
A New Approach to Dynamic All Pairs Shortest Paths

CAMIL DEMETRESCU

Università di Roma “La Sapienza”, Rome, Italy

AND

GIUSEPPE F. ITALIANO

Università di Roma “Tor Vergata”, Rome, Italy

Abstract. We study novel combinatorial properties of graphs that allow us to devise a completely new
approach to dynamic all pairs shortest paths problems. Our approach yields a fully dynamic algorithm
for general directed graphs with non-negative real-valued edge weights that supports any sequence
of operations in O(n2 log3 n) amortized time per update and unit worst-case time per distance query,
where n is the number of vertices. We can also report shortest paths in optimal worst-case time.
These bounds improve substantially over previous results and solve a long-standing open problem.
Our algorithm is deterministic, uses simple data structures, and appears to be very fast in practice.

Categories and Subject Descriptors: E.1 [Data Structures]: Graphs and networks; F.2.2 [Analysis
of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems—Computation
on discrete structures; G.2.2 [Discrete Mathematics]: Graph Theory—Graph algorithms

General Terms: Algorithms

Additional Key Words and Phrases: Dynamic graph algorithms, shortest paths

This work has been partially supported by the Sixth Framework Programme of the EU under contract
number 507613 (Network of Excellence “EuroNGI: Designing and Engineering of the Next Gener-
ation Internet”), by the IST Programme of the EU under contract n. IST-1999-14186 (ALCOM-FT),
by the HPRN Programme of the EU under contract n. HPRN-CT-1999-00104 (AMORE), and by
the Italian Ministry of University and Research (Project “ALINWEB: Algorithmics for Internet and
the Web”).
A preliminary version of this paper was presented at the 35th Annual ACM Symposium on Theory
of Computing (STOC’03).
The final remarks of the conference version claimed that an O(n2 log2 n) update bound could be
achieved for fully dynamic all pairs shortest paths; however, this claim was supported with inaccu-
rate arguments.
Authors’ addresses: C. Demetrescu, Dipartimento di Informatica e Sistemistica, Università di Roma
“La Sapienza”, Roma, Italy, e-mail: demetres@dis.uniroma1.it. URL: http://www.dis.uniroma1.
it/∼demetres; G. F. Italiano, Dipartimento di Informatica Sistemi e Produzione, Università di Roma
“Tor Vergata”, Roma, Italy and Centro “Vito Volterra”, e-mail: italiano@disp.uniroma2.it, URL:
http:// www.disp.uniroma2.it/users/italiano/.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515 Broadway, New York,
NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2004 ACM 0004-5411/04/1100-0968 $5.00

Journal of the ACM, Vol. 51, No. 6, November 2004, pp. 968–992.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1039488.1039492&domain=pdf&date_stamp=2004-11-01

A New Approach to Dynamic All Pairs Shortest Paths 969

1. Introduction

In this article, we present fully dynamic algorithms for maintaining all pairs shortest
paths (APSP) in directed graphs with real-valued edge weights. A dynamic graph
algorithm maintains a given property P on a weighted graph subject to dynamic
changes, such as edge insertions, edge deletions and edge weight updates. Note that
edge deletions and edge insertions can be easily formulated as edge weight updates,
by setting to +∞ the weight of edges not in the graph. A dynamic graph algorithm
should process queries on property P quickly, and must perform update operations
faster than recomputing the solution from scratch, as carried out by the fastest
static algorithm. We say that an algorithm is fully dynamic if it can handle both
edge weight increases and edge weight decreases. A partially dynamic algorithm
can handle either edge weight increases or decreases, but not both.

1.1. THE PROBLEM. In the fully dynamic APSP problem that we consider, we
wish to maintain a directed graph with real-valued edge weights under an intermixed
sequence of the following operations:

update(v, w ′): update the weights of all edges incident to vertex v ac-
cording to weight function w ′.

distance(x, y): return the distance from vertex x to vertex y.
path(x, y): report a shortest path from vertex x to vertex y, if any.

Notice that, in this article, we consider a generalized version of the dynamic all
pairs shortest path problem where the weights of all edges incident to a given
vertex can be changed with just one update operation. In the following, we will
call such operation vertex update. We recall that, in this setting, edge deletions can
be modeled by raising edge weights to +∞, while edge insertions can be realized
by decreasing edge weights from +∞ to a finite value. Throughout the article, we
denote by n the number of vertices in the graph and by m the number of edges with
weights < +∞ in the graph.

1.2. PREVIOUS WORK. The dynamic maintenance of shortest paths has a re-
markably long history, as the first articles date back to over 35 years ago [Loubal
1967; Murchland 1967; Rodionov 1968]. After that, many dynamic shortest paths
algorithms have been proposed (see e.g., Even and Gazit [1985], Frigioni et al.
[1998, 2000], Ramalingam and Reps [1996a, 1996b], and Rohnert [1985]), but
their running times in the worst case were comparable to recomputing APSP
from scratch.

The first dynamic shortest path algorithms that are provably faster than recom-
puting APSP from scratch only worked on graphs with small integer weights. In
particular, Ausiello et al. [1991] proposed a decrease-only shortest path algorithm
for directed graphs having positive integer weights less than C : the amortized run-
ning time of their algorithm is O(Cn log n) per edge insertion. Henzinger et al.
[1997] designed a fully dynamic algorithm for APSP on planar graphs with in-
teger weights, with a running time of O(n4/3 log(nC)) per operation. Recently,
Fakcharoemphol and Rao [2001] designed a fully dynamic algorithm for maintain-
ing single-source shortest paths in planar directed graphs that supports both queries
and edge weight updates in O(n4/5 log13/5 n) amortized time per edge operation.

The first big step on general graphs and integer weights was made by King
[1999], who presented a fully dynamic algorithm for maintaining all pairs shortest

970 C. DEMETRESCU AND G. F. ITALIANO

paths in directed graphs with positive integer weights less than C : the running time
of her algorithm is O(n2.5√C log n) per update. In previous work, [Demetrescu
and Italiano 2001, 2002], we have presented fully dynamic APSP on general di-
rected graphs with real weights. In particular, given a directed graph G, subject to
dynamic operations, and such that each edge weight can take at most S different
real values, we proposed a deterministic algorithm that supports each update in
O(n2.5

√
S log3 n) amortized time and each query in O(1) worst-case time. Other

deletions-only algorithms for APSP, in the simpler case of unweighted graphs, are
presented in Baswana et al. [2002].

1.3. OUR RESULTS. We study novel combinatorial properties of graphs that
allow us to devise a completely new approach to dynamic all pairs shortest paths.
This approach yields a fully dynamic algorithm for APSP on general directed
graphs with nonnegative real-valued edge weights that achieves the following time
bounds: it supports any sequence of operations in O(n2 log3 n) amortized time per
update and one look-up in the worst case per distance query; it can also report
shortest paths in optimal worst-case time. We remark that our algorithm improves
substantially over previous bounds [Demetrescu and Italiano 2001, 2002; King
1999]. Furthermore, and unlike all the previous approaches, it solves fully dynamic
APSP in its generality. Indeed, it runs on (nonnegative) real weights, and each weight
has no limit on the number of different values it can take. Finally, we note that when
the distance matrix has to be maintained explicitly, that is, distance queries have
to be answered with exactly one look-up, as many as �(n2) entries of the distance
matrix can change during each update. Thus, in this model our algorithm is only
a polylogarithmic factor away from the best possible bound. In the special case of
increase-only update sequences, our techniques yield a faster update algorithm that
runs in O(n2 log n) amortized time per operation. Similarly to the fully dynamic
case, no previous general solution was known for this problem.

Another interesting feature of our techniques is that both weight increases and
weight decreases can be supported with exactly the same code. Surprisingly, our
algorithms are rather simple and thus amenable to efficient implementations: in-
deed, in accordance with a recent experimental study [Demetrescu et al. 2004], the
techniques described in this article are not only asymptotically efficient, but can
yield very fast implementations in many practical scenarios.

1.4. NOTATION. Let G = (V, E) be a directed graph with real edge weights
and no negative-length cycles. A path πxy = 〈x0, x1, . . . , xk〉 from vertex x to vertex
y in G is a sequence of vertices such that x0 = x , xk = y, and (xi , xi+1) ∈ E , for
each i , 0 ≤ i < k. Let (u, v) be an edge in E : we denote by wuv the weight of edge
(u, v). Let πxy = 〈x0, x1, . . . , xk〉 be a path in G: we denote by

w(πxy) =
k−1∑
i=0

wxi xi+1

the weight of πxy. We assume that as a special case, πxx = 〈x〉 is a path of weight
zero.

Given πxv = 〈x, . . . , x ′, v〉 and πvy = 〈v, y′, . . . , y〉, we denote by πxv · πvy the
path 〈x, . . . , x ′, v, y′, . . . , y〉 obtained by concatenating πxv and πvy at v . Moreover,
we denote by �(πxy) the path πxb such that πxy = πxb · 〈b, y〉. Similarly, we denote
by r (πxy) the path πay such that πxy = 〈x, a〉 · πay .

A New Approach to Dynamic All Pairs Shortest Paths 971

TABLE I. NOTATION USED IN THE ARTICLE

G = (V, E) weighted directed graph with vertex set V and edge set E
wuv weight of edge (u, v)

πxy = 〈x, . . . , y〉 path from vertex x to vertex y
w(πxy) weight of path πxy (sum of the weights of the edges in πxy)
�(πxy) subpath πxb of πxy such that πxy = πxb · 〈b, y〉
r (πxy) subpath πay of πxy such that πxy = 〈x, a〉 · πay

� = 〈σ1, σ2, . . . , σk〉 sequence of update operations
tσ time at which update σ occurs
vσ vertex affected by update σ

Let the graph G be subject to a sequence of (vertex) updates � =
〈σ1, σ2, . . . , σk〉. We denote by tσi the time immediately after update σi , with tσi = i
for any i , 1 ≤ i ≤ k. We also denote by vσ the vertex affected by the update σ :
that is, if σ = update(x, w ′), then vσ = x . The notation used in this article is
summarized in Table I.

Throughout the article, we assume that there is only one shortest path between
each pair of vertices in G. This is, without loss of generality, since ties can be
broken consistently as we will discuss in Section 3.4.

1.5. ORGANIZATION OF THE ARTICLE. The remainder of this article is organized
as follows. Section 2 studies some properties of special classes of paths in a graph,
while Section 3 shows how to exploit them to devise the first general increase-only
update algorithm for all pairs shortest paths. To deal with fully dynamic sequences,
Section 4 addresses more path properties, which are next used in Section 5 to devise
the first general algorithm for fully dynamic all pairs shortest paths. We remark that,
while Section 2 and Section 4 contain combinatorial results on graphs, algorithmic
aspects are treated in Section 3 and Section 5. We conclude the article in Section 6
with some remarks and directions for further research.

2. Locally Shortest Paths

In this section, we study the properties of a class of paths in a graph that we call
locally shortest paths. Using this notion, in Section 3, we will show how to maintain
efficiently all pairs shortest paths in a graph subject to partially dynamic edge weight
updates. Locally shortest paths are defined as follows:

Definition 2.1. A path πxy is LOCALLY SHORTEST1 in G if either:

(i) πxy consists of a single vertex, or
(ii) every proper subpath of πxy is a shortest path in G.

This definition is inspired by the optimal-substructure property of shortest paths:
all subpaths of a shortest path are shortest paths. Here, we relax this property
by considering only proper subpaths. Indeed, in a locally shortest path, all proper
subpaths are shortest paths: however, the path itself may not necessarily be shortest.
We assume that every trivial path formed by a single vertex or a single edge is locally

1 Since every internal vertex of a locally shortest path has the same sum of distances to the endpoints,
in an earlier version of this article we called such paths uniform paths.

972 C. DEMETRESCU AND G. F. ITALIANO

shortest. Notice that, by the optimal substructure of shortest paths, it is possible to
check whether a nontrivial path πxy is locally shortest by just verifying that �(πxy)
and r (πxy) are shortest paths in G. In the remainder of this section we discuss some
properties of locally shortest paths.

LEMMA 2.2. If we denote by SP and LSP respectively the sets of shortest paths
and locally shortest paths in G, then SP ⊆ LSP.

PROOF. Every subpath of a shortest path is a shortest path itself. Thus, every
shortest path is trivially a locally shortest path.

LEMMA 2.3. If shortest paths are unique in G, then for each pair of vertices
x and y, the locally shortest paths connecting x and y in G are internally vertex-
disjoint, that is, except for the endpoints, they use different vertices.

PROOF. Suppose by contradiction that there exist two distinct locally shortest
paths π1

xy and π2
xy that are not internally vertex-disjoint. This means that there is

some vertex v , with v �= x and v �= y, that belongs to both π1
xy and π2

xy. Since
shortest paths are unique, then there is only one shortest path πxv from x to v , and
only one shortest path πvy from v to y. Since every proper subpath of π1

xy and π2
xy

is shortest, then πxv and πvy are necessarily subpaths of both π1
xy and π2

xy. Thus,
π1

xy = π2
xy, which contradicts our initial assumption.

LEMMA 2.4. If shortest paths are unique in G, then there can be at most mn
locally shortest paths in G.

PROOF. Fix an edge (x, v) and a vertex y in G. We first note that there can
be at most one locally shortest path πxy = 〈x, v, . . . , y〉 starting from edge (x, v).
This derives from the fact that every proper subpath of πxy must be shortest (Defini-
tion 2.1), and from the uniqueness of shortest paths. Since the first edge (x, v) can
be chosen in m different ways and the destination vertex y can be chosen among
n different vertices, at any time there can be at most mn locally shortest paths
in G.

We now study how the set of locally shortest paths changes in a graph subject to
partially dynamic updates such as vertex increases, that is, operations that increase
the weights of all edges incident to it, or vertex decreases, that is, operations that
decrease the weights of all edges incident to it.

LEMMA 2.5. Let G be a graph subject to a sequence � of vertex updates. If
shortest paths are unique in G, then in the worst case at most O(n2) paths can stop
being locally shortest due to a vertex increase.

PROOF. We observe that a path can stop being locally shortest only if any of
its proper subpaths stops being shortest. In case of increases, this can happen only
if that subpath contains the updated vertex, say vertex v . By Lemma 2.3, there
can be at most O(n2) locally shortest paths that contain v as an internal vertex.
Furthermore, there can be at most O(n2) locally shortest paths starting or ending
in v . This yields a total of at most O(n2) paths that can stop being locally shortest
because of a weight increase in v .

THEOREM 2.6. Let G be a graph subject to a sequence � of increase-only vertex
update operations and let m be the maximum number of edges in G throughout

A New Approach to Dynamic All Pairs Shortest Paths 973

sequence �. If shortest paths are unique in G, then the number of paths that start
being locally shortest after each update is:

(1) O(mn) in the worst case.

(2) O(n2) amortized over �(m/n) update operations.

PROOF. Claim (1) follows immediately from Lemma 2.4. To prove Claim (2),
we assign a debit to each locally shortest path in the graph. The debit is paid for by
the operation that makes it stop being locally shortest. By Lemma 2.5, at most O(n2)
paths can stop being locally shortest at each update. Moreover, by Lemma 2.4 there
can be at most mn locally shortest paths in a graph at any time, so the total unpaid
debit at the end of the sequence never exceeds mn. Thus, the amortized number of
paths that start being locally shortest after each update in any sequence of �(m/n)
operations can be at most O(n2).

Notice that both the statements and the proofs of Lemma 2.5 and Theorem 2.6
hold symmetrically if we replace “increase” by “decrease” and swap “start” with
“stop”. This can be intuitively explained by observing that, if we replay a decrease-
only sequence backwards starting from the final graph, each vertex decrease in
the forward sequence corresponds to a symmetric vertex increase in the backward
sequence that undoes edge weights back to their previous values. In this scenario,
a path starts being locally shortest during a decrease in the forward sequence if
and only if it stops being locally shortest during the corresponding increase in the
backward sequence, and thus the counting argument holds in both directions.

3. Partially Dynamic Shortest Paths

We now show how to exploit the properties of locally shortest paths discussed in
Section 2 to devise an increase-only update algorithm for all pairs shortest paths that
runs in O(n2 log n) amortized time per operation. To the best of our knowledge, this
is the first general result for increase-only all pairs shortest paths that is faster than
recomputing the solution from scratch after each update. This is rather surprising
compared to the decrease-only case, where an O(n2) bound can be immediately
obtained by just running a single-source computation from the updated vertex v to
every other vertex, and a single-sink computation from every vertex to v; by doing
so, for each pair of vertices x and y, we find a shortest path π∗

xv from x to v , and a
shortest path π∗

vy from v to y: if π ′
xy = π∗

xv · π∗
vy is shorter than the previous shortest

path πxy from x to y, we simply replace πxy with π ′
xy.

Although the update algorithm that we describe below works also for decreases,
for the sake of simplicity in this section we analyze the algorithm in the case of
increases only. The approach is very simple: we maintain all the locally short-
est paths of the underlying graph. By Theorem 2.6, changes in the data structure
will be O(n2) per update in an increase-only sequence of �(m/n) operations.
We will maintain locally shortest paths in priority queues, and thus we will pay
O(log n) for each path that starts/stops being locally shortest. This will yield an
O(n2 log n) amortized time per update. Even though the combinatorial results dis-
cussed in Section 2 impose no restrictions on the edge weights (provided that short-
est paths are unique) our algorithm requires that all the edge weights in the graph
are non-negative.

974 C. DEMETRESCU AND G. F. ITALIANO

TABLE II. NOTATION INTRODUCED IN SECTION 3.1

Pxy set of locally shortest paths from x to y in G
P∗

xy set of shortest paths from x to y in G
L(πxy) set of pre-extensions 〈x ′, x〉 · πxy of πxy that are locally shortest paths in G
L∗(πxy) set of pre-extensions 〈x ′, x〉 · πxy of πxy that are shortest paths in G
R(πxy) set of post-extensions πxy · 〈y, y′〉 of πxy that are locally shortest paths in G
R∗(πxy) set of post-extensions πxy · 〈y, y′〉 of πxy that are shortest paths in G

FIG. 1. Implementation of distance and path operation.

3.1. DATA STRUCTURE. For each pair of vertices x and y in G, we maintain
the weight wxy ≥ 0 of edge (x, y) (or +∞ if no such edge exists) and the following
two data structures:

Pxy = {πxy : πxy is a locally shortest path in G}
P∗

xy = {πxy : πxy is a shortest path in G}.
We maintain each Pxy as a priority queue where item πxy ∈ Pxy has priority
w(πxy). We note that, if shortest paths are unique, |P∗

xy| ≤ 1. Furthermore, since
by Lemma 2.2 any shortest path is locally shortest, then for each pair of vertices x
and y, P∗

xy ⊆ Pxy. Therefore, a minimum weight path in Pxy is a shortest path. We
also observe that each path πxy in Pxy and P∗

xy can be represented implicitly with
constant space by just storing two pointers to the subpaths �(πxy) and r (πxy). This
is correct by the optimal-substructure property of locally shortest paths and by the
assumption of uniqueness of shortest paths. Finally, for each path πxy stored in Pxy

we maintain w(πxy) and the following four lists:

L(πxy) = {πx ′ y = 〈x ′, x〉 · πxy : (x ′, x) ∈ E and πx ′ y is a loc. shortest path in G}
L∗(πxy) = {πx ′ y = 〈x ′, x〉 · πxy : (x ′, x) ∈ E and πx ′ y is a shortest path in G}
R(πxy) = {πxy′ = πxy · 〈y, y′〉 : (y, y′) ∈ E and πxy′ is a loc. shortest path in G}
R∗(πxy) = {πxy′ = πxy · 〈y, y′〉 : (y, y′) ∈ E and πxy′ is a shortest path in G}.
In other words, L(πxy) and L∗(πxy) represent pre-extensions of πxy, while R(πxy) and
R∗(πxy) represent post-extensions of πxy. Once again, by Lemma 2.2, any shortest
path is locally shortest, and thus for each path πxy stored in Pxy, L∗(πxy) ⊆ L(πxy) and
R∗(πxy) ⊆ R(πxy). For the sake of simplicity, in the following, we will sometimes
write P or P∗ instead of Pxy or P∗

xy whenever the meaning is clear from the context.
The notation introduced in this section is summarized in Table II.

3.2. IMPLEMENTATION OF OPERATIONS. The distance(x, y) and path(x, y)
operations can be implemented as shown in Figure 1, by simply accessing the
minimum weight path in Pxy. Since each Pxy is a subset of the paths in G, the
correctness of query operations follows directly from Lemma 2.2.

The implementation of the update(v, w ′) operation is shown in Figure 2. The
update works in two steps: cleanup and fixup. To simplify the description, we

A New Approach to Dynamic All Pairs Shortest Paths 975

update(v, w ′):
1. cleanup(v)
2. fixup(v, w ′)

cleanup(v):
1. Q ← {〈v〉}
2. while Q �= ∅ do
3. extract any π from Q
4. for each πxy ∈ L(π) ∪ R(π) do
5. add πxy to Q
6. remove πxy from Pxy, L(r (πxy)), and R(�(πxy))
7. if πxy ∈ P∗

xy then remove πxy from P∗
xy, L∗(r (πxy)), and R∗(�(πxy))

fixup(v, w ′):
1. for each u �= v do {Phase 1}
2. wuv ← w ′

uv; wvu ← w ′
vu

3. if wuv < +∞ then
4. w(〈u, v〉) ← wuv; �(〈u, v〉) ← 〈u〉; r (〈u, v〉) ← 〈v〉
5. add 〈u, v〉 to Puv, L(〈v〉), and R(〈u〉)
6. if wvu < +∞ then
7. w(〈v, u〉) ← wvu; �(〈v, u〉) ← 〈v〉; r (〈v, u〉) ← 〈u〉
8. add 〈v, u〉 to Pvu, L(〈u〉), and R(〈v〉)
9. H ← ∅ {Phase 2}
10. for each (x, y) do
11. add πxy ∈ Pxy with minimum w(πxy) to H
12. while H �= ∅ do {Phase 3}
13. extract πxy from H with minimum w(πxy)
14. if πxy is the first extracted path for pair (x, y) then
15. if πxy �∈ P∗

xy then
16. add πxy to P∗

xy, L∗(r (πxy)), and R∗(�(πxy))
17. for each πx ′b ∈ L∗(�(πxy)) do
18. πx ′ y ← 〈x ′, x〉 · πxy

19. w(πx ′ y) ← wx ′x + w(πxy); �(πx ′ y) ← πx ′b; r (πx ′ y) ← πxy

20. add πx ′ y to Px ′ y , L(πxy), R(πx ′b), and H
21. for each πay′ ∈ R∗(r (πxy)) do
22. πxy′ ← πxy · 〈y, y′〉
23. w(πxy′) ← w(πxy) + w yy′ ; �(πxy′) ← πxy; r (πxy′) ← πay′

24. add πxy′ to Pxy′ , L(πay′), R(πxy), and H

FIG. 2. Implementation of the update operation.

say that a path that is shortest (resp., locally shortest) after the update is new either
if it was not shortest (resp., locally shortest) before the update, or if it contains the
updated vertex v . We now describe procedures cleanup and fixup in more detail;
pseudo-code is given in Figure 2.

976 C. DEMETRESCU AND G. F. ITALIANO

cleanup(v)

The procedure removes every path πxy containing vertex v from Pxy, P∗
xy, L(r (πxy)),

L∗(r (πxy)), R(�(πxy)), and R∗(�(πxy)). Namely, we remove from the data structure
all the paths that would stop being locally shortest if we deleted v from the graph.
This task can be accomplished iteratively by first removing paths of the form 〈u, v〉
and 〈v, u〉, and then by removing all paths listed in L(πxy) and R(πxy) for each path
πxy removed in the previous iterations.

fixup(v, w ′)
The procedure adds to the data structure all the new shortest and locally shortest
paths. It works in three phases, as follows.

Phase 1. Sets the weight of every edge (u, v) entering v to the new value w ′
uv

(line 2). If w ′
uv < +∞, then the trivial path πuv = 〈u, v〉 is added to Puv, L(r (πuv)),

and R(�(πuv)) (lines 3–5). Similar steps are performed for every edge of the form
(v, u) (line 2 and lines 6–8). Thus, all the new locally shortest paths formed by one
edge are added to the data structure. Longer new paths will be added in Phase 3.

Phase 2. Initializes a priority queue H with the minimum weight path πxy ∈ Pxy

for each pair of vertices (x, y) (lines 9–11);

Phase 3. Repeatedly extracts paths πxy from H in increasing weight order
(line 13). The first extracted path for each pair (x, y) is a shortest path between x
and y (see Invariant 3.1 below), while paths extracted later on for the same pair are
ignored (line 14). Whenever a shortest path πxy is extracted, we check whether πxy is
already in P∗

xy (line 15). If not, we add πxy to P∗
xy, L∗(r (πxy)), and R∗(�(πxy)) (line 16),

and we combine it with existing shortest paths to form new locally shortest paths
(lines 17–24). This is done by scanning all paths πx ′b listed in L∗(�(πxy)) (line 17)
and all paths πay′ listed in R∗(r (πxy)) (line 21), forming the new locally shortest
paths πx ′ y = 〈x ′, x〉 · πxy (lines 18–19) and πxy′ = πxy · 〈y, y′〉 (lines 22–23). Each
new locally shortest path πij is added to Pij, L(r (πij)), R(�(πij)), and H as soon as
it is discovered (line 20 and line 24).

3.3. ANALYSIS. To prove the correctness of update, we assume that P and P∗
are correct before the operation, and we show that they are also correct afterwards.
Operations on the other data structures are simple bookkeeping operations and
their correctness can be easily checked. We first discuss an invariant maintained by
procedure fixup.

INVARIANT 3.1. If shortest paths are unique and edge weights are non-negative,
then for each pair of vertices x and y in G, the first path connecting x and y extracted
from H in Phase 3 of fixup is a shortest path.

PROOF. Suppose by contradiction that at some extraction the invariant is vi-
olated, and the first path π̂xy extracted for some pair (x, y) is not a shortest path.
Consider the earliest of these events, and let πxy be the unique shortest path between
x and y, with w(πxy) < w(π̂xy). Clearly, πxy �∈ H , otherwise it would have been
extracted in place of π̂xy. Moreover, πxy �∈ Pxy, otherwise it would have been inserted
in H in Phase 2, being a shortest path. Therefore, πxy has to be necessarily a new
locally shortest path, but since, in Phase 1, we add to P all the edges incident to v ,

A New Approach to Dynamic All Pairs Shortest Paths 977

it cannot be one of them. This implies that πxy contains at least two edges and either
one of �(πxy) or r (πxy) is a new shortest path and was not in P∗ at the beginning
of fixup. As edge weights are non-negative, then w(�(πxy)) ≤ w(πxy) < w(π̂xy)
and w(r (πxy)) ≤ w(πxy) < w(π̂xy). Since paths are extracted from H in increasing
weight order, shortest paths are unique, and all the extractions before the wrong
extraction are correct, then either �(πxy) or r (πxy) should have been extracted from
H and added to P∗ before the wrong extraction. This implies that πxy should have
been formed and inserted in H at the extraction time of either one of �(πxy) or
r (πxy). So πxy should have been extracted before π̂xy, contradicting the assumption
that the invariant is violated.

THEOREM 3.2. If the operation is an increase, shortest paths are unique, and
edge weights are non-negative, then algorithm update correctly updates Pxy and
P∗

xy for each pair of vertices x and y.

PROOF. We first observe that cleanup(v) removes from the data structures
every locally shortest path that contains the updated vertex v . Thus, since only
paths containing v can stop being shortest after an increase, then every path πxy

that is no longer locally shortest after the update is removed from Pxy, and possibly
from P∗

xy.
We now show that every new locally shortest path πxy is added to Pxy by

fixup(v, w ′). Paths πuv and πvu made of one edge are correctly added to Puv and
Pvu in Phase 1: therefore, we only focus on paths πxy with at least two edges. We
recall that each such path πxy has to be added to Pxy if both �(πxy) and r (πxy) are
shortest paths after the update, but at least one of them (say �(πxy)) was not in P∗
before fixup. By Invariant 3.1, the first extracted path for each pair is shortest,
and then �(πxy) is certainly extracted and added to P∗ at some iteration in Phase 3.
A that time, �(πxy) is correctly combined with r (πxy) ∈ R∗(r (�(πxy))) to form πxy,
which is added to Pxy.

To conclude the proof, we observe that by Invariant 3.1 all shortest paths are
extracted at some iteration and are added to P∗, if they are not already there.

To conclude the analysis, we address the running time and the space usage of
our implementation.

THEOREM 3.3. In an increase-only sequence of �(m/n) operations, if shortest
paths are unique and edge weights are non-negative, our data structure supports
each update operation in O(n2 log n) amortized time, and each distance and
path query in optimal time. The space used is O(mn).

PROOF. The bounds for queries are immediate, since the minimum weight path
in the priority queue Pxy can be retrieved in optimal time.

Since each iteration of cleanup removes a path πxy from a constant number of
lists and priority queues, it requires O(log n) time in the worst case. By Lemma 2.3,
at most O(n2) locally shortest paths can go through the updated vertex in the worst
case, and thus cleanup will perform at most O(n2) iterations, thus spending at
most O(n2 log n) time.

Next, it is easy to see that Phase 1 of fixup requires O(n log n) time in the
worst case. To bound the time required by Phase 2 of fixup, we consider that
finding the minimum in Pxy takes constant time and each insertion in H takes
O(log n) time. This gives a total bound of O(n2 log n) for this phase. Finally,

978 C. DEMETRESCU AND G. F. ITALIANO

FIG. 3. If shortest paths are not unique, using an arbitrary tie-breaking strategy may lead to pairs of
vertices connected in G, but disconnected in P∗. In this example, if P∗ contains 〈x, a, c〉, 〈x, b, d〉,
〈a, d, y〉, and 〈b, c, y〉 as the unique shortest paths of length 2, then no locally shortest path between
x and y can be obtained as the union of any two of them.

we note that a path πxy is a new locally shortest path if and only if both �(πxy) =
〈x, . . . , b〉 ∈ P∗

xb and r (πxy) = 〈a, . . . , y〉 ∈ P∗
ay after the update, and either �(πxy) �∈

P∗
xb or r (πxy) �∈ P∗

ay before calling fixup. Thus, since in Phase 3 we process a
shortest path πxy extracted from H only if it was not already in P∗

xy before calling
fixup, then we spend time only for the new locally shortest paths. This implies that
Phase 3 requires O(n2 log n) time for extracting the O(n2) pairs which are initially
in H , plus O(log n) time to insert/delete each new locally shortest path in H and
P: let p the number of such paths. By Theorem 2.6, there can be O(n2) paths
that start being locally shortest after each update, amortized over an increase-only
sequence of �(m/n) operations. Moreover, by Lemma 2.3, there can be at most
O(n2) locally shortest paths that were removed by cleanup since they contain the
updated vertex, and are added back by fixup: thus, p = O(n2) when amortized
over �(m/n) operations and update requires O(n2 log n) overall time.

At any time, each locally shortest path πxy can only appear in a constant number
of data structures: namely, in H , Pxy, L(r (πxy)), R(�(πxy)), and possibly in P∗

xy,
L∗(r (πxy)), R∗(�(πxy)). Thus, the space usage of our data structure is bounded by
the number of locally shortest paths in a graph, which is O(mn) in the worst case
by Lemma 2.4.

By Theorem 3.2, algorithm updatemaintains correctly the locally shortest paths
of the graph, and thus the shortest paths, under increase-only update sequences.
As we will see in Section 5, the above algorithm is indeed correct also in case of
decreases, even if it does not maintain P and P∗ as they were defined in Section 3.1:
specifically, in case of decreases, paths that stop being shortest may not be removed
from the data structure by cleanup, and thus P∗ might contain paths that were
shortest in the past, even if they are no longer shortest. In Section 4, we will call
such “old” paths historical and show that they can play a crucial role in dealing
with fully dynamic sequences.

3.4. BREAKING TIES. If shortest paths in the graph are not unique, the properties
of locally shortest paths studied in Section 2 do not hold. Furthermore, using an
arbitrary tie-breaking strategy may lead to incorrect results. Consider the example of
Figure 3, where all edges have weight 1, and suppose that at some point the unique
shortest paths of length 2 in P∗ are: 〈x, a, c〉, 〈x, b, d〉, 〈a, d, y〉, and 〈b, c, y〉.
Notice that we can find no path of length 3 such that every subpath of length 2 is
in P∗: therefore, no path of length 3 can be formed by update, leaving the pair
(x, y) incorrectly disconnected in P∗. In order update to be correct, we thus need

A New Approach to Dynamic All Pairs Shortest Paths 979

a tie-breaking strategy that both ensures uniqueness and leads to a complete set of
shortest paths closed under subpaths.

How can we break ties consistently? A first simple approach is to add some tiny
random fraction to the weight of each edge: in this way, we can make the probability
of finding two paths with the same weight arbitrarily small.

A more robust deterministic tie-breaking approach is the following. Without loss
of generality, assume that V = { 1, 2, . . . , n }. We assign to each edge (u, v) a
unique number ID(u, v) (e.g., ID(u, v) = u + nv), and for each path π we define
ID(π) as the maximum ID of its edges. This allows us to define the extended weight
ew(π) of a path π as follows.

Definition 3.4. For any path π with at least one edge we define the extended
weight of π as ew(π) = 〈 w(π), ID(π) 〉, where w(π) is the real weight of π in the
graph and ID(π) is defined as follows:

ID(π) =
{

u + nv if π = 〈u, v〉
max {ID(�(π)), ID(r (π))} otherwise.

The extended weights of two paths π1 and π2 can be compared “lexicographically”
in constant time by assuming that:

ew(π1) ≤ ew(π2) ⇔ w(π1) < w(π2) or
w(π1) = w(π2) and ID(π1) ≤ ID(π2).

We now show that using extended weights we can break ties consistently so that
exactly one shortest path (if any) between each pair of vertices can be identified in
a deterministic way. To do so, we define the following set of paths in a graph:

Definition 3.5. Let G be a graph with real-valued edge weights and let ew be
the extended weight function of Definition 3.4. We define Sew as follows:

Sew = {π ∈ G : ∀πxy ⊆ π, ∀π ′
xy ∈ G, ew(πxy) ≤ ew(π ′

xy)}.
According to this definition, Sew contains every path in G that has minimum
extended weight and whose subpaths have minimum extended weight as well
(optimal-substructure property). As a consequence, Sew is closed under subpaths,
that is, every subpath of a path in Sew belongs to Sew. It is easy to prove that there
can be only one path in Sew between each pair of vertices.

LEMMA 3.6. For each pair of vertices x and y in G, there can be at most one
path πxy ∈ Sew connecting them.

PROOF. The proof is by induction on the number of edges in the paths. The
basis is trivially satisfied, since there can be only one path formed by one edge
between each pair of vertices. Now, assume by induction that the claim holds for
every path that uses at most k edges, and suppose by contradiction that there are
two different paths πxy ∈ Sew and π ′

xy ∈ Sew that use at most k +1 edges. Since their
extended weights are equal, then both πxy and π ′

xy must contain the edge (u, v) such
that ID(u, v) = ID(πxy) = ID(π ′

xy). Since every subpath of πxy and π ′
xy belongs to

Sew and uses at most k edges, then πxy and π ′
xy must have the same subpaths from x

to u and from v to y. Thus, πxy and π ′
xy must be equal, contradicting the assumption

that they are different.

980 C. DEMETRESCU AND G. F. ITALIANO

Clearly, if πxy ∈ Sew, then πxy is a shortest path in G. We now show that, if there
is a shortest path from x to y in G, then there must be a path πxy ∈ Sew.

LEMMA 3.7. For each pair of connected vertices x and y in G, there is a path
πxy ∈ Sew.

PROOF. Assume that y is reachable from x in G, x �= y. Then, we show how
to construct a path π∗

xy that satisfies Definition 3.5. We start with an empty π∗
xy and

construct it one edge at the time. Let πxy be a path from x to y with minimum
extended weight in G and let (u, v) be the edge with maximum ID in πxy, that is,
such that ID(u, v) = ID(πxy). We put (u, v) in π∗

xy and build recursively the subpath
π∗

xu of π∗
xy if x �= u and the subpath π∗

vy of π∗
xy if v �= y.

We now show that the above procedure constructs paths that belong to Sew. We
prove this claim proceeding by induction on the path length. Let k be the number
of edges in π∗

xy. The base for k = 1 (π∗
xy = 〈x, y〉) is trivial. Assume by induction

that the claim holds for every path containing less than k edges and assume by
contradiction that there is a subpath πab ∈ π∗

xy that is not of minimum extended
weight. Three cases are possible:

(1) both vertices a and b are in π∗
xu;

(2) both vertices a and b are in π∗
vy;

(3) vertex a is in π∗
xu and vertex b is in π∗

vy.

Case (1) and (2) are not possible, since π∗
xu and π∗

vy have strictly less than k edges,
and thus by induction are in Sew. Assume that we are in case (3). Since πab is not of
minimum extended weight, there must be a path π ′

ab such that ew(π ′
ab) < ew(πab).

Note that, by construction π∗
xy contains only edges that lie on some shortest path from

x to y in G, and thus w(πab) ≤ w(π ′
ab). Consequently, it must be w(πab) = w(π ′

ab)
and ID(π ′

ab) < ID(πab). This implies that there is a shortest path from x to y avoiding
edge (u, v), with an ID smaller than ID(u, v). This contradicts the fact that ID(u, v)
is the ID of a path with minimum extended weight from x to y.

By Lemma 3.6 and Lemma 3.7, Sew contains exactly one representative shortest
path between each pair of vertices connected in G. Thus, we can conclude that
|Sew| ≤ n2 and Sew is a complete set of unique shortest paths in G. For this reason,
in the remainder of this article we will assume that we can always ensure uniqueness
of shortest paths by dealing with paths in Sew.

We now show that using the deterministic approach described above we can break
ties consistently and ensure both completeness and uniqueness of shortest paths,
avoiding inconsistencies like the one shown in Figure 3. As a matter of fact, we
can easily modify the code of the update operation given in Figure 2 so that at any
time during a sequence of updates, P∗ = Sew. Specifically, we keep an additional
field ID(π) for each path π stored in the data structure, and perform the following
additional steps in fixup to maintain it as in Definition 3.4:

Line 4 ID(〈u, v〉) ← u + nv
Line 7 ID(〈v, u〉) ← v + nu
Line 19 ID(πx ′ y) ← max{ID(πx ′b), ID(πxy)}
Line 23 ID(πxy′) ← max{ID(πxy), ID(πay′)}.

Furthermore, we let the priority of any path π in P and H be ew(π). Thus,
in line 11 and line 13 of fixup we pick paths with minimum ew, instead of

A New Approach to Dynamic All Pairs Shortest Paths 981

FIG. 4. Pathological update sequence consisting of repeated deletion and re-insertion of edge (u, v).
Each insertion/deletion causes �(n3) changes in the set of locally shortest paths. Locally shortest
paths connecting vertices in layer L1 to vertices in layer L4 are highlighted as thick lines. Edges are
directed from left to right and, unless explicitly shown, their weights are small values close to zero.

minimum w . To check the correctness of this approach, we prove the follow-
ing theorem.

THEOREM 3.8. If we compare paths according to the extended weight function
ew given in Definition 3.4, then P∗ = Sew after each execution of update.

PROOF. We first observe that for any path π , if edge weights in the graph are
non-negative reals, the extended weight function ew given in Definition 3.4 satisfies
the monotonic property ew(�(π)) ≤ ew(π) and ew(r (π)) ≤ ew(π). Moreover, by
Lemma 3.6 and Lemma 3.7 there is exactly one path in Sew between each pair of
connected vertices. Therefore, it is easy to check that Invariant 3.1 continues to
hold if we compare paths according to ew instead of w : this implies that each path
added to P∗ has minimum extended weight.

Furthermore, by construction, paths in P∗ are closed under subpaths, that is,
every subpath of a path in P∗ is also in P∗: thus, P∗ = Sew as in Definition 3.5.

We conclude this section by observing that each increase (respectively decrease)
of an edge weight implies an increase (respectively decrease) of the corresponding
extended weight. Furthermore, we notice that comparing extended weights still
takes constant time. Thus, both Theorem 3.2 and Theorem 3.3 continue to hold
using extended weights instead of the original weights in the graph.

4. Historical and Locally Historical Paths

Figure 4 shows a graph and a pathological fully dynamic update sequence such
that each operation causes �(n3) changes in the set of locally shortest paths of the
graph. This proves that maintaining locally shortest paths in a fully dynamic setting
can require as much as �(n3) time per operation. To deal with fully dynamic update
sequences efficiently, in this section, we introduce other two classes of paths that
we call historical paths and locally historical paths: historical paths will play the
role of shortest paths, while locally historical paths will play the role of locally
shortest paths. Unlike shortest paths and locally shortest paths, which only depend
on the graph at a given time, these classes of paths capture the history of the changes
in the graph, encompassing the time dimension of the problem. We define them
as follows:

982 C. DEMETRESCU AND G. F. ITALIANO

FIG. 5. Inclusions between shortest paths (SP), locally shortest paths (LSP), historical paths (HP),
and locally historical paths (LHP).

Definition 4.1. Let πxy be a path in G at time t , and let t ′ ≤ t be the time of the
latest vertex update on πxy. We say that πxy is HISTORICAL at time t if it has been a
shortest path at least once in the time interval [t ′, t].

In accordance with this definition, a shortest path is also a historical path. Al-
though it may stop being a shortest path at some point, it keeps on being a historical
path until a vertex update occurs on it.

Definition 4.2. We say that a path πxy is LOCALLY HISTORICAL2 in G at time t
if either:

(i) πxy consists of a single vertex, or
(ii) every proper subpath of πxy is a historical path in G at time t .

Unlike locally shortest paths, as defined in Definition 2.1, proper subpaths do not
have to be shortest paths necessarily at the same time. Indeed, in a locally historical
path, all proper subpaths have been shortest paths in the past; however, the path
itself may have never been locally shortest.

The next lemma addresses the relationship between shortest paths, historical
paths, and locally historical paths:

LEMMA 4.3. If we denote by SP, HP, and LHP respectively the sets of shortest
paths, historical paths, and locally historical paths in G at any time in a sequence
of updates, then the following inclusions hold at that time: SP ⊆ HP ⊆ LHP.

PROOF. The inclusion SP ⊆ HP is straightforward from Definition 4.1. Let π
be a historical path at time t and let t ′ ≤ t be the time of the latest vertex update on
π . For every proper subpath π̂ ⊂ π , let t̂ ≤ t ′ ≤ t be the time of the latest vertex
update on π̂ . By Definition 4.1, π has been a shortest path in the time interval [t ′, t].
By the optimal-substructure property of shortest paths, π̂ has been a shortest path
in the time interval [t̂, t] ⊇ [t ′, t], and thus it is historical at time t . Consequently,
HP ⊆ LHP.

Figure 5 summarizes the relationship between shortest paths, locally shortest
paths, historical paths, and locally historical paths. As we will see later on, the
reason why we are considering locally historical paths is that they can be maintained
very efficiently in a sequence of fully dynamic updates. Since by Lemma 4.3 locally

2 In an earlier version of this article, we used terminology potentially uniform paths instead of locally
historical paths.

A New Approach to Dynamic All Pairs Shortest Paths 983

historical paths include shortest paths, this implies that we can maintain information
about dynamic shortest paths very efficiently. Historical paths, on the other hand,
are only used as a tool for defining locally historical paths.

4.1. PROPERTIES OF LOCALLY HISTORICAL PATHS. In this section, we study
combinatorial properties of locally historical paths, addressing their dependence
on the number of historical paths in the graph. These properties will be crucial in
Section 5 to designing our efficient algorithm for fully dynamic shortest paths. We
start by analyzing the maximum number of paths that can be locally historical at
each time during a sequence of updates.

LEMMA 4.4. Let G be a graph subject to a sequence � of update operations. If
at any time throughout the sequence � there are at most z historical paths between
each pair of vertices and m edges in G, then at that time there can be at most zmn
locally historical paths in G.

PROOF. We follow the same argument given in the proof of Lemma 2.4. To build
a locally historical path πxy = 〈x, u, . . . , y〉, the first edge (x, u) can be chosen in
m different ways, while the destination vertex y can be chosen among n different
vertices. Since every proper subpath of πxy has to be historical and there are at most
z historical paths between each pair of vertices, there can be at most z historical
subpaths between u and y. Thus, there can be at most zmn locally historical paths
in G.

Another interesting question is how many locally historical paths can go through
any given vertex in the graph. Since a path can stop being locally historical only
when it is touched by a vertex update, this yields a worst-case bound on the number
of paths that can stop being locally historical at each update. To address this, we
first need to prove that, given any two distinct historical paths between any pair of
vertices x and y, their latest updated vertices must be different.

LEMMA 4.5. Let G be a graph subject to a sequence � of update operations
and let x, y be any two vertices in G. If shortest paths are unique and we denote by
σ (π) the latest vertex update on path π , then for any two distinct historical paths
πxy and π ′

xy in G at any time t, vσ (πxy) �= vσ (π ′
xy).

PROOF. Assume by contradiction that vσ (πxy) = vσ (π ′
xy), and thus tσ (πxy) =

tσ (π ′
xy). By Definition 4.1, both πxy and π ′

xy have to be shortest paths at least once in
the time interval [tσ (πxy), t], but this is impossible since neither of them is touched
in the time interval (tσ (πxy), t], and at each time there can be only one shortest path
between x and y in G.

LEMMA 4.6. Let G be a graph subject to a sequence � of update operations
and let v be any vertex in G. If shortest paths are unique and at any time t through-
out the sequence �, there are at most z historical paths between each pair of
vertices, then at time t there can be at most O(zn2) locally historical paths that
contain v.

PROOF. We first show that there can be at most O(zn2) locally historical paths
having v as endpoint. Indeed, to form a locally historical path πvy = 〈v, x, . . . , y〉,
we can choose x and y in at most O(n2) different ways; since every proper subpath
of πvy has to be historical and there are at most z historical paths between each

984 C. DEMETRESCU AND G. F. ITALIANO

pair of vertices, there can be at most z historical subpaths between x and y. The
argument for paths ending in v is completely analogous.

To complete the proof, it suffices to show that for each pair of vertices x, y,
with x �= v and y �= v , there can be at most O(z) locally historical paths of the
form 〈x, . . . , v, . . . , y〉, that is, having v as an internal vertex. Denote by P the
set of such paths, and let Q = {π1, . . . , πq} be the subset of P such that for each
πi ∈ Q, v follows (or coincides with) vi in πi , where vi is the latest updated vertex
in πi − {x, y}.

Consider now the set of subpaths Q̂ = {π̂i = 〈x, . . . , vi , . . . , v〉 ⊂ πi , πi ∈ Q}.
We first claim that |Q| = |Q̂|. To prove this claim, we show that any two distinct
paths πi and π j in Q must give rise to distinct subpaths π̂i ⊂ πi and π̂ j ⊂ π j in
Q̂. Assume by contradiction that this is not the case, that is, πi �= π j and π̂i = π̂ j ,
which implies that vi = v j . Consider the subpaths of πi and π j from vi to y: those
paths must be historical since πi and π j are locally historical and vi �= x , and must
share the same latest updated vertex, which can be either vi or y. By Lemma 4.5,
they must be equal, which implies πi = π j , clearly a contradiction.

Thus, it must be |Q| = |Q̂|. To conclude the proof of the lemma, suppose by
contradiction that |P| > 2z, and assume without loss of generality that |Q| ≥ |P|/2,
and thus |Q| > z. By Definition 4.2, paths in Q̂ are historical at time t . Since
|Q| = |Q̂| > z, we can conclude that at time t there are more than z historical
paths between x and v in G, which contradicts the assumptions of the lemma.

The next corollary, whose proof follows immediately from Definition 4.1, Def-
inition 4.2, and Lemma 4.6, bounds the number of paths that stop being locally
historical at each time during a sequence of updates:

COROLLARY 4.7. Let G be a graph subject to a sequence � of update oper-
ations. If shortest paths are unique and at any time t throughout the sequence �,
there are at most z historical paths between each pair of vertices, then the number
of paths that stop being locally historical at each update is O(zn2) in the worst
case.

We finally bound the number of paths that become locally historical at each time
during a sequence of updates:

THEOREM 4.8. Let G be a graph subject to a sequence � of update operations
and let m be the maximum number of edges in G throughout sequence �. If shortest
paths are unique and at any time throughout the sequence � there are at most z
historical paths between each pair of vertices, then the number of paths that become
locally historical after each update is:

(1) O(zmn) in the worst case.
(2) O(zn2) amortized over �(m/n) update operations.

PROOF. Analogous to the proof of Lemma 2.6. Indeed, Claim (1) follows im-
mediately from Lemma 4.4. To prove Claim (2), we assign a debit to each locally
historical path in the graph. The debit is paid for by the operation that makes it
stop being locally historical. By Corollary 4.7, at most O(zn2) paths can stop being
locally historical at each update. Moreover, by Lemma 4.4, there can be at most
zmn locally historical paths in a graph at any time, so the total unpaid debit at the
end of the sequence never exceeds zmn. Thus, the amortized number of paths that

A New Approach to Dynamic All Pairs Shortest Paths 985

FIG. 6. Worst-case instance with �(n3) historical paths and an amortized number of �(n3) new
locally historical paths per update.

start being locally shortest after each update in any sequence of �(m/n) operations
can be at most O(zn2).

4.2. A WORST-CASE SCENARIO. We now show that there exists a graph and an
update sequence that produces �(n3) historical paths. This implies by Theorem 4.8
an amortized number of �(n3) new locally historical paths per update. Consider
the graph in Figure 6, where L1 . . . L6 are layers containing n/6 vertices each.
The graphs induced by L1 ∪ L2, L3 ∪ L4 and L5 ∪ L6 are complete bipartite
graphs with edge weights equal to 1, while the graphs induced by L2 ∪ L3 and
L4∪L5 have weights shown below the corresponding edges. The update sequence is
as follows:

Phase I. Perform the following se-
quence of k = (n/6) − 1 decreases
on edges in L2 ∪ L3:

1) n + 1 → n − 1
2) n + 2 → n − 2
3) n + 3 → n − 3
...

...
...

...
k) n + k → n − k

Phase II. Perform the following se-
quence of k = (n/6) − 1 increases
on edges in L4 ∪ L5:

1) n − k → n + k
2) n − (k − 1) → n + (k − 1)
3) n − (k − 2) → n + (k − 2)
...

...
...

...
k) n − 1 → n + 1

During Phase I, (k + 1)2 paths connecting L1 to L5 become historical at each
decrease, and thus at the end of Phase I there are �(k3) historical paths in total.
During Phase II, at each increase, k paths connecting each pair of vertices in L1
and L6 become locally historical in the graph. Since k = (n/6) − 1, each increase
takes �(n3) time. Notice that this update sequence can be made arbitrarily long by
repeating Phase I and Phase II back and forth many times.

The example considered here suggests that keeping too much information about
the history of changes in a dynamic graph could be prohibitive, that is, maintaining
all the locally historical paths can lead to �(n3) time per update. In contrast, in the
example considered in Figure 4 we have shown that keeping no information about
the history of changes, that is, keeping only locally shortest paths, can lead to cubic
update times as well. In the next section, we will discuss an effective compromise
between those two extreme solutions.

986 C. DEMETRESCU AND G. F. ITALIANO

4.3. KEEPING HISTORICAL PATHS UNDER CONTROL: SMOOTHING. In this sec-
tion, we show that it is possible to transform on-line every update sequence into
another sequence so that the total number of historical paths in the graph is always
very close to n2. To guarantee that this transformation does not alter the input up-
date sequence by affecting the result of shortest path queries, we make sure that
it produces exactly the same changes in the graph as the input sequence. In the
following, we will call such a transformation SMOOTHING. Furthermore, we will
call optimal a historical path that is also a shortest path.

We first observe that at any time t , if shortest paths are unique, then there can be at
most n2 optimal historical paths. Any other historical path must have been optimal
strictly before time t , and is no longer optimal at time t . By Definition 4.1, if we up-
date a vertex, every nonoptimal historical path containing it will immediately stop
being historical. To become again historical, it has to be a shortest path once again.
Therefore, to reduce the number of historical paths, it is sufficient to add to the input
update sequence suitable operations whose only effect is to clean up nonoptimal
historical paths. For this reason, we will call these additional operations CLEANUP
UPDATES. To guarantee that cleanup updates do not alter the input update sequence
by affecting the result of shortest path queries, we simply let them overwrite
edge weights without changing their values. We now define how our smoothing
strategy works:

Definition 4.9. Let � = 〈σ1, σ2, . . . , σk〉 be an update sequence and let

F(�) = 〈
σ1, δ

1
1, . . . , δ

q1
1 , σ2, δ

1
2, . . . , δ

q2
2 , . . . , σk, δ

1
k , . . . , δ

qk

k

〉
be another sequence derived from � such that each δ

j
i is a cleanup update, and such

that, if a vertex is updated by operation σt in �, it is touched by cleanup update
δ j

i in F(�) when i = t + 1, t + 2, t + 4, t + 8, . . . , t + 2p, . . . , for some j . We
call F(�) a SMOOTHED SEQUENCE derived from �, we refer to 〈δ1

i , . . . , δ
qi

i 〉 as the
BURST OF CLEANUP UPDATES AFTER σi , and we say that cleanup update δ j

t+2p is
TRIGGERED BY THE ORIGINAL UPDATE σt .

Note that a smoothed sequence is obtained by squeezing a burst of cleanup up-
dates between each pair of consecutive updates in the original sequence. Throughout
the article, we assume that the burst of cleanup updates 〈δ1

i , . . . , δ
qi

i 〉 occurs exactly
at the same time as update σi , that is, t

δ
j
i

= tσi for any j . We now show that a
smoothed sequence is operationally equivalent to the sequence it is derived from,
and produces a smaller number of historical paths.

THEOREM 4.10. Let � = 〈σ1, σ2, . . . , σk〉 be an update sequence of length k.
Then the smoothed sequence

F(�) = 〈
σ1, δ

1
1, . . . , δ

q1
1 , σ2, δ

1
2, . . . , δ

q2
2 , . . . , σk, δ

1
k , . . . , δ

qk

k

〉
of Definition 4.9 has the following properties:

(1) For 1 ≤ i ≤ k, qi = O(log k);
(2) For 1 ≤ i ≤ k, after performing operation σi , the graph produced by � and

the graph produced by F(�) are equal;
(3) At any time there are at most O(log k) historical paths between each pair of

vertices in the graph produced by F(�).

A New Approach to Dynamic All Pairs Shortest Paths 987

FIG. 7. Graphs of historical paths Hxy for an update sequence � and for the smoothed updated
sequence F(�). If tσ i+1 < tσ i + T , then π i cannot be historical at time t in the graph produced by
F(�).

PROOF. Properties 1 and 2 follow directly from Definition 4.9. To prove Prop-
erty 3, we first note that a cleanup update on a vertex v does not create new historical
paths: its only effect is to remove nonoptimal historical paths containing vertex v .
For each pair of vertices (x, y) in G, consider the graph of historical paths Hxy.
There is a vertex in Hxy for each update operation τ in F(�) and there is an edge
(τa, τb) in Hxy, with tτa < tτb , for each path πxy in G having the following three
properties:

(i) πxy contains both vτa and vτb (possibly vτa = vτb);

(ii) no vertex in πxy is updated in the time interval (tτa , tτb);

(iii) πxy becomes a shortest path at some time t ∈ [tτa , tτb).

It is easy to see that at any time at most one path πxy in G can satisfy Properties (i),
(ii) and (iii) above.

Let π1, . . . , π z be the historical paths between vertices x and y in the graph G
obtained right after performing update σt in F(�), that is, at time t . Let (τ i , τ̂ i) be
the edge in Hxy corresponding to π i , 1 ≤ i ≤ z. Since π i is historical at time t , it
must be tτ i ≤ t < t̂τ i . If τ i is a cleanup update, let σ i be the original update that
triggered τ i , tσ i < tτ i . Thus, to each historical path π i we can associate an original
update σ i , with tσ 1 < tσ 2 < · · · < tσ z ≤ t . Let σ i and σ i+1 be two such updates,
and let T be the largest power of 2 smaller than t − tσ i , that is, T = 2�log2(t−tσ i)�.
We claim that it must be tσ i + T ≤ tσ i+1 .

Indeed, assume by contradiction that tσ i+1 < tσ i + T (see Figure 7). Since T =
2�log2(t−tσ i)� is a power of 2, by Definition 4.9, there is a cleanup update triggered
by σ i that touches a vertex of π i at time tσ i + T : thus π i cannot be historical at
time tσ i + T by Definition 4.1. Notice that, since π i+1 must be a shortest path
between x and y after π i , and no vertex of π i and π i+1 is updated in the time
interval [tσ i+1, t], π i cannot become again a shortest path between x and y in the
time interval [tσ i+1, t]. Thus π i cannot become historical again in the time interval
[tσ i + T, t], contradicting the assumption that π i was historical at time t .

We have thus shown that if π1, . . . , π z are historical paths at time t , there must
be z updates σ 1, . . . , σ z in the original sequence � such that tσ i + 2�log2(t−tσ i)� ≤
tσ i+1 ≤ t , for 1 ≤ i ≤ z − 1. This implies z = O(log t) = O(log k).

988 C. DEMETRESCU AND G. F. ITALIANO

FIG. 8. Worst case instance of � such that at time k there are �(log k) historical paths between pair
x , y in the graph produced by F(�).

We note that �(log k) historical paths between a pair of vertices in G can be
actually realized, as illustrated in Figure 8.

5. Fully Dynamic Shortest Paths

In this section, we show that the properties of locally historical paths given in
Section 4 allow us to use the update algorithm of Section 3 in a fully dynamic
setting, and to achieve Õ(n2) amortized time per update. This is the first general
algorithm for fully dynamic all pairs shortest path that is faster than recomputing
the solution from scratch after each update. The approach we follow here differs in
just two points from Section 3:

(1) We maintain locally historical paths instead of locally shortest paths. Since by
Lemma 4.3 shortest paths are locally historical, this guarantees that we are still
maintaining information about shortest paths.

(2) We provide a new front-end fully-update for the update operation, which
calls the update procedure of Figure 2, implementing the smoothing strategy
of Section 4.3.

We now describe in more detail how to achieve these modifications, and then discuss
correctness and time/space requirements of the new procedure fully-update.

5.1. DATA STRUCTURE. We maintain exactly the same data structure described
in Section 3.1, with just one difference: we replace “shortest” with “historical”.

Pxy = {πxy : πxy is a locally historical path in G}
P∗

xy = {πxy : πxy is a historical path in G}
L(πxy) = {πx ′ y = 〈x ′, x〉 · πxy : (x ′, x) ∈ E and πx ′ y is a loc. hist. path in G}
L∗(πxy) = {πx ′ y = 〈x ′, x〉 · πxy : (x ′, x) ∈ E and πx ′ y is a hist. path in G}
R(πxy) = {πxy′ = πxy · 〈y, y′〉 : (y, y′) ∈ E and πxy′ is a loc. hist. path in G}
R∗(πxy) = {πxy′ = πxy · 〈y, y′〉 : (y, y′) ∈ E and πxy′ is a hist. path in G}
In order to support the smoothing operation, we also keep for each vertex v the

time tv of its latest update and a counter time of the number of fully-update
operations performed. The notation introduced in this section is summarized in
Table III.

A New Approach to Dynamic All Pairs Shortest Paths 989

TABLE III. NOTATION INTRODUCED IN SECTION 5.1.

Pxy set of locally historical paths from x to y in G
P∗

xy set of historical paths from x to y in G
L(πxy) set of pre-extensions 〈x ′, x〉 · πxy of πxy that are locally historical paths in G
L∗(πxy) set of pre-extensions 〈x ′, x〉 · πxy of πxy that are historical paths in G
R(πxy) set of post-extensions πxy · 〈y, y′〉 of πxy that are locally historical paths in G
R∗(πxy) set of post-extensions πxy · 〈y, y′〉 of πxy that are historical paths in G

FIG. 9. Implementation of the fully-update operation.

5.2. IMPLEMENTATION OF OPERATIONS. The operations are exactly the same
as described in Section 3.2. The only difference is that we do not call directly the
update procedure shown in Figure 2, but rather provide a new front-end procedure
named fully-update and shown in Figure 9, which implements the smoothing
strategy of Section 4.3 by calling the update procedure of Figure 2 for both original
and cleanup updates.

5.3. ANALYSIS. The correctness of query operations follows directly from
Lemma 4.3. To prove the correctness of fully-update(v, w ′), we observe that
it calls update(v, w ′) to update the data structure after changing the weights of
the edges incident to v to the new values w ′ (line 3). Then, it repeatedly calls
update(v, w) on vertices that have to be smoothed (lines 4–5): notice that the call
overwrites the edge weights without changing their values, and the only effect of
this operation is to remove non-optimal historical paths from the data structure
as discussed in Section 4.3. Therefore, it is sufficient to prove the correctness of
update. To this aim, it is easy to check that both Invariant 3.1 and its proof continue
to hold using the new data structure of Section 5.1 instead of the data structure of
Section 3.1. We can thus prove the following theorem:

THEOREM 5.1. If shortest paths are unique and edge weights are nonnegative,
then algorithm update correctly updates Pxy and P∗

xy for each pair of vertices x
and y.

PROOF. The proof is exactly the same as the proof of Theorem 3.2, provided that
we suitably replace “shortest” with “historical” and “increase” with “update”.

We conclude our analysis of the fully dynamic algorithm by discussing time and
space requirements of our implementation. To this aim, we first analyze procedure
update in a fully dynamic setting.

LEMMA 5.2. In a fully dynamic sequence of �(m/n) operations, if shortest
paths are unique, edge weights are nonnegative, and at any time there are at most
z historical paths between each pair of vertices, our data structure supports each
update operation in O(zn2 log n) amortized time. The space used is O(zmn).

990 C. DEMETRESCU AND G. F. ITALIANO

PROOF. We rephrase the proof of Theorem 3.3, by suitably replacing “shortest”
with “historical”, and by using Lemma 4.6, Theorem 4.8, and Lemma 4.4 instead
of Lemma 2.3, Theorem 2.6, and Lemma 2.4, respectively.

The bounds for queries are immediate, since the minimum weight path in the
priority queue Pxy can be retrieved in optimal time.

Since each iteration of cleanup removes a path πxy from a constant number of
lists and priority queues, it requires O(log n) time in the worst case. By Lemma 4.6,
at most O(zn2) locally historical paths can go through the updated vertex in the
worst case, and thus cleanupwill perform at most O(zn2) iterations, thus spending
at most O(zn2 log n) time.

Next, it is easy to see that Phase 1 of fixup requires O(n log n) time in the worst
case. To bound the time required by Phase 2 of fixup, we consider that finding the
minimum in Pxy takes constant time and each insertion in H takes O(log n) time.
This gives a total bound of O(n2 log n) for this phase. Finally, we note that a path
πxy is a new locally historical path if and only if both �(πxy) = 〈x, . . . , b〉 ∈ P∗

xb
and r (πxy) = 〈a, . . . , y〉 ∈ P∗

ay after the update, and either �(πxy) �∈ P∗
xb or r (πxy) �∈

P∗
ay before calling fixup. Thus, since in Phase 3 we process a shortest path πxy

extracted from H only if it was not already in P∗
xy before calling fixup, then we

spend time only for the new locally historical paths. This implies that Phase 3
requires O(n2 log n) time for extracting the O(n2) pairs which are initially in H ,
plus O(log n) time to insert/delete each new locally historical path in H and P: let
p the number of such paths. By Theorem 4.8, there can be O(zn2) paths that start
being locally historical after each update, amortized over a sequence of �(m/n)
operations. Moreover, by Lemma 4.6, there can be at most O(zn2) locally historical
paths that were removed by cleanup since they contain the updated vertex, and
are added back by fixup: thus, p = O(zn2) and update requires O(zn2 log n)
overall time.

At any time, each locally historical path πxy can only appear in a constant number
of data structures: namely, in H , Pxy, L(r (πxy)), R(�(πxy)), and possibly in P∗

xy,
L∗(r (πxy)), R∗(�(πxy)). Thus, the space usage of our data structure is bounded by
the number of locally historical paths in a graph, which is O(zmn) in the worst case
by Lemma 4.4.

THEOREM 5.3. In a fully dynamic sequence of �(m/n) operations, if shortest
paths are unique and edge weights are non-negative, our data structure supports
eachfully-update operation in O(n2 log3 n) amortized time, and eachdistance
and path query in optimal time. The space used is O(mn log n).

PROOF. As in the proof of Theorem 3.3, the bounds for queries are immediate.
To prove our update bound, we observe that procedure fully-update generates
the smoothed sequence of Definition 4.9: thus, by Theorem 4.10, at any time in
a sequence of k updates, there are at most z = O(log k) historical paths between
each pair of vertices in G.

By Lemma 5.2, each call to update requires O(n2 log n log k) amortized time.
Since each fully-update causes as many as O(log k) update operations, then
the amortized running time of fully-update is O(n2 log n log2 k) = O(n2 log3 n)
on any sequence of length k, with k polynomial in n. To get rid of this assumption,
we can simply restart our data structure from scratch every �(n2) operations. The
space bound follows immediately from Lemma 5.2.

A New Approach to Dynamic All Pairs Shortest Paths 991

6. Conclusions

In this article, we have presented a new algorithm that achieves nearly-quadratic
update bounds for fully dynamic all-pairs shortest paths on graphs with non-
negative real edge weights. The algorithm is deterministic and uses simple data
structures. In accordance with a recent computational study [Demetrescu et al.
2004], the techniques described in this article are not only asymptotically efficient,
but can yield very fast implementations in many practical scenarios. The inter-
ested reader can download the C package used in the experiments at the URL:
http://www.dis.uniroma1.it/~demetres/experim/dsp/ .

The algorithms presented in this article hinge upon the novel notion of locally
defined path properties. Using this approach, we have considered locally shortest
paths, that is, paths whose proper subpaths are shortest paths. Since at most O(n2)
such paths (amortized) can appear or disappear in the graph at each update in
a partially dynamic setting, maintaining them in a data structure can be done in
O(n2 log n) amortized time per update. In a fully dynamic setting though, changes
in locally shortest paths may be much higher. To overcome this problem, we have
used again the locality approach, considering locally historical paths, that is, paths
whose proper subpaths are historical, thus achieving an O(n2 log3 n) amortized
time per update with a space usage of O(mn log n). Using our approach, but with a
different smoothing strategy, Thorup [2004] has shown how to achieve O(n2(log n+
log2(m/n))) amortized time per update and O(mn) space. His algorithm works with
negative weights as well.

There are several issues that seem worth of further investigation. First, can we
reduce the space usage to O(n2)? Second, and perhaps more importantly, can we
solve efficiently fully dynamic single-source shortest paths on general graphs?

ACKNOWLEDGMENTS. We are indebted to Valerie King, Mikkel Thorup, Uri Zwick,
and the anonymous reviewers for many useful comments and suggestions on this
work.

REFERENCES

AUSIELLO, G., ITALIANO, G., MARCHETTI-SPACCAMELA, A., AND NANNI, U. 1991. Incremental algo-
rithms for minimal length paths. J. Algorithms 12, 4, 615–38.

BASWANA, S., HARIHARAN, R., AND SEN, S. 2002. Improved decremental algorithms for transitive
closure and all-pairs shortest paths. In Proceedings of the 34th ACM Symposium on Theory of Computing
(STOC’02). ACM, New York, pp. 117–123.

DEMETRESCU, C., EMILIOZZI, S., AND ITALIANO, G. 2004. Experimental analysis of dynamic all pairs
shortest path algorithms. In Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA’04). ACM, New York, pp. 362–371.

DEMETRESCU, C., AND ITALIANO, G. 2001. Fully dynamic all pairs shortest paths with real edge weights.
In Proceedings of the 42nd IEEE Annual Symposium on Foundations of Computer Science (FOCS’01)
(Las Vegas, Nevada). IEEE Computer Society Press, Los Alamitos, Calif., pp. 260–267.

DEMETRESCU, C. AND ITALIANO, G. 2002. Improved bounds and new trade-offs for dynamic all pairs
shortest paths. In Proceedings of the 29th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP’02) (Málaga, Spain). 633–643.

EVEN, S., AND GAZIT, H. 1985. Updating distances in dynamic graphs. Meth. Oper. Res. 49, 371–387.
FAKCHAROEMPHOL, J., AND RAO, S. 2001. Planar graphs, negative weight edges, shortest paths, and near

linear time. In Proceedings of the 42nd IEEE Annual Symposium on Foundations of Computer Science
(FOCS’01) (Las Vegas, Nevada). IEEE Computer Society Press, Los Alamitos, Calif., pp. 232–241.

FRIGIONI, D., MARCHETTI-SPACCAMELA, A., AND NANNI, U. 1998. Semi-dynamic algorithms for main-
taining single source shortest paths trees. Algorithmica 22, 3, 250–274.

992 C. DEMETRESCU AND G. F. ITALIANO

FRIGIONI, D., MARCHETTI-SPACCAMELA, A., AND NANNI, U. 2000. Fully dynamic algorithms for main-
taining shortest paths trees. J. Algorithms 34, 351–381.

HENZINGER, M., KLEIN, P., RAO, S., AND SUBRAMANIAN, S. 1997. Faster shortest-path algorithms for
planar graphs. J. Comput. Syst. Sci. 55, 1 (Aug.), 3–23.

KING, V. 1999. Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive closure in
digraphs. In Proceedings of the 40th IEEE Symposium on Foundations of Computer Science (FOCS’99).
IEEE Computer Society Press, Los Alamitos, Calif., pp. 81–99.

LOUBAL, P. 1967. A network evaluation procedure. Highway Research Record 205, 96–109.
MURCHLAND, J. 1967. The effect of increasing or decreasing the length of a single arc on all shortest

distances in a graph. Tech. rep., LBS-TNT-26, London Business School, Transport Network Theory Unit,
London, UK.

RAMALINGAM, G., AND REPS, T. 1996a. An incremental algorithm for a generalization of the shortest
path problem. J. Algorithms 21, 267–305.

RAMALINGAM, G., AND REPS, T. 1996b. On the computational complexity of dynamic graph problems.
Theoret. Comput. Sci. 158, 233–277.

RODIONOV, V. 1968. The parametric problem of shortest distances. U.S.S.R. Comput. Math. Math.
Phys. 8, 5, 336–343.

ROHNERT, H. 1985. A dynamization of the all-pairs least cost problem. In Proceedings of the 2nd Annual
Symposium on Theoretical Aspects of Computer Science (STACS’85). Lecture Notes in Computer Science,
vol. 182, Springer-Verlag, New York, pp. 279–286.

THORUP, M. 2004. Fully-dynamic all-pairs shortest paths: Faster and allowing negative cycles. In Pro-
ceedings of the 9th Scandinavian Workshop on Algorithm Theory (SWAT’04). 384–396.

RECEIVED DECEMBER 2003, SEPTEMBER 2004; ACCEPTED SEPTEMBER 2004

Journal of the ACM, Vol. 51, No. 6, November 2004.

