
Fully-Dynamic All-Pairs Shortest Paths:
Faster and Allowing Negative Cycles

Mikkel Thorup

AT&T Labs—Research, Shannon Laboratory, 180 Park Avenue
Florham Park, NJ 07932, USA.
mthorup@research.att.com

Abstract. We present a solution to the fully-dynamic all pairs shortest
path problem for a directed graph with arbitrary weights allowing nega-
tive cycles. We support each vertex update in O(n2(logn+ log2(m̄/n)))
amortized time. Here, n is the number vertices, m the number of edges
and m̄ = n + m. A vertex update inserts or deletes a vertex with all
incident edges, and we update a complete distance matrix accordingly.
The algorithm runs on a comparison-addition based pointer-machine.

1 Introduction

Recently Demetrescu and Italiano [1] presented an exciting new approach to
the fully-dynamic all-pairs shortest path (APSP) problem with positive weights.
Their algorithm supports each vertex update in O(n2 log3 n) amortized time1.
Here n is the number of vertices. A vertex update inserts or deletes a vertex with
all its incident edges. Between updates, a complete distance matrix is maintained.
The algorithm also maintains the next hop on a shortest path from any vertex
towards any destination. The algorithm runs on a comparison-addition based
pointer-machine.

We refer the reader to [1] for the rich history of dynamic shortest path prob-
lems which has publications dating back to 1967. Here we just note that before
[1], the best amortized update time for APSP in general graphs was Õ(n2.5)
with unit weights [6]. The new O(n2 log3 n) amortized update time from [1] is a
substantial improvement and allows arbitrary non-negative weights.

1.1 An Even Faster Fully-Dynamic APSP Algorithm

In this paper, we present a different version of the algorithm from [1], maintain-
ing the same type of information, but being easier to analyze and tune, getting
tighter bounds, and thus providing a better understanding of the general new
approach. Our amortized update time is O(n2(logn+ log2(m̄/n))). We also re-
duce the space from O(nm log n) to O(mn). Here m is the number of edges and
m̄ = m+ n.
1 In the final remarks of [1], Demetrescu and Italiano state that their bounds can be
improved to O(n2 log2 n) using a Fibonacci heap, but that claim is withdrawn in [2].

T. Hagerup and J. Katajainen (Eds.): SWAT 2004, LNCS 3111, pp. 384–396, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Fully-Dynamic All-Pairs Shortest Paths 385

While the improvement is only by one or two log-factors, depending on the
sparsity of the graph, it should be compared with a lower-bound of Ω(n2) needed
just to update the distance matrix. Thus, we cannot improve by more than log-
factors. Also, our algorithm picks distances out of a priority queue, and since we
may have Θ(n2) distance changes per vertex update, any such algorithm needs
Ω(n2 logn) comparisons. It is also interesting to compare our algorithm with
the standard static competitor, running Dijkstra’s [3] single source algorithm
from each source with a Fibonacci heap [4] in O(n2 logn+ nm) total time. Our
O(n2(logn+log2(m̄/n))) bound is never worse, and it is an improvement when-
ever m = ω(n logn). We note that there is a faster comparison-addition based
APSP algorithm [8] running in O(n2 log logn+ nm) time, but that algorithm is
not based on priority queues.

1.2 Allowing Negative Weights and Cycles

Our new version can be extended to deal with negative weights, allowing negative
cycles. For these arbitrary weights, we get the same amortized update time of
O(n2(logn + log2(m̄/n))). To the best of our knowledge, for arbitrary weights,
this is the first fully-dynamic APSP algorithm with better amortized updates
than a static recomputation from scratch. The extension is non-trivial, but,
unfortunately, there is not room for it in this extended abstract.

1.3 Notation

The vertex set of a graph G is denoted V (G) and the edge set is denoted E(G).
If U ⊆ V (G), then G \ U denotes the subgraph of G where we have removed
the vertices from U with their incident edges. As a slight abuse of notation, if v
is a single vertex, we define G \ v = G \ {v}. If v precedes w in a path P , then
P [v, w] denotes the subpath from v to w of P . Also, first(P ) and last(P ) denote
the first and the last vertex in P . An s-t path is a path P with s = first(P ) and
t = last(P ). If P and Q are paths with last(P ) = first(Q), then PQ denotes the
concatenation of P and Q.

2 The Approach of Demetrescu and Italiano

In this section, we present the new approach of Demetrescu and Italiano to the
dynamic APSP problem [2]. The presentation is, however, directed towards our
own developments to be presented in the subsequent sections.

We say that two paths are alternatives if they start and finish in the same
vertices. A path is a shortest path if there is no shorter alternative. We assume
that shortest paths are unique, that is, for a shortest path all alternatives are
longer. In [2] is presented an elegant way of achieving this uniqueness even in
the deterministic case and without loss of efficiency.



386 M. Thorup

2.1 Selecting Shortest Paths Via Generated Paths

The dynamic APSP algorithm operates on a set of selected paths. Generally,
selected paths are paths that at some stage have been identified as shortest.
After each vertex update, the algorithm will make sure to select all current
shortest paths. It may also de-select some selected paths so as to make sure that
not too many paths are selected.

Demetrescu and Italiano [2] presented a very interesting approach for select-
ing shortest paths. A path P is generated if we get a selected path no matter
which end-point from P we remove. We say that a path P is improving if it is
strictly shorter than any selected alternative.2

Trivial paths consisting of a single vertex form a special case, for if we remove
that vertex, we have nothing left. We define all trivial paths to be generated.

Lemma 1. (a) Let Q be a shortest path which is not selected. Then Q has an
improving generated subpath R. In particular, if there are no improving gen-
erated paths, then all shortest paths are selected.

(b) Let P have minimum length amongst all generated improving paths. Then P
is a shortest path which is not yet selected.

Proof. To prove (a), let R be a minimal subpath of Q that is not selected. Then
R is generated and shortest but not selected, so R is improving.

To prove (b), suppose for a contradiction that P is not shortest and consider a
shortest alternative Q of P . Since P is improving, we know that Q is not selected.
Hence by (a), we have an improving generated subpath R of Q. Now length(R) ≤
length(Q) < length(P ) contradicting the choice of P . Thus we conclude that P
is a shortest path. ��

Lemma 1 provides us a process to select all shortest paths. As long as there
are improving generated paths, we select such a path of minimal length. By
Lemma 1, this process selects exactly the shortest paths which were not shortest
when we started.

2.2 A Path System with Priority Queues

In order to implement the selection of all shortest paths, [2] presents a path
system to maintain selected and generated paths. We refer to all paths in the
system as system paths, noting that the same path may be both selected and
generated.

The path system knows the graph, so when a vertex v is inserted, the trivial
path (v) is generated immediately. Whenever a path is selected, the system com-
bines it with previously selected paths in new generated paths. We can only select
2 Our “selected paths” are the “zombies” in [1] and the “historically shortest paths” in
[2]. Our “generated paths” are the “potentially uniform paths” in [1] and the “locally
historical paths” in [2]. The concept of “improving generated paths” is important in
[1,2] but was not named. Our terminology is shorter, and more convenient when we
later want to talk about other types of generated paths.



Fully-Dynamic All-Pairs Shortest Paths 387

a path if it is a generated path generated by the system. We can ask the system
to destroy all system paths containing a given vertex. This happens automati-
cally when a vertex is deleted from the graph. The path system is implemented
below in §2.3 in constant time per system path change. The above operations
maintain that all selected paths are generated. Recursively this implies that any
subpath of a selected (generated) path is selected (generated).

For each start-finish vertex pair (s, t), the we have a start-finish priority
queue Q(s,t) with all system paths from s to t, the shorter with higher priority.
If the shortest system path in Q(s,t) is not selected, then P is an improving
generated path which participates in a global priority queue QG. Using classic
comparison-based priority queues [11], each operation on a queue is supported
n O(logn) time.

The selection of all shortest paths is now implemented as follows. As long as
the global priority queue QG is non-empty, we select the shortest path from QG.
When QG is empty, for each s and t, the shortest s-t path is found in Q(s,t).

2.3 Implementing the Path System

We now show how to implement the path system itself. Currently, all system
paths are generated paths, and all subpaths of generated paths are generated
paths. Every system path is given a unique identifier, from which we can derive
information such as end-points, length, and first edge.

If P is non-trivial, we say that P is a pre-extension of P \ first(P ) and post-
extension of P \last(P ). If Q is generated, we store with Q the set of its generated
pre-extension and the set of its generated post-extensions. Using these sets, we
can identify and destroy all generated paths containing a given vertex in constant
time per path.

Together with Q we also store the sets of selected pre- and post-extensions.
When a new pre-extension P1 of Q is selected, we take each currently selected
post-extension P2 of Q, and generate the new path P1 ∪ P2. The case when a
new post-extension is selected is symmetric. Thus each new path is generated in
constant time.

In the above path system, we pay constant time per path change. This is
dominated by the O(logn) time it takes to modify the start-finish priority queues
and the global priority queue in §2.2.

2.4 A Basic Dynamic APSP Algorithm

Using the above path system, we have a basic algorithm for the dynamic APSP
problem. If a vertex is inserted, we select all shortest paths. If a vertex is deleted,
we first destroy all system paths containing it, and then select all shortest paths.

2.5 The Key to Efficiency

The following lemma is crucial to efficiency:



388 M. Thorup

Lemma 2. Suppose all selected paths containing v are shortest. If s and t are
vertices different from v, there is at most one generated s-t path which contains
v. Moreover, there are at most O(n2) generated paths containing v.

Proof. Consider a generated s-t path P which contains v. Then P [s, v] is con-
tained in the selected path P \ t which contains v. Hence P [s, v] is the shortest
s-v path. Symmetrically, P [t, v] is the shortest v-t path, so P is unique. It im-
mediately follows that v is internal to at most n2 generated paths.

Now, consider a generated path P from v to some vertex t, and let t′ be
the predecessor of t in P . Then P [s, t′] is a selected path, so P is uniquely
determined by t′ and t. Symmetrically, there are at most n2 choices of generated
paths finishing in v. ��

2.6 Efficiency of the Static Case

In the static case, in the process selecting all shortest paths, the path system
will first generate all trivial paths. We will then continue to select and generate
paths until we have selected the set of all shortest paths.
Lemma 3. When all selected paths are shortest, the total number of generated
paths is O(n3). In particular, it takes O(n3 logn) time to select all shortest paths
in the static case.

Proof. Since we have n vertices, the first part is a direct corollary of Lemma 2.
Also, there are at most n2 shortest paths to select. We spend O(logn) time per
system path, so the total running time is O(n3 logn). ��

2.7 Efficiency of the Incremental Case

Consider the incremental case of the simple algorithm, that is, no deletes are
allowed. When a vertex is inserted, all new selected paths are shortest paths
containing v. Then Lemma 2 implies that we create at most O(n2) system paths,
and that takes O(n2 logn) time. That is,
Lemma 4. The basic algorithm supports an insert in O(n2 logn) time. ��

2.8 Efficiency of the Decremental Case

Now consider the decremental case of the basic algorithm, that is, no inserts are
allowed. Here, we first run the static algorithm as in §2.6. Each time a vertex
is deleted, all system paths containing it are destroyed. Afterwards the basic
algorithm selects all new shortest paths. The crucial observation is that selected
paths remain shortest until destroyed.
Lemma 5. Starting with a graph with n vertices, the basic algorithm can support
up to n deletions in O(n3 logn) total time.

Proof. By Lemma 3, there can be at most O(n3) generated paths when the
deletions are completed. All other generated paths are destroyed by deletions.
By Lemma 2, each deletion destroys O(n2) generated paths. Consequently, the
total number of path changes is O(n3), so the total running time is O(n3 logn).

��



Fully-Dynamic All-Pairs Shortest Paths 389

2.9 The Fully-Dynamic Case

Unfortunately, the basic algorithm is not efficient in the fully-dynamic case. One
can construct a sequence of n vertex inserts followed by n vertex deletes so that
each delete makes Θ(n3) path changes. The problem is that a shortest path
selected after one insert may not be shortest after some future insert. With such
non-shortest selected paths, the efficiency of deletions breaks down.

The approach of Demetrescu and Italiano [2] to the fully-dynamic APSP
problem is that when a vertex v is inserted, for I = 0, 1, ..., we wait for 2I

updates, and then we make an extra dummy update on v. The dummy update
deletes and inserts v with the same edges. The effect is to de-select paths through
v that are no longer shortest. With this grooming, they generalize Lemma 2 to
show that there can be at most O(n2 logn) generated paths through any vertex.
Consequently, no update or dummy update can destroy more than O(n2 logn)
paths. Since each real update gives rise to O(logn) dummy updates, they get
O(n2 log2 n) path updates per real vertex update, hence an amortized update
time of O(n2 log3 n).

3 Our Basic Algorithm

Our algorithm for the fully-dynamic APSP problem follows a general idea of
Henzinger and King [5] reducing a fully-dynamic problem to a logarithmic num-
ber of decremental problems. Henzinger and King’s idea was originally developed
for the fully-dynamic minimum spanning tree problem. Here we use the idea in
the context of the fully-dynamic APSP problem, essentially exploiting the effi-
ciency of the simple decremental algorithm in §2.8. In our first implementation,
we improve the APSP amortized update time to O(n2 log2 n). In the next sec-
tion, we will tune our implementation for sparse graphs, getting the claimed
amortized update time of O(n2(logn+ log2(m̄/n)). Finally, we will sketch how
to deal with negative edge weights.

3.1 Dividing into Levels

Updates are numbered t = 1, 2, 3... and the birth date of a vertex is the number
of the update inserting it. The graph is rebuild whenever t ≥ 2n with n the
current number of vertices. We then set t = 1 and rebuild the graph with n
reinserts. Asymptotically, this does not affect our amortized time bounds.

We impose a standard type binary hierarchy over the update sequence. We
say that level I is active after update t if bit i is set in t. Here bit 0 is the least
significant bit. Also, t activates the level of its least significant set bit, that is, if
L is the least significant set bit of t, then level L is inactive before t and active
after t. Also, t deactivates the active levels lower than L.

If level I is active, we let tI denote the update that activated level I. Note
that if level J > I is also active, then tJ < tI . Hence, among active levels, we
sometimes refer to active higher levels as older levels.



390 M. Thorup

When we activate a level I, we construct a level I graph GI as a copy of the
current graph G. The vertices from GI are called level I vertices. While level
I is active, we do not add any vertices to GI but if a level I vertex is deleted
from G, it is also deleted from GI . Thus GI is a decremental dynamic graph.
We destroy GI when level I is deactivated. We will often identify an active level
I with its decremental level graph GI .

The vertices in GI that were not in the previous level graph GJ are called
level I centers. More formally, we have active levels I and J with I < J and no
active levels between I and J . Then the level I centers are the vertices inserted
during updates t ∈ (tJ , tI ]. We let CI denote the set of level I centers. Then
GJ = GI \CI . Clearly each vertex v is center in exactly one level I, and we say
that v is centered in level I. Consider a path P . Let v be its youngest vertex,
centered in some level I. Then GI is the oldest level graph containing P . We say
that P is centered in v, in level I, and in GI . The basic goal of an active level I
is to identify the shortest paths in G that are centered in level I.

3.2 The Level Path System

We will have a specialized level system of selected paths. Each selected path P
may be selected for any level I with P ⊆ GI . Also P may be selected for the
current graph G. However, we have the requirement that if P is selected for G,
then P has to be selected for all levels I with P ⊆ GI . Although this is not part
of the definition, in our algorithms, a path selected for a level I will always be
shortest in GI .

A path P is generated by level I if it satisfies the following two conditions:

– P is centered in level I.
– if P is not a trivial path, then, no matter which end-point we remove from
P , we get a path selected for level I.

The first conditions ensures that P can only be generated by a single level. If we
do not want to specify this level, we say that P is level generated.

The second condition implies that if P is level generated, it is also generated
with the original definition from §2. However, the converse is not true, for an
originally generated paths may not be generated by any level. Our restriction to
levels is our key to efficiency, but before turning to efficiency, we prove that our
level path system can be used to generate shortest paths.

We say a path P in the current graph G is improving if it is shorter than
any alternative selected for G. This redefinition of improving does not take into
account paths that are only selected for levels. Analog to Lemma1, we get

Lemma 6. (a) Let Q be a shortest path in the current graph G which is not
selected for G. Then Q has an improving level generated subpath R. In par-
ticular, if there are no improving level generated paths, then all shortest paths
are selected for G.

(b) Let P have minimum length amongst all level generated improving paths.
Then P is a shortest path in G which is not yet selected for G.



Fully-Dynamic All-Pairs Shortest Paths 391

Proof. To prove (a), let R be a minimal subpath of Q that is not selected for G.
Then R is improving. Let I be the level that R is centered in. If R is trivial, it is
generated by level I. Otherwise, removing either end-point from R, we get a path
S which is selected for G, but then S is also selected for level I. Consequently,
R is generated by level I. With (a) settled, the proof of (b) is identical to that
of Lemma 1(b). ��

3.2.1 Implementation. It is straightforward to modify the path system from
§2.2–2.3 to deal with levels as described above. More precisely, we make an
independent path system for each level based on paths selected for that level.
However, in the level I path system, we have the restriction that two level I
selected paths may only be combined in a generated path if at least one of them
is centered in level I. An efficient implementation requires that level I selected
post-extensions P2 of a path Q are divided depending on whether P2 is centered
in level I. Consider a new level I selected pre-extension P1 of Q. If P1 is centered
in level I, we generate P1 ∪ P2 for all level I selected post-extensions P2 of Q;
otherwise, we only use those P2 that are centered in level I.

The start-finish priority queue Q(s,t) now has all s-t paths that are either
level generated or selected for the current graph. If the shortest system path in
Q(s,t) is not selected for the current graph, then P participates in the global
priority queue QG.

3.3 Fully-Dynamic APSP with the Level Path System

Given the above level path system, we have a simple fully-dynamic APSP algo-
rithm. The system starts with an empty graph, no level graphs, and an empty
level path system.

To process an update t, our first action is to de-select all paths from the
current graph. The update t activates some level L and deactivates all levels
K < L. To execute the deactivation, we destroy all system paths through the
level K centers, and de-select all other paths from level K. If the update t deletes
a vertex v, we also destroy all system paths containing v.

Next we activate level L. If the update t inserts a vertex, it becomes a level
L center along with the centers from the deactivated levels. Each trivial path
consisting of a level L center is generated immediately by level L. Now, as long as
the global priority queue QG is non-empty, we pick its shortest path P . Then we
select P for the current graph G and for all levels I with P ⊆ GI . By Lemma 6,
the above process generates exactly the shortest paths in the current graph G.

3.4 Analysis

We note that we only select a path for an active level I when P is shortest in the
current graph G. Trivially, this implies that P is shortest in the subgraph GI ,
and since GI is decremental, P remains shortest till GI is deactivated. Thus, we
have



392 M. Thorup

Invariant 1 All paths selected for level I are shortest paths in GI . ��

With this invariant, Lemma 2 applies to all paths generated by level I. Conse-
quently,

Lemma 7. On a given level, we have only O(n2) system paths through any
vertex. ��

Lemma 8. The number of paths generated by level I is always O(2In2). More-
over, O(2In2) bounds the number of changes to paths generated by level I while
I is in an active period, including the deactivation at the end.

Proof. A path is only generated by level I if it goes through one of the at most
2I centers on level I center. By Lemma 7, there can never be more than O(n2)
generated paths through any such center, so we can have at most O(2In2) level I
generated paths. By Lemma 7, we also get that each of the at most 2I deletions
can destroy at most O(n2) level I generated paths. As in the proof of Lemma 5,
we conclude that O(2In2) bounds the total number of changes to paths generated
by level I. ��

We are now ready to analyze our total cost.

Lemma 9. The above APSP algorithm supports each vertex update in
O(n2 log2 n) amortized time.

Proof. We analyze the cost as follows.

– At each update, we identify O(n2) shortest paths P . Each P is selected for
the current graph with a priority queue cost of O(logn). Also, P is selected
at constant cost for O(logn) levels. Thus, the total cost of selecting shortest
paths is O(n2 logn).

– A level I is active for 2I vertex updates, and in this period, by Lemma 8, we
have O(2In2) changes to paths generated by level I, that is O(n2) changes
per update. Each such change costs O(logn) in the priority queues, so over
the O(logn) levels I, we have a cost of O(n2 logn) per vertex update.

Adding up the above items, we conclude that we spend O(n2 log2 n) amortized
time on each vertex update. We note that a level I alternates between being
active and inactive periods of 2I updates, starting with an inactive period. Hence,
in case we stop in the beginning of an active period, we can amortize the active
work over the preceding 2I inactive updates. ��

3.5 Faster or Better Analysis?

We have now obtained an amortized bound that is a factor logn better than the
one originally provided in [1] (c.f. §2.9). One may ask if this is just a better anal-
ysis or if the algorithm really has a better worst-case performance. We believe
the latter for the following reason: Our division into levels can be viewed as very
similar to the exponentially spaced dummy updates from [1]. When we activate



Fully-Dynamic All-Pairs Shortest Paths 393

a level L, we destroy all selected paths through the centers on deactivated levels
K < L, and this is an analog to dummy update. Thus, we end up with a similar
set of selected paths. However, in [1], we can combine arbitrary selected paths in
generated paths. Here we only combine paths selected for the same level. Thus it
seems plausible that we save a factor of log n in the number of generated paths.

4 Tuning for Sparse Graphs

We are now going tune the above algorithm to be more efficient for sparse graphs,
reducing the running time to O(n2(logn + log2(m̄/n))). From the preceding
analysis of Lemma 9, we know that the only cost that exceeds O(n2 logn) is
that of the level generated paths. Below, we will first reduce the number of
these paths by reducing the number of levels to O(log(m̄/n)). Second, we will
reduce the size of most priority queues to O(m̄/n), thereby reducing their cost
to O(log(m̄/n)). These two improvements will reduce the overall update cost to
O(n2(logn + log2(m̄/n))). We note that this only improves over our previous
O(n2 log2 n) bound if m̄/n = no(1). Hence we can assume that we are dealing
with a sparse graph with m̄/n = no(1).

4.1 Fewer Levels

In order to benefit from sparseness of a graph, we are going to divide our updates
into epochs of length Θ(m̄/n). More precisely, when the epoch start, we set it
to run for q = �m̄/(2n)� vertex updates. During this period, m̄ = m + n and
n cannot change by more than a factor 2, so we preserve q = Θ(m̄/n). We also
note that m̄ ≥ n, so q is at least 1.

Before the first update tB of an epoch, we copy the current graph G into
a decremental base graph GB . During the epoch, the base graph is treated like
an oldest active level graph. However, all vertices in GB are viewed as centers,
so any path in GB is viewed as centered in GB . Since an epoch has only m̄/n
updates, it will never activate more than log2(m̄/n) regular levels.

All our preceding analysis of efficiency relied on each level having no more
centers than the number of updates while active. However, GB may have Ω(n)
centers, and an epoch only lasts for m̄/n updates. For our sparse graphs, m̄/n =
no(1), so we need a different analysis for GB .

Lemma 10. The total number of paths generated by the base graph is at most
n(m+ 1) ≤ nm̄.

Proof. As in Invariant 1, all paths selected for the base graph are shortest. There
are n trivial paths. Consider any non-trivial path P generated by the base. Let
(u, v) be the first edge of P and w the last vertex. The segment P [v, w] is selected
for the base, hence the unique shortest path from v to w. Consequently there
are at most nm non-trivial base generated paths. ��

Lemma 11. During an epoch, we have O(m̄n) paths generated by the base, and
they cost O(m̄n logn) time in the priority queues.



394 M. Thorup

Proof. By Lemma 10, when an epoch ends, we have at most nm̄ remaining base
generated paths to be destroyed. Also, applying Lemma 7 to the base, we get
that each of the O(m̄/n) vertex deletions destroys O(n2) base generated paths.

��

Lemma 12. With the base graph, our fully-dynamic APSP algorithm supports
each vertex update in O(n2(logn)(log(m̄/n))) amortized time and in O(m̄n)
space.

Proof. In the analysis for Lemma 9, we showed that each update takes
O(n2 logn) amortized time on each level. Now that we have only O(log(m̄/n))
levels, this amortized update time is hence reduced to O(n2(logn)(log(m̄/n)).
By Lemma 11, the work in the base during an epoch takes O(m̄n logn) time. In
case, we stop in the middle of an epoch, we amortize this work over the previous
epoch which was completed with Θ(m̄/n) updates. The first epoch has an empty
base, hence no base work to amortize. Thus, in the base, the amortized work per
update is O(n2 logn). Here the first epoch is a single insert in an empty graph,
and it pays for itself in constant time. Adding up, we support each update in
O(n2(logn)(log(m̄/n)) time.

Apart from the level generated paths, the space used for each level or base
graph is O(n2), adding up to O(n2 log(m̄/n)) = O(mn). By Lemma 10, there
are O(mn) paths generated by the base graph, and by Lemma 8, there are∑
log2(m̄/n)�
I=0 O(2In2) = O(m̄n) paths generated by the non-base levels. Thus we

conclude that the total space is O(m̄n). ��

4.2 Reducing the Priority Queue Cost

As suggested in [1], it is straightforward to reduce the total cost of using the
global priority queue QG to O(n2 logn) per vertex update if we use a Fibonacci
heap [4] supporting inserts and decreases in constant time. A minor change to
the processing of an update is that we should wait entering paths in the global
priority queue till after we have destroyed all the paths through deactivated
centers and a deleted vertex.

Our challenge is to reduce the cost from the start-finish priority queues.
The trick is to split each Q(s,t) into a small priority queue Qsmall(s,t) with many

changes, and a large priority queue Qlarge(s,t) with few changes. Then minQ(s,t) =

min{minQsmall(s,t) ,minQlarge(s,t) }. The small priority queue contains any s-t path
generated by a level I where neither s nor t are centers. It may also contain the
unique shortest s-t path if it is selected for the current graph. The large priority
queue contains all remaining level generated s-t paths. These are either from the
base graph, or they are from a level graph GI where s or t are centers.

Lemma 13. A small priority queue Qsmall(s,t) has at most m̄/n paths. Hence small
priority queue changes take O(log(m̄/n)) time.



Fully-Dynamic All-Pairs Shortest Paths 395

Proof. Each path P in Qsmall(s,t) is generated by a non-base level I where neither
s nor t are centers. Hence P has a level I center v distinct from s and t. This
means that P [s, v] and P [v, t] are selected for I. Hence, by Invariant 1, these
segments are shortest paths in GI . Thus P is uniquely determined by a center
v from some non-base level I. An epoch creates only m̄/n such centers, so we
conclude that the size of Qsmall(s,t) is at most m̄/n. ��

Lemma 14. The large priority queues have O(n2) changes per vertex update,
hence a cost of O(n2 logn).

Proof. From Lemma 10, we know that we only have O(n2) changes to paths gen-
erated by the base. However, in the large local priority queueQlarge(s,t) , we also have
paths P generated by a level I where either s or t are centers. By symmetry, we
may assume that s is a level I center. Let v be the second to last vertex in P . Then
P [s, v] is selected hence unique shortest in GI , and (v, t) is an edge. Stepping
back, we can characterize P by the vertex s, the graph GI , and the edge (v, t).
The vertex s is one of the m̄/n vertices inserted during the epoch, and during the
epoch, it becomes center ofO(log(m̄/n)) level graphsGI . Consequently, the num-
ber of such paths is O((m̄/n)m log(m̄/n)) = O(m̄2/n log(m̄/n)) = O(n1+o(1))
since m̄ = n1+o(1). ��

Theorem 2. With the base graph and the split priority queues, we solve the
fully-dynamic APSP problem supporting each vertex update in O(n2(logn +
log2(m/n))) amortized time and in O(mn) space. Our algorithm runs on a
comparison-addition based pointer machine.

Proof. We consider the amortized cost of a vertex update. The space is already
established in Lemma 12. From the analysis of Lemma 9, we know that it is
only changes to level generated paths that can exceed O(n2 logn). Their cost in
the global priority queue is O(n2 logn), and by Lemma 14, the cost of the large
priority queues is O(n2 logn). All other changes are to small priority queues.
By Lemma 13, their priority queue cost is O(log(m̄/n)). From the analysis of
Lemma 9, we know that there are O(n2) changes to paths generated by each of
the O(log2(m̄/n)) levels. Thus our total cost per vertex update is O(n2(logn+
log2(m/n))). ��

We note that if the weights are integers, or floating point numbers in standard
representation, we can use the priority queue from [9], reducing the delete time
to O(log logn) while keeping the insert and decrease-key time constant. This
improves our amortized time bound to O(n2(log logn+log(m/n) log log(m/n)))
per vertex update.

5 Concluding Remarks

We have reduced the amortized update time for the fully-dynamic APSP problem
to O(n2(logn + log2(m̄/n)). However, we use O(mn) space and we would like



396 M. Thorup

to reduce this to O(n2) space. For many previous fully-dynamic APSP and
transitive closure algorithms, the space was reduced from O(mn) to O(n2) in
[7]. In particular, this gave O(n2) space for the King’s APSP algorithm [6] which
has an update time of Õ(n2.5) with unit weights. Unfortunately, the reduction
breaks down for the current approach with generated paths.

Another interesting problem is to get a worst-case times for each individual
update. All current approaches are lazy, and have worst-case update times as
slow as a static algorithm. Using some of the ideas from this paper, the author
has found better worst-case update times for the fully-dynamic APSP problem
[10].

Finally, we mention the challenge of getting a fully-dynamic single source
shortest path algorithm with sublinear query and update times. This is open even
with amortized times bounds and in the case where we just want to maintain
the shortest path from a fixed source s to a fixed destination t.

References

1. C. Demetrescu and G. Italiano. A new approach to dynamic all pairs shortest
paths. In Proc. 35th STOC, pages 159–166, 2003.

2. C. Demetrescu and G. Italiano. A new approach to dynamic all pairs shortest paths,
2004. Full version of [1] available at http://www.dis.uniroma1.it/∼demetres/.

3. E.W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math.,
1:269–271, 1959.

4. M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. J. ACM, 34(3):596–615, 1987.

5. M. R. Henzinger and V. King. Maintaining minimum spanning forests in dynamic
graphs. SIAM J. Computing, 31(2):364–374, 2001.

6. V. King. Fully dynamic algorithms for maintaining all-pairs shortest paths and
transitive closure in digraphs. In Proc. 40th FOCS, pages 81–89, 1999.

7. V. King and M. Thorup. A space saving trick for directed dynamic transitive
closure and shortest path algorithms. In Proc. 7th COCOON, LNCS 2108, pages
268–277, 2001.

8. S. Pettie. A faster all-pairs shortest path algorithm for real-weighted sparse graphs.
In Proc. 29th ICALP, LNCS 2380, pages 85–97, 2002.

9. M. Thorup. Integer priority queues with decrease key in constant time and the
single source shortest paths problem. In Proc. 35th STOC, pages 149–158, 2003.

10. M. Thorup. Worst-case update times for fully-dynamic all-pairs shortest paths,
2004. Submitted.

11. J. W. J. Williams. Algorithm 232. Comm. ACM, 7(6):347–348, 1964.


