
∑i

ℓ=1 aℓ, aj+1, . . . , ak), for some i ∈ [k]. We first allow a move

(a1, a2, . . . , ak) → (0, . . . , 0, a1, . . . , ai−1,
∑j

ℓ=i aℓ, aj+1, . . . , ak), for 1 ≤ i < j ≤ k, in which Ai, Ai+1, . . . , Aj

are merged into a new Aj , the subarrays A1, . . . , Ai−1 become Aj−i+1, . . . , Aj−1 and A1, . . . , Aj−i become empty.
(No new item is added by this rule.) Many of the algorithms described in the paper use such moves. The cost of

the move is
∑j

ℓ=i aℓ. Note that the order of the items in the subarrays is still maintained.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited302

D
ow

nl
oa

de
d

04
/2

7/
23

 to
 1

51
.4

8.
22

3.
14

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Lemma 8.7. Allowing moves (a1, a2, . . . , ak) → (0, . . . , 0, a1, a2, . . . , ai−1,
∑j

ℓ=i aℓ, aj+1, . . . , ak), for 1 ≤ i < j ≤
k, does not change the optimal values of the (N, k)-growth game.

Proof. We show that for every a ∈ PN,k and every 1 ≤ i < j ≤ k we have

Ck(0, . . . , 0, a1, a2, . . . , ai−1,
∑j

ℓ=i aℓ, aj+1, . . . , ak) ≤ Ck(a1, a2, . . . , ak) +
∑j

ℓ=i aℓ ,

showing that the new moves do not offer any advantage. By Lemma 8.2 we have Ck(a1, a2, . . . , ak) =
Cj(a1, a2, . . . , aj) + Ck(0, . . . , 0, aj+1, . . . , ak) and similarly for the term appearing on the left hand side of the
inequality. It is thus enough to prove the inequality for j = k. Now

Ck(0, . . . , 0, a1, a2, . . . , ai−1,
∑k

ℓ=i aℓ)

≤ Ck−1(0, . . . , 0, a1, a2, . . . , ai−1) + Ck(0, . . . , 0,
∑k

ℓ=i aℓ)

≤ Ck−1(0, . . . , 0, a1, a2, . . . , ai−1) + Ck(0, . . . , 0, ai, ai+1, . . . , ak − 1) +
∑k

ℓ=i aℓ

≤ Ck−1(0, . . . , 0, a1, a2, . . . , ai−1) + Ck(0, . . . , 0, ai, ai+1, . . . , ak) +
∑k

ℓ=i aℓ

≤ Ck(a1, a2, . . . , ak) +
∑j

ℓ=i aℓ .

The last inequality follows by expanding the terms using Lemma 8.2(iv). Note that Ck(a1, a2, . . . , ak) expands

to
∑

i:ai>0 Cai−1, i +
∑k

i=1 ai, while the previous line expands to
∑

ℓ:aℓ>0 Caℓ−1,kℓ
+

∑k
ℓ=1 aℓ, where kℓ ≥ ℓ, for

every ℓ ∈ [k]. More precisely, if 1 ≤ ℓ ≤ i − 1, then kℓ = (k − i) + ℓ ≥ ℓ, and if i ≤ ℓ ≤ k, then kℓ = ℓ. (Clearly
CN,k′ ≤ CN,k, for k

′ ≥ k.)

We next show that allowing general merge operations that do not necessarily respect the order of the
items in the subarrays also does change the solution of the (N, k)-growth game. More precisely, for every
I = {i1, i2, . . . , ir} ⊆ [k], where i1 < i2 < · · · < ir, we allow an I-move that merges Ai1 , Ai2 , . . . , Air , and a
new item. The new subarray becomes the new Air . The subarrays Ai1 , Ai2 , . . . , Air−1

become empty. All other
subarrays are unchanged. In other words, air ← 1 +

∑r
ℓ=1 aiℓ , while aiℓ ← 0, for ℓ ∈ [r − 1]. The standard

moves in the growth games are [i]-moves, for i ∈ [k]. (Note that the decision to let Air be the new merged array
is arbitrary, since ir is just the index assigned to the new array. This, however, is the convenient choice, since
otherwise we need to define a new cost function C̄(a) on states equal to the minimum of C(a′), where a′ is a
permutation of a.) We can also allow a variant of an I-move in which a new item is not added. The proof of the
following lemma is essentially the same as the proof of Lemma 8.7 and is therefore omitted.

Lemma 8.8. Allowing I-moves for any I ⊆ [k], does not change the optimal values of the (N, k)-growth game.

With these extensions, the growth game now captures all the moves that can be performed by standard
implementations. (See Definition 7.1.)

9 Lower bound on the amortized cost of grow operations

We can now prove an Ω(r) lower bound on the amortized cost of grow operations for standard implementations
that use only N + O(rN1/r) space to store an array of size N , showing that the constructions of Section 6 are
essentially optimal.

Theorem 9.1. Any standard resizable array data structure that uses only N +O(rN1/r) space to store an array
of size N , where r = O(logN), must have an amortized cost of Ω(r) for grow operations.

Proof. Assume that the extra space used by the data structure is rN1/r. (If the extra space is αrN1/r for
some constant α > 1, apply the theorem for r − 1, relying on the inequality αrN1/r < (r − 1)N1/(r−1) for
sufficiently large N .) Since the operations of any standard implementation correspond to moves in the (extended)
(N, rN1/r, rN1/r)-growth game, Corollary 8.1 implies that the amortized cost of grow operations is at least

AN,rN1/r,rN1/r = A 1
rN

1−1/r,rN1/r ≥ 1
2n, provided that

(
n+rN1/r

n

)
< 1

rN
1−1/r. We thus want to show that when

n = βr, for some β > 0, we have
(
βr+rN1/r

βr

)
< 1

rN
1−1/r for sufficiently large N .

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited303

D
ow

nl
oa

de
d

04
/2

7/
23

 to
 1

51
.4

8.
22

3.
14

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

To upper bound binomial coefficients, we use the well known inequality
(
n
k

)
≤

(
en
k

)k
. We now have:(

βr + rN1/r

βr

)
≤

(
(β + 1)rN1/r

βr

)
≤

(
e(β + 1)N1/r

β

)βr

=

(
e(β + 1)

β

)βr

Nβ .

Choosing for example β = 1
2 , and assuming that 3 ≤ r ≤ α logN , for an appropriate choice of α, we get that

r(3e)r/2N1/2 ≤ N3/4 ≤ N1−1/r, as required.

10 Concluding remarks

We have presented a family of resizable array implementations that provide optimal trade-offs between the space
needed to store an array, the space needed to resize, i.e., grow or shrink, the array, and the amortized cost of
grow and shrink operations, while still maintaining O(1) worst-case access cost. We believe this solves a very
fundamental problem almost completely.

Our lower bound on the amortized cost of grow operations applies only to what we call standard algorithms.
We believe that these lower bounds can be extended to cover all algorithms, assuming a suitable incompressability
assumption on items and pointers. (See the discussion after the proof of Theorem 4.1.) In other words, we
believe that non-standard algorithms do not offer any advantage over standard algorithms and that to prove this
rigorously should not be conceptually hard.

To obtain the amortized lower bounds on grow operations, we defined an interesting growth game and then
solved it exactly. While we believe that the exact solution of the game is illuminating, it would be interesting to
know if there is a simpler way of obtaining, perhaps by induction, lower bounds on the values of the game that
would be sufficient to prove asymptotically optimal amortized lower bounds.

References

[1] Philip Bille, Anders Roy Christiansen, Mikko Berggren Ettienne, and Inge Li Gørtz. Fast dynamic arrays. In Proc.
of 25th ESA, volume 87 of LIPIcs, pages 16:1–16:13, 2017.

[2] Andrej Brodnik, Svante Carlsson, Erik D. Demaine, J. Ian Munro, and Robert Sedgewick. Resizable arrays in optimal
time and space. In Proc. of 6th WADS, pages 37–48, 1999.

[3] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to algorithms. MIT
press, 3nd edition, 2009.

[4] Paul F. Dietz. Optimal algorithms for list indexing and subset rank. In Proc. of 1st WADS, volume 382 of Lecture
Notes in Computer Science, pages 39–46. Springer, 1989.

[5] Michael L. Fredman and Michael E. Saks. The cell probe complexity of dynamic data structures. In David S. Johnson,
editor, Proc. of 21st STOC, pages 345–354. ACM, 1989.

[6] Michael T. Goodrich and John G. Kloss II. Tiered vectors: Efficient dynamic arrays for rank-based sequences. In
Proc. of 6th WADS, pages 205–216, 1999.

[7] Stelios Joannou and Rajeev Raman. An empirical evaluation of extendible arrays. In Proc. of 10th SEA, volume
6630 of Lecture Notes in Computer Science, pages 447–458. Springer, 2011.

[8] Haim Kaplan, Robert E. Tarjan, Or Zamir, and Uri Zwick. Simulating a stack using queues. In Proc. of 33rd SODA,
pages 1901–1924, 2022.

[9] Jyrki Katajainen. Worst-case-efficient dynamic arrays in practice. In Proc. of 15th SEA, volume 9685 of Lecture
Notes in Computer Science, pages 167–183. Springer, 2016.

[10] J. Ian Munro and S. Srinivasa Rao. Succinct representation of data structures. In Handbook of Data Structures and
Applications, pages 595–610. Chapman and Hall/CRC, 2018.

[11] Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct dynamic data structures. In Proc. of 7th WADS,
volume 2125 of Lecture Notes in Computer Science, pages 426–437. Springer, 2001.

[12] Edward Sitarski. Algorithm alley: HATs: Hashed array trees. Dr. Dobb’s Journal of Software Tools, 21(9):107–??,
September 1996.

[13] Wikipedia contributors. Dynamic array — Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.
php?title=Dynamic_array&oldid=1078194534, 2022. [Online; accessed 24-March-2022].

[14] Wikipedia contributors. Hashed array tree — Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/

index.php?title=Hashed_array_tree&oldid=1076479510, 2022. [Online; accessed 25-March-2022].

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited304

D
ow

nl
oa

de
d

04
/2

7/
23

 to
 1

51
.4

8.
22

3.
14

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://en.wikipedia.org/w/index.php?title=Dynamic_array&oldid=1078194534
https://en.wikipedia.org/w/index.php?title=Dynamic_array&oldid=1078194534
https://en.wikipedia.org/w/index.php?title=Hashed_array_tree&oldid=1076479510
https://en.wikipedia.org/w/index.php?title=Hashed_array_tree&oldid=1076479510

	Introduction
	Resizable arrays
	Previous work
	Basic data structures.
	The data structure of Sitarski.
	The data structures of Brodnik et al.

	The lower bound of Brodnik et al. and its extension
	Simple (O(N*1/3),O(N*2/3))-implementations
	An -implementation, for every
	Implementation details.
	Amortized cost of grow and shrink operations
	Accessing items in worst-case time

	A data structuring transformation
	The growth game
	The -growth game.
	Reduction to the case .
	Analysis of the case.
	Playing optimally - the binomial counter.
	Extended rules.

	Lower bound on the amortized cost of grow operations
	Concluding remarks

