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Abstract. We give algorithms for finding the k shortest paths (not required to be simple)
connecting a pair of vertices in a digraph. Our algorithms output an implicit representation of these
paths in a digraph with n vertices and m edges, in time O(m+ n logn+ k). We can also find the k
shortest paths from a given source s to each vertex in the graph, in total time O(m+n logn+kn). We
describe applications to dynamic programming problems including the knapsack problem, sequence
alignment, maximum inscribed polygons, and genealogical relationship discovery.
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1. Introduction. We consider a long-studied generalization of the shortest path
problem, in which not one but several short paths must be produced. The k-shortest-
paths problem is to list the k paths connecting a given source-destination pair in the
digraph with minimum total length. Our techniques also apply to the problem of
listing all paths shorter than some given threshold length. In the version of these
problems studied here, cycles of repeated vertices are allowed. We first present a
basic version of our algorithm, which is simple enough to be suitable for practical
implementation while losing only a logarithmic factor in time complexity. We then
show how to achieve optimal time (constant time per path once a shortest path tree has
been computed) by applying Frederickson’s [26] algorithm for finding the minimum k
elements in a heap-ordered tree.

1.1. Applications. The applications of shortest path computations are too nu-
merous to cite in detail. They include situations in which an actual path is the
desired output, such as robot motion planning, highway and power line engineer-
ing, and network connection routing. They include problems of scheduling such as
critical path computation in PERT charts. Many optimization problems solved by
dynamic programming or more complicated matrix searching techniques, such as the
knapsack problem, sequence alignment in molecular biology, construction of optimal
inscribed polygons, and length-limited Huffman coding, can be expressed as shortest
path problems.

Methods for finding k shortest paths have been applied to many of these appli-
cations, for several reasons.

• Additional constraints. One may wish to find a path that satisfies certain
constraints beyond having a small length, but those other constraints may
be ill defined or hard to optimize. For instance, in power transmission route
selection [18], a power line should connect its endpoints reasonably directly,
but there may be more or less community support for one option or another.
A typical solution is to compute several short paths and then choose among
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FINDING THE k SHORTEST PATHS 653

them by considering the other criteria. We recently implemented a similar
technique as a heuristic for the NP-hard problem of, given a graph with
colored edges, finding a shortest path using each color at most once [20].
This type of application is the main motivation cited by Dreyfus [17] and
Lawler [39] for k-shortest-path computations.
• Model evaluation. Paths may be used to model problems that have known

solutions, independent of the path formulation; for instance, in a k-shortest-
path model of automatic translation between natural languages [30], a correct
translation can be found by a human expert. By listing paths until this known
solution appears, one can determine how well the model fits the problem, in
terms of the number of incorrect paths seen before the correct path. This
information can be used to tune the model as well as to determine the number
of paths that need to be generated when applying additional constraints to
search for the correct solution.
• Sensitivity analysis. By computing more than one shortest path, one can de-

termine how sensitive the optimal solution is to variation of the problem’s pa-
rameters. In biological sequence alignment, for example, one typically wishes
to see several “good” alignments rather than one optimal alignment; by com-
paring these several alignments, biologists can determine which portions of an
alignment are most essential [8, 64]. This problem can be reduced to finding
several shortest paths in a grid graph.
• Generation of alternatives. It may be useful to examine not just the opti-

mal solution to a problem but a larger class of solutions, to gain a better
understanding of the problem. For example, the states of a complex system
might be represented as a finite state machine, essentially just a graph, with
different probabilities on each state transition edge. In such a model, one
would likely want to know not just the chain of events most likely to lead
to a failure state but rather all chains having a failure probability over some
threshhold. Taking the logarithms of the transition probabilities transforms
this problem into one of finding all paths shorter than a given length.

We later discuss in more detail some of the dynamic programming applications
listed above and show how to find the k best solutions to these problems by using
our shortest path algorithms. As well as improving previous solutions to the general
k-shortest-paths problem, our results improve more specialized algorithms for finding
length-bounded paths in the grid graphs arising in sequence alignment [8] and for
finding the k best solutions to the knapsack problem [15].

1.2. New results. We prove the following results. In all cases we assume we are
given a digraph in which each edge has a nonnegative length. We allow the digraph
to contain self-loops and multiple edges. In each case the paths are output in an
implicit representation from which simple properties such as the length are available
in constant time per path. We may explicitly list the edges in any path in time
proportional to the number of edges.

• We find the k shortest paths (allowing cycles) connecting a given pair of
vertices in a digraph in time O(m+ n log n+ k).
• We find the k shortest paths from a given source in a digraph to each other

vertex in time O(m+ n log n+ kn).
We can also solve the similar problem of finding all paths shorter than a given

length, with the same time bounds. The same techniques apply to digraphs with
negative edge lengths but no negative cycles, but the time bounds above should be
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654 DAVID EPPSTEIN

modified to include the time to compute a single source shortest path tree in such
networks, O(mn) [6, 23] or O(mn1/2 logN) where all edge lengths are integers and N
is the absolute value of the most negative edge length [29]. For a directed acyclic graph
(DAG), with or without negative edge lengths, shortest path trees can be constructed
in linear time and the O(n log n) term above can be omitted. The related problem
of finding the k longest paths in a DAG [4] can be transformed to a shortest path
problem simply by negating all edge lengths; we can therefore also solve it in the same
time bounds.

1.3. Related work. Many papers study algorithms for k shortest paths [3, 5,
7, 9, 13, 14, 17, 24, 31, 32, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 47, 50, 51, 56, 57, 58,
59, 60, 63, 65, 66, 67, 68, 69]. Dreyfus [17] and Yen [69] cite several additional papers
on the subject going back as far as 1957.

One must distinguish several common variations of the problem. In many of
the papers cited above, the paths are restricted to be simple; i.e., no vertex can be
repeated. This has advantages in some applications, but as our results show this
restriction seems to make the problem significantly harder. Several papers [3, 13,
17, 24, 41, 42, 58, 59] consider the version of the k-shortest-paths problem in which
repeated vertices are allowed, and it is this version that we also study. Of course, for
the DAGs that arise in many of the applications described above, including scheduling
and dynamic programming, no path can have a repeated vertex and the two versions
of the problem become equivalent. Note also that in the application described earlier
of listing the most likely failure paths of a system modelled by a finite state machine,
it is the version studied here rather than the more common simple path version that
one wants to solve.

One can also make a restriction that the paths found be edge disjoint or vertex
disjoint [61] or include capacities on the edges [10, 11, 12, 49]; however, such changes
turn the problem into one more closely related to network flow.

Fox [24] gives a method for the k-shortest-path problem based on Dijkstra’s al-
gorithm, which with more recent improvements in priority queue data structures [27]
takes time O(m + kn log n); this seems to be the best previously known k-shortest-
paths algorithm. Dreyfus [17] mentions the version of the problem in which we must
find paths from one source to each other vertex in the graph, and describes a simple
O(kn2) time dynamic programming solution to this problem. For the k-shortest-
simple-paths problem, the best known bound is O(k(m + n log n)) in undirected
graphs [35] or O(kn(m + n log n)) in directed graphs ([39], again including more re-
cent improvements in Dijkstra’s algorithm). Thus all previous algorithms took time
O(n log n) or more per path. We improve this to constant time per path.

A similar problem to the one studied here is that of finding the k minimum weight
spanning trees in a graph. Recent algorithms for this problem [22, 21, 25] reduce it
to finding the k minimum weight nodes in a heap-ordered tree, defined using the best
swap in a sequence of graphs. Heap-ordered tree selection has also been used to find
the smallest interpoint distances or the nearest neighbors in geometric point sets [16].
We apply a similar tree selection technique to the k-shortest-path problem; however,
the reduction of k shortest paths to heap-ordered trees is very different from the
constructions in these other problems.

2. The basic algorithm. Finding the k shortest paths between two terminals
s and t has been a difficult enough problem to warrant much research. In contrast,
the similar problem of finding paths with only one terminal s, ending anywhere in the
graph, is much easier: one can simply use breadth first search. Maintain a priority
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FINDING THE k SHORTEST PATHS 655

queue of paths, initially containing the single zero-edge path from s to itself; then
repeatedly remove the shortest path from the priority queue, add it to the list of
output paths, and add all one-edge extensions of that path to the priority queue.
If the graph has bounded degree d, a breadth first search from s until k paths are
found takes time O(dk + k log k); note that this bound does not depend in any way
on the overall size of the graph. If the paths need not be output in order by length,
Frederickson’s heap selection algorithm [26] can be used to speed this up to O(dk).

The main idea of our k-shortest-paths algorithm, then, is to translate the problem
from one with two terminals, s and t, to a problem with only one terminal. One
can find paths from s to t simply by finding paths from s to any other vertex and
concatenating a shortest path from that vertex to t. However, we cannot simply apply
this idea directly, for several reasons: (1) There is no obvious relation between the
ordering of the paths from s to other vertices and the ordering of the corresponding
paths from s to t. (2) Each path from s to t may be represented in many ways as a
path from s to some vertex followed by a shortest path from that vertex to t. (3) Our
input graph may not have bounded degree.

In outline, we deal with problem (1) by using a potential function to modify the
edge lengths in the graph so that the length of any shortest path to t is zero; therefore
concatenating such paths to paths from s will preserve the ordering of the path lengths.
We deal with problem (2) by considering only paths from s in which the last edge is
not in a fixed shortest path tree to t; this leads to the implicit representation we use
to represent each path in constant space. (Ideas similar to these appear also in [46].)
However, this solution gives rise to a fourth problem: (4) We do not wish to spend
much time searching edges of the shortest path tree, as this time can not be charged
against newly found s-t paths.

The heart of our algorithm is the solution to problems (3) and (4). Our idea
is to construct a binary heap for each vertex, listing the edges that are not part of
the shortest path tree and that can be reached from that vertex by shortest-path-
tree edges. In order to save time and space, we use persistence techniques to allow
these heaps to share common structures with each other. In the basic version of the
algorithm, this collection of heaps forms a bounded-degree graph havingO(m+n log n)
vertices. Later we show how to improve the time and space bounds of this part of the
algorithm using tree decomposition techniques of Frederickson [25].

2.1. Preliminaries. We assume throughout that our input graph G has n ver-
tices and m edges. We allow self-loops and multiple edges, so m may be larger than(
n
2

)
. The length of an edge e is denoted `(e). By extension we can define the length

`(p) for any path in G to be the sum of its edge lengths. The distance d(s, t) for a
given pair of vertices is the length of the shortest path starting at s and ending at t;
with the assumption of no negative cycles, this is well defined. Note that d(s, t) may
be unequal to d(t, s). The two endpoints of a directed edge e are denoted tail(e) and
head(e); the edge is directed from tail(e) to head(e).

For our purposes, a heap is a binary tree in which vertices have weights, satisfying
the restriction that the weight of any vertex is less than or equal to the minimum
weight of its children. We will not always care whether the tree is balanced (and in
some circumstances we will allow trees with infinite depth). More generally, a D-heap
is a degree-D tree with the same weight-ordering property; thus the usual heaps above
are 2-heaps. As is well known (e.g., see [62]), any set of values can be placed into a
balanced heap by the heapify operation in linear time. In a balanced heap, any new
element can be inserted in logarithmic time. We can list the elements of a heap in
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656 DAVID EPPSTEIN
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Fig. 1. (a) Example digraph G with edge lengths and specified terminals; (b) shortest path tree
T and distances to t in G.

order by weight, taking logarithmic time to generate each element, simply by using
breadth first search.

2.2. Implicit representation of paths. As discussed earlier, our algorithm
does not output each path it finds explicitly as a sequence of edges; instead it uses an
implicit representation, described in this section.

The ith shortest path in a digraph may have Ω(ni) edges, so the best time we
could hope for in an explicit listing of shortest paths would be O(k2n). Our time
bounds are faster than this, so we must use an implicit representation for the paths.
However, our representation is not a serious obstacle to use of our algorithm: we can
list the edges of any path we output in time proportional to the number of edges, and
simple properties (such as the length) are available in constant time. Similar implicit
representations have previously been used for related problems such as the k minimum
weight spanning trees [22, 21, 25]. Further, previous papers on the k-shortest-path
problem give time bounds omitting the O(k2n) term above, so these papers must
tacitly or not be using an implicit representation.

Our representation is similar in spirit to those used for the k minimum weight
spanning trees problem: for that problem, each successive tree differs from a previously
listed tree by a swap, the insertion of one edge and removal of another edge. The
implicit representation consists of a pointer to the previous tree and a description of
the swap. For the shortest path problem, each successive path will turn out to differ
from a previously listed path by the inclusion of a single edge not part of a shortest
path tree and appropriate adjustments in the portion of the path that involves shortest
path tree edges. Our implicit representation consists of a pointer to the previous path,
and a description of the newly added edge.

Given s and t in a digraph G (Figure 1(a)), let T be a single-destination shortest
path tree with t as destination (Figure 1(b); this is the same as a single source shortest
path tree in the graph GR formed by reversing each edge of G). We can compute T
in time O(m + n log n) [27]. We denote by nextT (v) the next vertex reached after v
on the path from v to t in T .

Given an edge e in G, define

δ(e) = `(e) + d(head(e), t)− d(tail(e), t).

Intuitively, δ(e) measures how much distance is lost by being “sidetracked” along e
instead of taking a shortest path to t. The values of δ for our example graph are
shown in Figure 2(a).
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FINDING THE k SHORTEST PATHS 657
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Fig. 2. (a) Edges in G− T labeled by δ(e) (δ(e) = 0 for edges in T ); (b) path p, sidetracks(p)
(the heavy edges, labeled 3, 4, and 9), and prefpath(p) (differing from p in the two dashed edges;
sidetracks(prefpath(p)) consists of the two edges labeled 3 and 4).

Lemma 1. For any e ∈ G, δ(e) ≥ 0. For any e ∈ T , δ(e) = 0.
For any path p in G, formed by a sequence of edges, some edges of p may be in

T , and some others may be in G− T . Any path p from s to t is uniquely determined
solely by the subsequence sidetracks(p) of its edges in G−T (Figure 2(b)). For, given
a pair of edges in the subsequence, there is a uniquely determined way of inserting
edges from T so that the head of the first edge is connected to the tail of the second
edge. As an example, the shortest path in T from s to t is represented by the empty
sequence. A sequence of edges in G − T may not correspond to any s-t path, if it
includes a pair of edges that cannot be connected by a path in T . If S = sidetracks(p),
we define path(S) to be the path p.

Our implicit representation will involve these sequences of edges in G − T . We
next show how to recover `(p) from information in sidetracks(p).

For any nonempty sequence S of edges in G − T , let prefix(S) be the sequence
formed by the removal of the last edge in S. If S = sidetracks(p), then we denote
this last sidetrack edge by lastsidetrack(p); prefix(S) will define a path prefpath(p) =
path(prefix(S)) (Figure 2(b)).

Lemma 2. For any path p from s to t,

`(p) = d(s, t) +
∑

e∈sidetracks(p)

δ(e) = d(s, t) +
∑
e∈p

δ(e).

Lemma 3. For any path p from s to t in G, for which sidetracks(p) is nonempty,
`(p) ≥ `(prefpath(p)).

Our representation of a path p in the list of paths produced by our algorithm will
then consist of two components:

• the position in the list of prefpath(p).
• edge lastsidetrack(p).

Although the final version of our algorithm, which uses Frederickson’s heap selection
technique, does not necessarily output paths in sorted order, we will nevertheless be
able to guarantee that prefpath(p) is output before p. One can easily recover p itself
from our representation in time proportional to the number of edges in p. The length
`(p) for each path can easily be computed as δ(lastsidetrack(p)) + `(prefpath(p)). We
will see later that we can also compute many other simple properties of the paths in
constant time per path.

2.3. Representing paths by a heap. The representation of s-t paths discussed
in the previous section gives a natural tree of paths, in which the parent of any path p
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658 DAVID EPPSTEIN

{}

{3}

{3,1} {3,4}

{3,4,6} {3,4,9}

{6} {10}

{3,1,9}

Fig. 3. Tree of paths, labeled by sidetracks(p).

is prefpath(p) (Figure 3). The degree of any node in this path tree is at most m, since
there can be at most one child for each possible value of lastsidetrack(p). The possible
values of lastsidetrack(q) for paths q that are children of p are exactly those edges in
G−T that have tails on the path from head(lastsidetrack(p)) to t in the shortest path
tree T .

If G contains cycles, the path tree is infinite. By Lemma 3, the path tree is heap-
ordered. However, since its degree is not necessarily constant, we cannot directly apply
breadth first search (nor Frederickson’s heap selection technique, described later in
Lemma 8) to find its k minimum values. Instead we form a heap by replacing each
node p of the path tree with an equivalent bounded-degree subtree (essentially, a heap
of the edges with tails on the path from head(lastsidetrack(p)) to t, ordered by δ(e)).
We must also take care that we do this in such a way that the portion of the path
tree explored by our algorithm can be easily constructed.

For each vertex v we wish to form a heap HG(v) for all edges with tails on the
path from v to t, ordered by δ(e). We will later use this heap to modify the path tree
by replacing each node p with a copy of HG(head(lastsidetrack(p))).

Let out(v) denote the edges in G− T with tails at v (Figure 4(a)). We first build
a heap Hout(v) for each vertex v of the edges in out(v) (Figure 4(b)). The weights
used for the heap are simply the values δ(e) defined earlier. Hout(v) will be a 2-heap
with the added restriction that the root of the heap only has one child. It can be built
for each v in time O(|out(v)|) by letting the root outroot(v) be the edge minimizing
δ(e) in out(v) and letting its child be a heap formed by heapification of the rest of the
edges in out(v). The total time for this process is

∑
O(|out(v)|) = O(m).

We next form the heap HG(v) by merging all heaps Hout(w) for w on the path in
T from v to t. More specifically, for each vertex v we merge Hout(v) intoHG(nextT (v))
to form HG(v). We will continue to need HG(nextT (v)), so this merger should be done
in a persistent (nondestructive) fashion.

We guide this merger of heaps using a balanced heap HT (v) for each vertex v, con-
taining only the roots outroot(w) of the heaps Hout(w), for each w on the path from
v to t. HT (v) is formed by inserting outroot(v) into HT (nextT (v)) (Figure 5(a)). To
perform this insertion persistently, we create new copies of the nodes on the path up-
dated by the insertion (marked by asterisks in Figure 5(a)), with appropriate pointers
to the other, unchanged members of HT (nextT (v)). Thus we can store HT (v) without
changing HT (nextT (v)) by using an additional O(log n) words of memory to store only
the nodes on that path.

We now form HG(v) by connecting each node outroot(w) in HT (v) to an additional
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Fig. 4. (a) Portion of a shortest path tree, showing out(v) and corresponding values of δ; (b)
Hout(v).

4*
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17*

4*

13*17

17*
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19
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(a) (b)

Fig. 5. (a) HT (v) with asterisks marking path of nodes updated by insertion of outroot(v) into
HT (nextT (v)); (b) D(G) has a node for each marked node in Figure 5(a) and each nonroot node in
Figure 4(b).

subtree beyond the two it points to in HT (v), namely, to the rest of heap Hout(w).
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660 DAVID EPPSTEIN

HG(v) can be constructed at the same time as we construct HT (v), with a similar
amount of work. HG(v) is thus a 3-heap, as each node includes at most three children,

either two from HT (v) and one from Hout(w) or none from HT (v) and two from
Hout(w).

We summarize the construction so far in a form that emphasizes the shared struc-
ture in the various heaps HG(v).

Lemma 4. In time O(m + n log n) we can construct a DAG D(G) and a map
from vertices v ∈ G to h(v) ∈ D(G), with the following properties:

• D(G) has O(m+ n log n) vertices.
• Each vertex in D(G) corresponds to an edge in G− T .
• Each vertex in D(G) has out-degree at most 3.
• The vertices reachable in D(G) from h(v) form a 3-heap HG(v) in which the

vertices of the heap correspond to edges of G− T with tails on the path in T
from v to t, in heap order by the values of δ(e).

Proof. The vertices in D(G) come from two sources: heaps Hout(v) and HT (v).
Each node in Hout(v) corresponds to a unique edge in G − T , so there are at most
m − n + 1 nodes coming from heaps Hout(v). Each vertex of G also contributes
blog2 ic nodes from heaps HT (v), where i is the length of the path from the vertex to
t, 1 + blog2 ic measures the number of balanced binary heap nodes that need to be
updated when inserting outroot(v) into HT (nextT (v)), and we subtract one because
outroot(v) itself was already included in our total for Hout(v). In the worst case, T is
a path and the total contribution is at most

∑
iblog2 ic ≤ n log2 n− cn, where c varies

between roughly 1.91 and 2 depending on the ratio of n to the nearest power of two.
Therefore the total number of nodes in D(G) is at most m+ n log2 n− (c+ 1)n. The
degree bound follows from the construction, and it is straightforward to construct
D(G) as described above in constant time per node, after computing the shortest
path tree T in time O(m+ n log n) using Fibonacci heaps [27].

Map h(v) simply takes v to the root of HG(v). For any vertex v in D(G), let δ(v)
be a shorthand for δ(e), where e is the edge in G corresponding to v. By construction,
the nodes reachable from h(v) are those in HT (v) together with, for each such node
w, the rest of the nodes in Hout(w); HT (v) was constructed to correspond exactly to
the vertices on the path from v to t, and Hout(w) represents the edges with tails at
each vertex, so together these reachable nodes represent all edges with tails on the
path. Each edge (u, v) in D(G) corresponds to an edge either in some HT (w) or in
some Hout(w), and in either case the heap ordering for D(G) is a consequence of the
ordering in these smaller heaps.

D(G) is shown in Figure 5(b). The nodes reachable from s in D(G) form a
structure HG(s) representing the paths differing from the original shortest path by
the addition of a single edge in G− T . We now describe how to augment D(G) with
additional edges to produce a graph which can represent all s-t paths, not just those
paths with a single edge in G− T .

We define the path graph P (G) as follows. The vertices of P (G) are those of D(G),
with one additional vertex, the root r = r(s). The vertices of P (G) are unweighted,
but the edges are given lengths. For each directed edge (u, v) in D(G), we create the
edge between the corresponding vertices in P (G), with length δ(v) − δ(u). We call
such edges heap edges. For each vertex v in P (G), corresponding to an edge in G−T
connecting some pair of vertices u and w, we create a new edge from v to h(w) in
P (G), having as its length δ(h(w)). We call such edges cross edges. We also create
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FINDING THE k SHORTEST PATHS 661

an initial edge between r and h(s), having as its length δ(h(s)).
P (G) has O(m + n log n) vertices, each with out-degree at most four. It can be

constructed in time O(m+ n log n).
Lemma 5. There is a one-to-one length-preserving correspondence between s-t

paths in G, and paths starting from r in P (G).
Proof. Recall that an s-t path p in G is uniquely defined by sidetracks(p), the

sequence of edges from p in G − T . We now show that for any such sequence,
there corresponds a unique path from r in P (G) ending at a node corresponding to
lastsidetrack(p), and conversely any path from r in P (G) corresponds to sidetracks(p)
for some path p.

Given a path p in G, we construct a corresponding path p′ in P (G) as follows. If
sidetracks(p) is empty (i.e., p is the shortest path), we let p′ consist of the single node
r. Otherwise, form a path q′ in P (G) corresponding to prefpath(p) by induction on the
length of sidetracks(p). By induction, q′ ends at a node of P (G) corresponding to edge
(u, v) = lastsidetrack(prefpath(p)). When we formed P (G) from D(G), we added an
edge from this node to h(v). Since lastsidetrack(p) has its tail on the path in T from
v to t, it corresponds to a unique node in HG(v), and we form p′ by concatenating
q′ with the path from h(v) to that node. The edge lengths on this concatenated
path telescope to δ(lastsidetrack(p)), and `(p) = `(prefpath(p)) + `(lastsidetrack(p))
by Lemma 2, so by induction `(p) = `(q′) + `(lastsidetrack(p)) = `(p′).

Conversely, to construct an s-t path in G from a path p′ in P (G), we construct a
sequence of edges in G, pathseq(p′). If p′ is empty, pathseq(p′) is also empty. Otherwise
pathseq(p′) is formed by taking in sequence the edges in G corresponding to tails of
cross edges in p′ and adding at the end of the sequence the edge in G corresponding
to the final vertex of p′. Since the nodes of P (G) reachable from the head of each
cross edge (u, v) are exactly those in HG(v), each successive edge added to pathseq(p′)
is on the path in T from v to t, and pathseq(p′) is of the form sidetracks(p) for some
path p in G.

Lemma 6. In O(m+ n log n) time we can construct a graph P (G) with a distin-
guished vertex r, having the following properties.

• P (G) has O(m+ n log n) vertices.
• Each vertex of P (G) has out-degree at most four.
• Each edge of P (G) has nonnegative weight.
• There is a one-to-one correspondence between s-t paths in G and paths start-

ing from r in P (G).
• The correspondence preserves lengths of paths in that length ` in P (G) cor-

responds to length d(s, t) + ` in G.
Proof. The bounds on size, time, and out-degree follow from Lemma 4, and the

nonnegativity of edge weights follows from the heap ordering proven in that lemma.
The correctness of the correspondence between paths in G and in P (G) is shown
above in Lemma 5.

To complete our construction, we find from the path graph P (G) a 4-heap H(G),
so that the nodes in H(G) represent paths in G. H(G) is constructed by forming a
node for each path in P (G) rooted at r. The parent of a node is the path with one
fewer edge. Since P (G) has out-degree four, each node has at most four children.
Weights are heap-ordered, and the weight of a node is the length of the corresponding
path.

Lemma 7. H(G) is a 4-heap in which there is a one-to-one correspondence
between nodes and s-t paths in G, and in which the length of a path in G is d(s, t)
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662 DAVID EPPSTEIN

plus the weight of the corresponding node in H(G).
We note that, if an algorithm explores a connected region of O(k) nodes in H(G),

it can represent the nodes in constant space by assigning them numbers and indicating
for each node its parent and the additional edge in the corresponding path of P (G).
The children of a node are easy to find simply by following appropriate out-edges in
P (G), and the weight of a node is easy to compute from the weight of its parent.
It is also easy to maintain along with this representation the corresponding implicit
representation of s-t paths in G.

2.4. Finding the k shortest paths.
Theorem 1. In time O(m+ n log n) we can construct a data structure that will

output the shortest paths from s to t in a graph in order by weight, taking time O(log i)
to output the ith path.

Proof. We apply breadth first search to P (G), as described at the start of the
section, and translate the search results to paths using the correspondence described
above.

We next describe how to compute paths from s to all n vertices of the graph.
In fact our construction solves more easily the reverse problem of finding paths from
each vertex to the destination t. The construction of P (G) is as above, except that
instead of adding a single root r(s) connected to h(s), we add a root r(v) for each
vertex v ∈ G. The modification to P (G) takes O(n) time. Using the modified P (G),
we can compute a heap Hv(G) of paths from each v to t and compute the k smallest
such paths in time O(k).

Theorem 2. Given a source vertex s in a digraph G, we can find in time O(m+
n log n + kn log k) an implicit representation of the k shortest paths from s to each
other vertex in G.

Proof. We apply the construction above to GR, with s as destination. We form
the modified path graph P (GR), find for each vertex v a heap Hv(G

R) of paths in
GR from v to s, and apply breadth first search to this heap. Each resulting path
corresponds to a path from s to v in G.

3. Improved space and time. The basic algorithm described above takes time
O(m + n log n + k log k), even if a shortest path tree has been given. If the graph is
sparse, the n log n term makes this bound nonlinear. This term comes from two
parts of our method, Dijkstra’s shortest path algorithm and the construction of P (G)
from the tree of shortest paths. But for certain graphs, or with certain assumptions
about edge lengths, shortest paths can be computed more quickly than O(m+n log n)
[2, 28, 33, 36], and in these cases we would like to speed up our construction of P (G)
to match these improvements. In other cases, k may be large and the k log k term
may dominate the time bound; again we would like to improve this nonlinear term.
In this section we show how to reduce the time for our algorithm to O(m + n + k),
assuming a shortest path tree is given in the input. As a consequence we can also
improve the space used by our algorithm.

3.1. Faster heap selection. The following result is due to Frederickson [26].
Lemma 8. We can find the k smallest weight vertices in any heap in time O(k).
Frederickson’s result applies directly to 2-heaps, but we can easily extend it to

D-heaps for any constant D. One simple method of doing this involves forming a
2-heap from the given D-heap by making D− 1 copies of each vertex, connected in a
binary tree with the D children as leaves, and breaking ties in such a way that the Dk
smallest weight vertices in the 2-heap correspond exactly to the k smallest weights in
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FINDING THE k SHORTEST PATHS 663

(a) (b)

Fig. 6. (a) Restricted partition of order 2; (b) multilevel partition.

the D-heap.
By using this algorithm in place of breadth first search, we can reduce the

O(k log k) term in our time bounds to O(k).

3.2. Faster path heap construction. Recall that the bottleneck of our algo-
rithm is the construction of HT (v), a heap for each vertex v in G of those vertices on
the path from v to t in the shortest path tree T . The vertices in HT (v) are in heap
order by δ(outroot(u)). In this section we consider the abstract problem, given a tree
T with weighted nodes, of constructing a heap HT (v) for each vertex v of the other
nodes on the path from v to the root of the tree. The construction of Lemma 4 solves
this problem in time and space O(n log n); here we give a more efficient but also more
complicated solution.

By introducing dummy nodes with large weights, we can assume without loss of
generality that T is binary and that the root t of T has indegree one. We will also
assume that all vertex weights in T are distinct; this can be achieved at no loss in
asymptotic complexity by use of a suitable tie-breaking rule. We use the following
technique of Frederickson [25].

Definition 1. A restricted partition of order z with respect to a rooted binary
tree T is a partition of the vertices of V such that

1. each set in the partition contains at most z vertices;
2. each set in the partition induces a connected subtree of T ;
3. for each set S in the partition, if S contains more than one vertex, then there

are at most two tree edges having one endpoint in S;
4. no two sets can be combined and still satisfy the other conditions.

In general such a partition can easily be found in linear time by merging sets until
we get stuck. However for our application, z will always be 2 (Figure 6(a)), and by
working from the bottom up we can find an optimal partition in linear time.

Lemma 9 (Frederickson [25]). In linear time we can find an order-2 partition of
a binary tree T for which there are at most 5n/6 sets in the partition.

Contracting each set in a restricted partition gives again a binary tree. We form
a multilevel partition [25] by recursively partitioning this contracted binary tree (Fig-
ure 6(b)). We define a sequence of trees Ti as follows. Let T0 = T . For any i > 0, let
Ti be formed from Ti−1 by performing a restricted partition as above and contracting
the resulting sets. Then |Ti| = O((5/6)in).

For any set S of vertices in Ti−1 contracted to form a vertex v in Ti, define
nextlevel(S) to be the set in the partition of Ti containing S. We say that S is an
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664 DAVID EPPSTEIN

interior set if it is contracted to a degree two vertex. Note that if t has indegree one,
the same is true for the root of any Ti, so t is not part of any interior set, and each
interior set has one incoming and one outgoing edge. Since Ti is a contraction of T ,
each edge in Ti corresponds to an edge in T . Let e be the outgoing edge from v in Ti;
then we define rootpath(S) to be the path in T from head(e) to t. If S is an interior
set, with a single incoming edge e′, we let inpath(S) be the path in T from head(e′)
to tail(e).

Define an m-partial heap to be a pair (M,H), where H is a heap and M is a set
of m elements each smaller than all nodes in H. If H is empty, M can have fewer
than m elements and we will still call (M,H) an m-partial heap.

Let us outline the structures used in our algorithm, before describing the details
of computing these structures. We first find a partial heap (M1(S), H1(S)) for the
vertices of T in each path inpath(S). Although our algorithm performs an interleaved
construction of all of these sets at once, it is easiest to define them from the top
down by defining M1(S) for a set S in the partition of Ti−1 in terms of similar sets
in Ti and higher levels of the multilevel partition. Specifically, let M2(S) denote
those elements in M1(S′) for those S′ containing S at higher levels of the multilevel
partition, and let k = max(i+2, |M2(S)|+1); then we define M1(S) to be the vertices
in inpath(S) having the k smallest vertex weights. Our algorithm for computing
H1(S) from the remaining vertices on inpath(S) involves an intermediate heap H2(S′)
formed by adding the vertices in M1(S′)−M1(S) to H1(S′), where S′ consists of one
or both of the subsets of S contracted at the next lower level of the decomposition
and containing vertices of inpath(S). After a bottom-up computation of M1, H1, and
H2, we then perform a top-down computation of a family of (i + 1)-partial heaps,
(M3(S), H3(S)); M3 is formed by removing some elements from M1 and H3 is formed
by adding those elements to H1. Finally, the desired output HT (v) can be constructed
from the 1-partial heap (M3(v), H3(v)) at level T0 in the decomposition.

Before describing our algorithms, let us bound a quantity useful in their analysis.
Let mi denote the sum of |M1(S)| over sets S contracted in Ti.

Lemma 10. For each i, mi = O(i|Ti|).
Proof. By the definition of M1(S) above,

mi =
∑
S

max(i+ 2, |M2(S)|+ 1) ≤
∑
S

|M2(S)|+ i+ 2 ≤ (i+ 2)|Ti|+
∑
S

|M2(S)|.

All sets M2(S) appearing in this sum are disjoint, and all are included in mi+1, so we
can simplify this formula to

mi ≤ (i+ 2)|Ti|+mi+1 ≤
∑
j≥i

(j + 2)|Tj | ≤
∑
j≥i

(j + 2)

(
5

6

)j−i
|Ti| = O(i|Ti|).

We use the following data structure to compute the sets M1(S) (which, recall, are
sets of low-weight vertices on inpath(S)). For each interior set S, we form a priority
queue Q(S), from which we can retrieve the smallest weight vertex on inpath(S) not
yet in M1(S). This data structure is very simple: if only one of the two subsets forming
S contains vertices on inpath(S), we simply copy the minimum-weight vertex on that
subset’s priority queue, and otherwise we compare the minimum-weight vertices in
each subset’s priority queue and select the smaller of the two weights. If one of the
two subsets’ priority queue values change, this structure can be updated simply by
repeating this comparison.
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FINDING THE k SHORTEST PATHS 665

We start by setting all the sets M1(S) to be empty, then progress from the top
down through the multilevel decomposition, testing for each set S in each tree Ti (in
decreasing order of i) whether we have already added enough members to M1(S). If
not, we add elements one at a time until there are enough to satisfy the definition
above of |M1(S)|. Whenever we add an element to M1(S) we add the same element to
M1(S′) for each lower level subset S′ to which it also belongs. An element is added by
removing it from Q(S) and from the priority queues of the sets at each lower level. We
then update the queues bottom up, recomputing the head of each queue and inserting
it in the queue at the next level.

Lemma 11. The amount of time to compute M1(S) for all sets S in the multilevel
partition, as described above, is O(n).

Proof. By Lemma 10, the number of operations in priority queues for subsets of
Ti is O(i|Ti|). So the total time is

∑
O(i|Ti|) = O(n

∑
i(5/6)i) = O(n).

We next describe how to compute the heaps H1(S) for the vertices on inpath(S)
that have not been chosen as part of M1(S). For this stage we work from the bottom
up. Recall that S corresponds to one or two vertices of Ti; each vertex corresponds
to a set S′ contracted at a previous level of the multilevel partition. For each such S′

along the path in S we will have already formed the partial heap (M1(S′), H1(S′)).
We let H2(S′) be a heap formed by adding the vertices in M1(S′)−M1(S) to H1(S′).
Since M1(S′)−M1(S) consists of at least one vertex (because of the requirement that
|M1(S′)| ≥ |M1(S)|+1), we can form H2(S′) as a 2-heap in which the root has degree
one.

If S consists of a single vertex we then let H1(S) = H2(S′); otherwise we form
H1(S) by combining the two heaps H2(S′) for its two children. The time is constant
per set S or linear overall.

We next compute another collection of partial heaps (M3(S), H3(S)) of vertices in
rootpath(S) for each set S contracted at some level of the tree. If S is a set contracted
to a vertex in Ti, we let (M3(S), H3(S)) be an (i + 1)-partial heap. In this phase
of the algorithm, we work top down. For each set S, consisting of a collection of
vertices in Ti−1, we use (M3(S), H3(S)) to compute for each vertex S′ the partial
heap (M3(S′), H3(S′)).

If S consists of a single set S′, or if S′ is the parent of the two vertices in S,
we let M3(S′) be formed by removing the minimum weight element from M3(S) and
we let H3(S′) be formed by adding that minimum weight element as a new root to
H3(S).

In the remaining case, if S′ and parent(S′) are both in S, we form M3(S′) by
taking the i+ 1 minimum values in M1(parent(S′))∪M3(parent(S′)). The remaining
values in M1(parent(S′))∪M3(parent(S′))−M3(S′) must include at least one value v
greater than everything inH1(parent(S′)). We formH3(S′) by sorting those remaining
values into a chain, together with the root of heap H3(parent(S′)), and connecting v
to H1(parent(S′)).

To complete the process, we compute the heaps HT (v) for each vertex v. Each
such vertex is in T0, so the construction above has already produced a 1-partial heap
(M3(v), H3(v)). We must add the value for v itself and produce a true heap, both of
which are easy.

Lemma 12. Given a tree T with weighted nodes, we can construct for each vertex
v a 2-heap HT (v) of all nodes on the path from v to the root of the tree, in total time
and space O(n).

Proof. The time for constructing (M1, H1) has already been analyzed. The only
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666 DAVID EPPSTEIN

remaining part of the algorithm that does not take constant time per set is the time
for sorting remaining values into a chain, in time O(i log i) for a set at level i of the
construction. The total time at level i is thus O(|Ti|i log i) which, summed over all i,
gives O(n).

Applying this technique in place of Lemma 4 gives the following result.
Theorem 3. Given a digraph G and a shortest path tree from a vertex s, we

can find an implicit representation of the k shortest s-t paths in G, in time and space
O(m+ n+ k).

4. Maintaining path properties. Our algorithm can maintain along with the
other information in H(G) various forms of simple information about the correspond-
ing s-t paths in G.

We have already seen that H(G) allows us to recover the lengths of paths. How-
ever, lengths are not as difficult as some other information might be to maintain, since
they form an additive group. We used this group property in defining δ(e) to be a
difference of path lengths, and in defining edges of P (G) to have weights that were
differences of quantities δ(e).

We now show that we can in fact keep track of any quantity formed by combining
information from the edges of the path using any monoid. We assume that there is
some given function taking each edge e to an element value(e) of a monoid, and that
given two edges e and f we can compute the composite value value(e) · value(f) in
constant time. By associativity of monoids, the value value(p) of a path p is well
defined. Examples of such values include the path length and number of edges in a
path (for which composition is real or integer addition) and the longest or shortest
edge in a path (for which composition is minimization or maximization).

Recall that for each vertex we compute a heap HG(v) representing the sidetracks
reachable along the shortest path from v to t. For each node x in HG(v) we maintain
two values: pathstart(x) pointing to a vertex on the path from v to t, and value(x)
representing the value of the path from pathstart(x) to the head of the sidetrack edge
represented by x. We require that pathstart of the root of the tree is v itself, that
pathstart(x) be a vertex between v and the head of the sidetrack edge representing
x, and that all descendents of x have pathstart values on the path from pathstart(x)
to t. For each edge in HG(v) connecting nodes x and y we store a further value,
representing the value of the path from pathstart(x) to pathstart(y). We also store for
each vertex in G the value of the shortest path from v to t.

Then as we compute paths from the root in the heap H(G), representing s-t
paths in G, we can keep track of the value of each path merely by composing the
stored values of appropriate paths and nodes in the path in H(G). Specifically, when
we follow an edge in a heap HG(v) we include the value stored at that edge, and
when we take a sidetrack edge e from a node x in HG(v) we include value(x) and
value(e). Finally we include the value of the shortest path to t from the tail of the
last sidetrack edge to t. The portion of the value except for the final shortest path can
be updated in constant time from the same information for a shorter path in H(G),
and the remaining shortest path value can be included again in constant time, so this
computation takes O(1) time per path found.

The remaining difficulty is computing the values value(x), pathstart(x), and also
the values of edges in HG(v).

In the construction of Lemma 4, we need only compute these values for the
O(log n) nodes by which HG(v) differs from HG(parent(v)), and we can compute each
such value as we update the heap in constant time per value. Thus the construction

D
ow

nl
oa

de
d 

04
/2

8/
23

 to
 1

51
.4

8.
22

3.
14

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



FINDING THE k SHORTEST PATHS 667

here goes through with unchanged complexity.
In the construction of Lemma 12, each partial heap at each level of the con-

struction corresponds to all sidetracks with heads taken from some path in the short-
est path tree. As each partial heap is formed the corresponding path is formed by

concatenating two shorter paths. We let pathstart(x) for each root of a heap be equal
to the endpoint of this path farthest from t. We also store for each partial heap the
near endpoint of the path, and the value of the path. Then these values can all be
updated in constant time when we merge heaps.

Theorem 4. Given a digraph G and a shortest path tree from a vertex s, and
given a monoid with values value(e) for each edge e ∈ G, we can compute value(p) for
each of the k shortest s-t paths in G, in time and space O(m+ n+ k).

5. Dynamic programming applications. Many optimization problems solved
by dynamic programming or more complicated matrix searching techniques can be
expressed as shortest path problems. Since the graphs arising from dynamic programs
are typically acyclic, we can use our algorithm to find longest as well as shortest paths.
We demonstrate this approach by a few selected examples.

5.1. The knapsack problem. The optimization 0-1 knapsack problem (or knap-
sack problem for short) consists of placing “objects” into a “knapsack” that has room
for only a subset of the objects, and maximizing the total value of the included ob-
jects. Formally, one is given integers L, ci, and wi (0 ≤ i < n), and one must find
xi ∈ {0, 1} satisfying

∑
xici ≤ L and maximizing

∑
xiwi. Dynamic programming

solves the problem in time O(nL); Dai et al. [15] show how to find the k best solutions
in time O(knL). We now show how to improve this to O(nL+ k) using longest paths
in a DAG.

Let directed acyclic graph G have nL+L+ 2 vertices: two terminals s and t and
(n + 1)L other vertices with labels (i, j), 0 ≤ i ≤ n and 0 ≤ j ≤ L. Draw an edge
from s to each (0, j) and from each (n, j) to t, each having length 0. From each (i, j)
with i < n, draw two edges: one to (i+ 1, j) with length 0, and one to (i+ 1, j + ci)
with length wi (omit this last edge if j + ci > L).

There is a simple one-to-one correspondence between s-t paths and solutions to
the knapsack problem: given a path, define xi to be 1 if the path includes an edge
from (i, j) to (i+ 1, j + ci); instead let xi be 0 if the path includes an edge from (i, j)
to (i+ 1, j). The length of the path is equal to the corresponding value of

∑
xiwi, so

we can find the k best solutions simply by finding the k longest paths in the graph.
Theorem 5. We can find the k best solutions to the knapsack problem as defined

above, in time O(nL+ k).

5.2. Sequence alignment. The sequence alignment or edit distance problem is
that of matching the characters in one sequence against those of another, obtaining
a matching of minimum cost where the cost combines terms for mismatched and
unmatched characters. This problem and many of its variations can be solved in
time O(xy) (where x and y denote the lengths of the two sequences) by a dynamic
programming algorithm that takes the form of a shortest path computation in a grid
graph.

Byers and Waterman [8, 64] describe a problem of finding all near-optimal solu-
tions to sequence alignment and similar dynamic programming problems. Essentially
their problem is that of finding all s-t paths with length less than a given bound
L. They describe a simple depth first search algorithm for this problem, which is
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especially suited for grid graphs although it will work in any graph and although the
authors discuss it in terms of general DAGs. In a general digraph their algorithm
would use time O(k2m) and space O(km). In the acyclic case discussed in the paper,
these bounds can be reduced to O(km) and O(m). In grid graphs its performance is
even better: time O(xy + k(x+ y)) and space O(xy). Naor and Brutlag [46] discuss
improvements to this technique that among other results include a similar time bound
for k shortest paths in grid graphs.

We now discuss the performance of our algorithm for the same length-limited
path problem. In general one could apply any k shortest paths algorithm together
with a doubling search to find the value of k corresponding to the length limit, but
in our case the problem can be solved more simply: simply replace the breadth first
search in H(G) with a length-limited depth first search.

Theorem 6. We can find the k s-t paths in a graph G that are shorter than a
given length limit L, in time O(m+n+k) once a shortest path tree in G is computed.

Even for the grid graphs arising in sequence analysis, our O(xy + k) bound im-
proves by a factor of O(x+ y) the times of the algorithms of Byers and Waterman [8]
and Naor and Brutlag [46].

5.3. Inscribed polygons. We next discuss the problem of, given an n-vertex
convex polygon, finding the “best” approximation to it by an r-vertex polygon, r < n.
This arises, e.g., in computer graphics, in which significant speedups are possible by
simplifying the shapes of faraway objects. To our knowledge the “k best solution”
version of the problem has not been studied before. We include it as an example in
which the best-known algorithms for the single solution case do not appear to be of the
form needed by our techniques; however, one can transform an inefficient algorithm
for the original problem into a shortest path problem that with our techniques gives
an efficient solution for large enough k.

We formalize the problem as that of finding the maximum area or perimeter
convex r-gon inscribed in a convex n-gon. The best known solution takes time
O(n log n + n

√
r log n) [1]. However, this algorithm does not appear to be in the

form of a shortest path problem, as needed by our techniques.
Instead we describe a less efficient technique for solving the problem by using

shortest paths. Number the n-gon vertices v1, v2, etc. Suppose we know that vi is
the lowest numbered vertex to be part of the optimal r-gon. We then form a DAG Gi
with O(rn) vertices and O(rn2) edges, in r levels. In each level we place a copy of each
vertex vj , connected to all vertices with lower numbers in the previous level. Each
path from the copy of vi in the first level of the graph to a vertex in the last level of the
graph has r vertices with numbers in ascending order from vi, and thus corresponds
to an inscribed r-gon. We connect one such graph for each initial vertex vi into one
large graph, by adding two vertices s and t, edges from s to each copy of a vertex vi
at the first level of Gi, and edges from each vertex on level r of each Gi to t. Paths
in the overall graph G thus correspond to inscribed r-gons with any starting vertex.

It remains to describe the edge lengths in this graph. Edges from s to each vi
will have length zero for either definition of the problem. Edges from a copy of vi
at one level to a copy of vj at the next level will have length equal to the Euclidean
distance from vi to vj , for the maximum perimeter version of the problem, and edges
connecting a copy of vj at the last level to t will have length equal to the distance
between vj and the initial vertex vi. Thus the length of a path becomes exactly the
perimeter of the corresponding polygon, and we can find the k best r-gons by finding
the k longest paths.
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Fig. 7. Some short relations in a complicated genealogical database.

For the maximum area problem, we instead let the distance from vi to vj be
measured by the area of the n-gon cut off by a line segment from vi to vj . Thus
the total length of a path is equal to the total area outside the corresponding r-gon.
Since we want to maximize the area inside the r-gon, we can find the k best r-gons
by finding the k shortest paths.

Theorem 7. We can find the k maximum area or perimeter r-gons inscribed in
an n-gon, in time O(rn3 + k).

5.4. Genealogical relations. If one has a database of family relations, one
may often wish to determine how some two individuals in the database are related
to each other. Formalizing this, one may draw a DAG in which nodes represent
people, and an arc connects a parent to each of his or her children. Then each dif-
ferent type of relationship (such as that of being a half-brother, great-aunt, or third
cousin twice removed) can be represented as a pair of disjoint paths from a com-
mon ancestor (or couple forming a pair of common ancestors) to the two related
individuals, with the specific type of relationship being a function of the numbers
of edges in each path and of whether the paths begin at a couple or at a single
common ancestor. In most families, the DAG one forms in this way has a tree-like
structure, and relationships are easy to find. However, in more complicated families
with large amounts of intermarriage, one can be quickly overwhelmed with many dif-
ferent relationships. For instance, in the British royal family, Queen Elizabeth and
her husband Prince Philip are related in many ways, the closest few being second
cousins once removed through King Christian IX of Denmark and his wife Louise,
third cousins through Queen Victoria of England and her husband Albert, and fourth
cousins through Duke Ludwig Friedrich Alexander of Württemberg and his wife Hen-
riette (Figure 7). The single shortest relationship can be found as a shortest path in a
graph formed by combining the DAG with its reversal, but longer paths in this graph
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670 DAVID EPPSTEIN

do not necessarily correspond to disjoint pairs of paths. A program my wife, Diana,
and I wrote, Gene (http://www.ics.uci.edu/~eppstein/gene/), is capable of find-
ing small numbers of relationships quickly using a backtracking search with heuristic
pruning, but Gene starts to slow down when asked to produce larger numbers of
relationships.

We now describe a technique for applying our k-shortest-path algorithm to this
problem, based on a method of Perl and Shiloach [48] for finding shortest pairs of
disjoint paths in DAGs. Given a DAG D, we construct a larger DAG D1 as follows.
We first find some topological ordering of D, and let f(x) represent the position
of vertex x in this ordering. We then construct one vertex of D1 for each ordered
pair of vertices (x, y) (not necessarily distinct) in D. We also add one additional
vertex s in D1. We connect (x, y) to (x, z) in D1 if (y, z) is an arc of D and f(z) >
max(f(x), f(y)). Symmetrically, we connect (x, y) to (z, y) if (x, z) is an arc of D and
f(z) > max(f(x), f(y)). We connect s to all vertices in D1 of the form (v, v).

Lemma 13. Let vertices u and v be given. Then the pairs of disjoint paths in
D from a common ancestor a to u and v are in one-for-one correspondence with the
paths in D1 from s through (a, a) to (u, v).

As a consequence, we can find shortest relationships between two vertices u and
v by finding shortest paths in D1 from s to (u, v).

Theorem 8. Given a DAG with n nodes and m edges, we can construct in
O(mn) time a data structure such that, given any two nodes u and v in a DAG, we
can list (an implicit representation of) the k shortest pairs of vertex-disjoint paths
from a common ancestor to u and v, in time O(k). The same bound holds for listing
all pairs with length less than a given bound (where k is the number of such paths).
Alternately, the pairs of paths can be output in order by total length in time O(log i)
to list the ith pair. As before, our representation allows constant-time computation of
some simple functions of each path, and allows each path to be explicitly generated in
time proportional to its length.

For a proof of Lemma 13 and more details of this application, see [19].

6. Conclusions. We have described algorithms for the k-shortest-paths prob-
lem, improving by an order of magnitude previously known bounds. The asymptotic
performance of the algorithm makes it an especially promising choice in situations
when large numbers of paths are to be generated, and there already exist at least two
implementations: one by Shibuya, Imai, and coworkers [52, 53, 54, 55] and one by
Martins (http://www.mat.uc.pt/~eqvm/eqvm.html).

We list the following as open problems.
• The linear time construction when the shortest path tree is known is rather

complicated. Is there a simpler method for achieving the same result? How
quickly can we maintain heaps HT (v) if new leaves are added to the tree?
(Lemma 4 solves this in O(log n) time per vertex, but it seems that at least
O(log log n) should be possible.)
• As described above, we can find the k best inscribed r-gons in an n-gon, in

time O(rn3 + k). However, the best single-optimum solution has the much
faster time bound O(n log n + n

√
r log n) [1]. Our algorithms for the k best

r-gons are efficient (in the sense that we use constant time per r-gon) only
when k = Ω(rn3). The same phenomenon of overly large preprocessing times
also occurs in our application to genealogical relationship finding: the short-
est relationship can be found in linear time, but our k-shortest-relationship
method takes time O(mn+ k). Can we improve these bounds?
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FINDING THE k SHORTEST PATHS 671

• Are there properties of paths not described by monoids which we can nev-
ertheless compute efficiently from our representation? In particular, how
quickly can we test whether each path generated is simple?

Acknowledgments. I thank Greg Frederickson, Sandy Irani, and George Lueker
for helpful comments on drafts of this paper.

REFERENCES

[1] A. Aggarwal, B. Schieber, and T. Tokuyama, Finding a minimum weight K-link path in
graphs with Monge property and applications, in Proc. 9th Symp. Computational Geometry,
Assoc. for Computing Machinery, 1993, pp. 189–197.

[2] R. K. Ahuja, K. Mehlhorn, J. B. Orlin, and R. E. Tarjan, Faster algorithms for the
shortest path problem, J. Assoc. Comput. Mach., 37 (1990), pp. 213–223.

[3] J. A. Azevedo, M. E. O. Santos Costa, J. J. E. R. Silvestre Madeira, and E. Q. V.
Martins, An algorithm for the ranking of shortest paths, Eur. J. Operational Research, 69
(1993), pp. 97–106.

[4] A. Bako, All paths in an activity network, Mathematische Operationsforschung und Statistik,
7 (1976), pp. 851–858.

[5] A. Bako and P. Kas, Determining the k-th shortest path by matrix method, Szigma, 10 (1977),
pp. 61–66 (in Hungarian).

[6] R. E. Bellman, On a routing problem, Quart. Appl. Math., 16 (1958), pp. 87–90.
[7] A. W. Brander and M. C. Sinclair, A comparative study of k-shortest path algorithms, in

Proc. 11th UK Performance Engineering Workshop for Computer and Telecommunications
Systems, 1995.

[8] T. H. Byers and M. S. Waterman, Determining all optimal and near-optimal solutions when
solving shortest path problems by dynamic programming, Oper. Res., 32 (1984), pp. 1381–
1384.

[9] P. Carraresi and C. Sodini, A binary enumeration tree to find K shortest paths, in Proc.
7th Symp. Operations Research, Methods Oper. Res. 45, Athenäum/Hain/Hanstein, 1983,
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