
The LCA Problem Revisited

Michael A. Bender1? and Mart́ın Farach-Colton2??

1 Department of Computer Science, State University of New York at Stony Brook,
Stony Brook, NY 11794-4400, USA. Email: bender@cs.sunysb.edu.

2 Department of Computer Science, Rutgers University,
Piscataway, NJ 08855, USA. Email: farach@cs.rutgers.edu.

Abstract. We present a very simple algorithm for the Least Common
Ancestors problem. We thus dispel the frequently held notion that opti-
mal LCA computation is unwieldy and unimplementable. Interestingly,
this algorithm is a sequentialization of a previously known PRAM algo-
rithm.

1 Introduction

One of the most fundamental algorithmic problems on trees is how to find the
Least Common Ancestor (LCA) of a pair of nodes. The LCA of nodes u and v
in a tree is the shared ancestor of u and v that is located farthest from the root.
More formally, the LCA Problem is stated as follows: Given a rooted tree T ,
how can T be preprocessed to answer LCA queries quickly for any pair of nodes.
Thus, one must optimize both the preprocessing time and the query time.

The LCA problem has been studied intensively both because it is inherently
beautiful algorithmically and because fast algorithms for the LCA problem can
be used to solve other algorithmic problems.

In [HT84], Harel and Tarjan showed the surprising result that LCA queries
can be answered in constant time after only linear preprocessing of the tree
T . This classic paper is often cited because linear preprocessing is necessary
to achieve optimal algorithms in many applications. However, it is well under-
stood that the actual algorithm presented is far too complicated to implement
effectively. In [SV88], Schieber and Vishkin introduced a new LCA algorithm.
Although their algorithm is vastly simpler than Harel and Tarjan’s—indeed,
this was the point of this new algorithm—it is far from simple and still not
particularly implementable.

The folk wisdom of algorithm designers holds that the LCA problem still
has no implementable optimal solution. Thus, according to hearsay, it is better
to have a solution to a problem that does not rely on LCA precomputation if
possible. We argue in this paper that this folk wisdom is wrong.

In this paper, we present not only a simplified LCA algorithm, we present
a simple LCA algorithm! We devise this algorithm by reëngineering an existing
? Supported in part by ISX Corporation and Hughes Research Laboratories.

?? Supported in part by NSF Career Development Award CCR-9501942, NATO Grant
CRG 960215, NSF/NIH Grant BIR 94-12594-03-CONF.

G. Gonnet, D. Panario, and A. Viola (Eds.): LATIN 2000, LNCS 1776, pp. 88–94, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

The LCA Problem Revisited 89

complicated LCA algorithm: in [BBG+89] a PRAM algorithm was presented
that preprocesses and answers queries in O(α(n)) time and preprocesses in linear
work. Although at first glance, this algorithm is not a promising candidate for
implementation, it turns out that almost all of the complications are PRAM
induced: when the PRAM complications are excised from this algorithm so that
it is lean, mean, and sequential, we are left with an extremely simple algorithm.

In this paper, we present this reëngineered algorithm. Our point is not to
present a new algorithm. Indeed, we have already noted that this algorithm has
appeared as a PRAM algorithm before. The point is to change the folk wisdom so
that researchers are free to use the full power and elegance of LCA computation
when it is appropriate.

The remainder of the paper is organized as follows. In Section 2, we provide
some definitions and initial lemmas. In Section 3, we present a relatively slow
algorithm for LCA preprocessing. In Section 4, we show how to speed up the
algorithm so that it runs within the desired time bounds. Finally, in Section 5,
we answer some algorithmic questions that arise in the paper but that are not
directly related to solving the LCA problem.

2 Definitions

We begin by defining the Least Common Ancestor (LCA) Problem formally.

Problem 1. The Least Common Ancestor (LCA) problem:

Structure to Preprocess: A rooted tree T having n nodes.
Query: For nodes u and v of tree T , query lcaT (u, v) returns the least common

ancestor of u and v in T , that is, it returns the node furthest from the root
that is an ancestor of both u and v. (When the context is clear, we drop the
subscript T on the lca.)

The Range Minimum Query (RMQ) Problem, which seems quite different
from the LCA problem, is, in fact, intimately linked.

Problem 2. The Range Minimum Query (RMQ) problem:

Structure to Preprocess: A length n array A of numbers.
Query: For indices i and j between 1 and n, query rmqA(x, y) returns the index

of the smallest element in the subarray A[i . . . j]. (When the context is clear,
we drop the subscript A on the rmq.)

In order to simplify the description of algorithms that have both preprocess-
ing and query complexity, we introduce the following notation. If an algorithm
has preprocessing time f(n) and query time g(n), we will say that the algorithm
has complexity 〈f(n), g(n)〉.

Our solutions to the LCA problem are derived from solutions to the RMQ
problem. Thus, before proceeding, we reduce the LCA problem to the RMQ
problem. The following simple lemma establishes this reduction.

90 M.A. Bender, M. Farach-Colton

Lemma 1. If there is an 〈f(n), g(n)〉-time solution for RMQ, then there is an
〈f(2n − 1) + O(n), g(2n − 1) + O(1)〉-time solution for LCA.

As we will see, the O(n) term in the preprocessing comes from the time needed
to create the soon-to-be-presented length 2n−1 array, and the O(1) term in the
query comes from the time needed to convert the RMQ answer on this array to
an LCA answer in the tree.
Proof: Let T be the input tree. The reduction relies on one key observation:

Observation 2 The LCA of nodes u and v is the shallowest node encountered
between the visits to u and to v during a depth first search traversal of T .

Therefore, the reduction proceeds as follows.

1. Let array E[1, . . . , 2n − 1] store the nodes visited in an Euler Tour of the
tree T . 1 That is, E[i] is the label of the ith node visited in the Euler tour
of T .

2. Let the level of a node be its distance from the root. Compute the Level
Array L[1, . . . , 2n− 1], where L[i] is the level of node E[i] of the Euler Tour.

3. Let the representative of a node in an Euler tour be the index of first
occurrence of the node in the tour2; formally, the representative of i is
argminj{E[j] = i}. Compute the Representative Array R[1, . . . , n], where
R[i] is the index of the representative of node i.

Each of these three steps takes O(n) time, yielding O(n) total time. To
compute lcaT (x, y), we note the following:

– The nodes in the Euler Tour between the first visits to u and to v are
E[R[u], . . . , R[v]] (or E[R[v], . . . , R[u]]).

– The shallowest node in this subtour is at index rmqL(R[u], R[v]), since L[i]
stores the level of the node at E[i], and the RMQ will thus report the position
of the node with minimum level. (Recall Observation 2.)

– The node at this position is E[rmqL(R[u], R[v])], which is thus the output
of lcaT (u, v).

Thus, we can complete our reduction by preprocessing Level Array L for RMQ.
As promised, L is an array of size 2n−1, and building it takes time O(n). Thus,
the total preprocessing is f(2n − 1) + O(n). To calculate the query time observe
that an LCA query in this reduction uses one RMQ query in L and three array
references at O(1) time each. The query thus takes time g(2n − 1) + O(1), and
we have completed the proof of the reduction.

1 The Euler Tour of T is the sequence of nodes we obtain if we write down the label
of each node each time it is visited during a DFS. The array of the Euler tour has
length 2n − 1 because we start at the root and subsequently output a node each
time we traverse an edge. We traverse each of the n − 1 edges twice, once in each
direction.

2 In fact, any occurrence of i will suffice to make the algorithm work, but we consider
the first occurrence for the sake of concreteness.

The LCA Problem Revisited 91

From now on, we focus only on RMQ solutions. We consider solutions to the
general RMQ problem as well as to an important restricted case suggested by
the array L. In array L from the above reduction adjacent elements differ by +1
or −1. We obtain this ±1 restriction because, for any two adjacent elements in
an Euler tour, one is always the parent of the other, and so their levels differ by
exactly one. Thus, we consider the ±1-RMQ problem as a special case.

2.1 A Näıve Solution for RMQ

We first observe that RMQ has a solution with complexity 〈O(n2), O(1)〉: build
a table storing answers to all of the n2 possible queries. To achieve O(n2) prepro-
cessing rather than the O(n3) naive preprocessing, we apply a trivial dynamic
program. Notice that answering an RMQ query now requires just one array
lookup.

3 A Faster RMQ Algorithm

We will improve the 〈O(n2), O(1)〉-time brute-force table algorithm for (gen-
eral) RMQ. The idea is to precompute each query whose length is a power of
two. That is, for every i between 1 and n and every j between 1 and log n,
we find the minimum element in the block starting at i and having length 2j ,
that is, we compute M [i, j] = argmink=i...i+2j−1{A[k]}. Table M therefore has
size O(n log n), and we fill it in time O(n log n) by using dynamic programming.
Specifically, we find the minimum in a block of size 2j by comparing the two min-
ima of its two constituent blocks of size 2j−1. More formally, M [i, j] = M [i, j−1]
if A[M [i, j − 1]] ≤ M [i + 2j−1 − 1, j − 1] and M [i, j] = M [i + 2j−1 − 1, j − 1]
otherwise.

How do we use these blocks to compute an arbitrary rmq(i, j)? We select
two overlapping blocks that entirely cover the subrange: let 2k be the size of the
largest block that fits into the range from i to j, that is let k = blog(j − i)c.
Then rmq(i, j) can be computed by comparing the minima of the following two
blocks: i to i + 2k − 1 (M(i, k)) and j − 2k + 1 to j (M(j − 2k + 1, k)). These
values have already been computed, so we can find the RMQ in constant time.

This gives the Sparse Table (ST) algorithm for RMQ, with complexity
〈O(n log n), O(1)〉. Notice that the total computation to answer an RMQ query
is three additions, 4 array reference and a minimum, in addition to two other op-
erations: a log and a floor. These can be seen together as the problem of finding
the most significant bit of a word. Notice that we must have one such operation
in our algorithm, since Harel and Tarjan [HT84] showed that LCA computa-
tion has a lower bound of Ω(log log n) on a pointer machine. Furthermore, the
most-significant-bit operation has a very fast table lookup solution.

Below, we will use the ST algorithm to build an even faster algorithm for the
±1RMQ problem.

92 M.A. Bender, M. Farach-Colton

4 An 〈O(n), O(1)〉-Time Algorithm for ±1RMQ

Suppose we have an array A with the ±1 restriction. We will use a table-lookup
technique to precompute answers on small subarrays, thus removing the log
factor from the preprocessing. To this end, partition A into blocks of size log n

2 .
Define an array A′[1, . . . , 2n/ log n], where A′[i] is the minimum element in the
ith block of A. Define an equal size array B, where B[i] is a position in the ith
block in which value A′[i] occurs. Recall that RMQ queries return the position
of the minimum and that the LCA to RMQ reduction uses the position of the
minimum, rather than the minimum itself. Thus we will use array B to keep
track of where the minima in A′ came from.

The ST algorithm runs on array A′ in time 〈O(n), O(1)〉. Having prepro-
cessed A′ for RMQ, consider how we answer any query rmq(i, j) in A. The
indices i and j might be in the same block, so we have to preprocess each block
to answer RMQ queries. If i < j are in different blocks, the we can answer the
query rmq(i, j) as follows. First compute the values:

1. The minimum from i forward to the end of its block.
2. The minimum of all the blocks in between between i’s block and j’s block.
3. The minimum from the beginning of j’s block to j.

The query will return the position of the minimum of the three values computed.
The second minimum is found in constant time by an RMQ on A′, which has
been preprocessed using the ST algorithm. But, we need to know how to answer
range minimum queries inside blocks to compute the first and third minima, and
thus to finish off the algorithm. Thus, the in-block queries are needed whether i
and j are in the same block or not.

Therefore, we focus now only on in-block RMQs. If we simply performed
RMQ preprocessing on each block, we would spend too much time in prepro-
cessing. If two block were identical, then we could share their preprocessing.
However, it is too much to hope for that blocks would be so repeated. The fol-
lowing observation establishes a much stronger shared-preprocessing property.

Observation 3 If two arrays X[1, . . . , k] and Y [1, . . . , k] differ by some fixed
value at each position, that is, there is a c such that X[i] = Y [i] + c for every i,
then all RMQ answers will be the same for X and Y . In this case, we can use
the same preprocessing for both arrays.

Thus, we can normalize a block by subtracting its initial offset from every
element. We now use the ±1 property to show that there are very few kinds of
normalized blocks.

Lemma 4. There are O(
√

n) kinds of normalized blocks.

Proof: Adjacent elements in normalized blocks differ by +1 or −1. Thus, nor-
malized blocks are specified by a ±1 vector of length (1/2 · log n) − 1. There are
2(1/2·log n)−1 = O(

√
n) such vectors.

The LCA Problem Revisited 93

We are now basically done. We create O(
√

n) tables, one for each possible
normalized block. In each table, we put all (log n

2)2 = O(log2 n) answers to all in-
block queries. This gives a total of O(

√
n log2 n) total preprocessing of normalized

block tables, and O(1) query time. Finally, compute, for each block in A, which
normalized block table it should use for its RMQ queries. Thus, each in-block
RMQ query takes a single table lookup.

Overall, the total space and preprocessing used for normalized block tables
and A′ tables is O(n) and the total query time is O(1). We show a complete
example below.

4.1 Wrapping Up

We started out by showing a reduction from the LCA problem to the RMQ
problem, but with the key observation that the reduction actually leads to a
±1RMQ problem.

We gave a trivial 〈O(n2), O(1)〉-time table-lookup algorithm for RMQ, and
show how to sparsify the table to get a 〈O(n log n), O(1)〉-time table-lookup
algorithm. We used this latter algorithm on a smaller summary array A′ and
needed only to process small blocks to finish the algorithm. Finally, we notice
that most of these blocks are the same, from the point of view of the RMQ
problem, by using the ±1 assumption given by the original reduction.

5 A Fast Algorithm for RMQ

We have a 〈O(n), O(1)〉 ±1RMQ. Now we show that the general RMQ can be
solved in the same complexity. We do this by reducing the RMQ problem to the
LCA problem! Thus, to solve a general RMQ problem, one would convert it to
an LCA problem and then back to a ±1RMQ problem.

The following lemma establishes the reduction from RMQ to LCA.

Lemma 5. If there is a 〈O(n), O(1)〉 solution for LCA, then there is a
〈O(n), O(1)〉 solution for RMQ.

We will show that the O(n) term in the preprocessing comes from the time
needed to build the Cartesian Tree of A and the O(1) term in the query comes
from the time needed to covert the LCA answer on this tree to an RMQ answer
on A.
Proof: Let A[1, . . . , n] be the input array.

The Cartesian Tree of an array is defined as follows. The root of a Cartesian
Tree is the minimum element of the array, and the root is labeled with the
position of this minimum. Removing the root element splits the array into two
pieces. The left and right children of the root are the recursively constructed
Cartesian trees of the left and right subarrays, respectively.

A Cartesian Tree can be built in linear time as follows. Suppose Ci is the
Cartesian tree of A[1, . . . , i]. To build Ci+1, we notice that node i+1 will belong
to the rightmost path of Ci+1, so we climb up the rightmost path of Ci until

94 M.A. Bender, M. Farach-Colton

finding the position where i+1 belongs. Each comparison either adds an element
to the rightmost path or removes one, and each node can only join the rightmost
path and leave it once. Thus the total time to build Cn is O(n).

The reduction is as follows.

– Let C be the Cartesian Tree of A. Recall that we associate with each node
in C the corresponding corresponding to A[i] with the index i.

Claim. rmqA(i, j) = lcaC(i, j).

Proof: Consider the least common ancestor, k, of i and j in the Cartesian Tree C.
In the recursive description of a Cartesian tree, k is the first node that separates
i and j. Thus, in the array A, element A[k] is between elements A[i] and A[j].
Furthermore, A[k] must be the smallest such element in the subarray A[i, . . . , j]
since otherwise, there would be an smaller element k′ in A[i, . . . , j] that would
be an ancestor of k in C, and i and j would already have been separated by k′.

More concisely, since k is the first element to split i and j, it is between them
because it splits them, and it is minimal because it is the first element to do so.
Thus it is the RMQ.

We see that we can complete our reduction by preprocessing the Cartesian
Tree C for LCA. Tree C takes time O(n) to build, and because C is an n node
tree, LCA preprocessing takes O(n) time, for a total of O(n) time. The query
then takes O(1), and we have completed the proof of the reduction.

References

BBG+89. O. Berkman, D. Breslauer, Z. Galil, B. Schieber, and U. Vishkin. Highly
parallelizable problems. In Proc. of the 21st Ann. ACM Symp. on Theory
of Computing, pages 309–319, 1989.

HT84. D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common
ancestors. SIAM J. Comput., 13(2):338–355, 1984.

SV88. B. Schieber and U. Vishkin. On finding lowest common ancestors: Simplifi-
cation and parallelization. SIAM J. Comput., 17:1253–1262, 1988.

	Introduction
	Definitions
	A Naive Solution for RMQ

	A Faster RMQ Algorithm
	An <O(n), O(1)> -Time Algorithm for RMQ
	Wrapping Up

	A Fast Algorithm for RMQ

