Exact Pattern Matching on Strings

Chapter 32 of Cormen's book, excluding 32.2 and 32.3

Giulia Bernardini giulia.bernardini@units.it

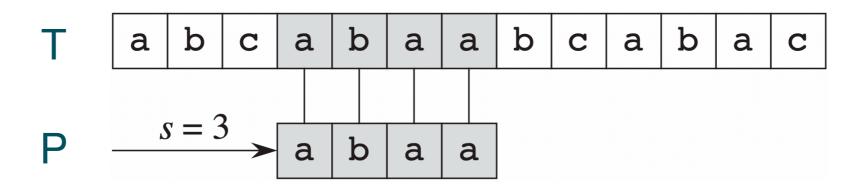
Algorithmic Design a.y. 2022/2023

Pattern Occurrences

Consider two strings, T[1..n] of length n and P[1..m] of length m \leq n, both over the finite alphabet Σ .

P occurs with shift s (equivalently, occurs at position s+1) in T if $0 \le s \le n-m$ and T[s+1..s+m]=P[1..m].

If P occurs with shift s in T, then we call s a valid shift; otherwise, we call s an invalid shift.



We call text the longer string T; pattern the shorter string P

The string-matching problem

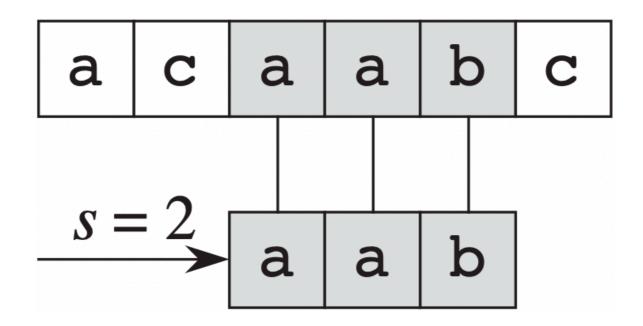
Input: a text T of length n and a pattern P of length m≤n

Output: all the occurrences of P in T

The string-matching problem

Input: a text T of length n and a pattern P of length m≤n

Output: all the occurrences (or valid shifts) of P in T



OUTPUT: shift 2 (or position 3)

The string-matching problem

The naive solution (compare the letters of P starting from each possible position in T) requires O(nm) time.

```
NAIVE_STRING_MATCHING(T,P)

sol\leftarrowemptylist;

for s=0 to |T|-|P|

i\leftarrow 1;

while i\leq |P| and T[s+i]=P[i]
O(|P|)

i\leftarrow i+1;

if i>|P|

sol.append(s);

return sol;
```

KMP: Preprocessing the pattern

```
COMPUTE_PREFIX(P)
  1. \pi[1..|P|]\leftarrowemptyarray;
  2. \pi[1]←0;
  3. k←0;
  4. for q=2 to |P|
    5. while k>0 and P[k+1]\neq P[q]
       6. k←\pi[k];
    7. if P[k+1]=P[q]
       8. k←k+1;
    9. \pi[q] \leftarrow k;
  10. return \pi;
```

KMP: Preprocessing the pattern

```
COMPUTE_PREFIX(P)
  1. \pi[1..|P|]\leftarrowemptyarray;
  2. \pi[1]←0;
  3. k←0;
  4. for q=2 to |P|
    5. while k>0 and P[k+1]\neq P[q]
       6. k←\pi[k];
    7. if P(k+1)=P(q)
       8. k←k+1;
    9. \pi[q]\leftarrow k;
  10. return \pi;
```

- increase of k is at most |P|-1
- k is always decreased in the while loop
- k is never negative

The total decrease in k from the while loop is bounded from above by the total increase in k over all iterations of the for loop, which is |P|-1.

The running time of COMPUTE_PREFIX(P) is thus $\Theta(|P|)$.

Preprocessing the pattern

Lemma 1. For q = 1, 2, ..., |P|, if $\pi[q] > 0$, then $\pi[q] - 1 \in \pi^*[q - 1]$

Let $E_{q-1} = \{k \in \pi^*[q-1] : P[k+1] = P[q]\}$: these are all k < q-1 s.t. P_k is equal to a suffix of P_{q-1} and P_{k+1} is equal to a suffix of P_q . It holds the following corollary of Lemma 1.

$$\pi[q] = 0 \quad \text{if } E_{q-1} = \emptyset$$

$$1 + \max\{k \in E_{q-1}\} \quad \text{otherwise}$$

Preprocessing the pattern

```
COMPUTE_PREFIX(P)
  1. \pi[1..|P|]\leftarrowemptyarray;
  2. \pi[1]←0;
  3. k←0;
  4. for q=2 to |P|
    5. while k>0 and P[k+1]\neq P[q]
       6. k←\pi[k];
    7. if P(k+1)=P(q)
       8. k←k+1;
    9. \pi[q] \leftarrow k;
  10. return \pi:
```

At the start of each iteration of the for loop we have $k=\pi[q-1]$ (by initialisation and line 9). Lines 5-8 adjust k so that it becomes the correct value of $\pi[q]$.

The while loop of lines 5–6 searches through all values $k \in \pi^*[q-1]$ until it finds a value of k for which P[k+1]=P[q].

At that point, k is the largest value in the set E_{q-1} , so that we can set $\pi[q]$ to k+1.

Preprocessing the pattern

```
COMPUTE_PREFIX(P)
  1. \pi[1..|P|]\leftarrowemptyarray;
  2. \pi[1]←0;
  3. k←0;
  4. for q=2 to |P|
    5. while k>0 and P[k+1]\neq P[q]
       6. k←\pi[k];
    7. if P(k+1)=P(q)
       8. k←k+1;
    9. \pi[q]\leftarrow k;
```

10. **return** π ;

If the while loop cannot find a $k \in \pi^*[q-1]$ such that P[k+1]=P[q], then k equals 0 at the end of the loop.

If P[1]=P[q], then we should set both k and $\pi[q]$ to 1; otherwise we should leave k alone and set $\pi[q]$ to 0.

Lines 7–9 set k and $\pi[q]$ correctly in either case.

The Knuth-Morris-Pratt algorithm

The time complexity of KMP is $\Theta(|P|+|T|)$. The analysis of the algorithm is entirely analogous to the one of COMPUTE_PREFIX. KMP(T,P)1. $\pi\leftarrow COMPUTE_PREFIX(P)$; //q stores the number of matched chars of P 2. q←0; 3. sol←emptylist; 4. **for** i = 1, ..., |T|5. while q>0 and $P[q+1]\neq T[i]$ 6. $q \leftarrow \pi[q]$; //next character does not match 7. **if** P[q+1]=T[i]8. q←q+1; //next character matches 9. **if** q=|P| 10. sol.append(i-|P|)

11. $q \leftarrow \pi[q]$;

//look for the next match