
Algorithmica (2019) 81:3692–3706
https://doi.org/10.1007/s00453-019-00594-5

An O(n log n) Time Algorithm for Computing the
Path-Length Distance Between Trees

David Bryant1 · Celine Scornavacca2

Received: 10 October 2018 / Accepted: 28 May 2019 / Published online: 19 June 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Tree comparison metrics have proven to be an invaluable aide in the reconstruction
and analysis of phylogenetic (evolutionary) trees. The path-length distance between
trees is a particularly attractive measure as it reflects differences in tree shape as well
as differences between branch lengths. The distance equals the sum, over all pairs
of taxa, of the squared differences between the lengths of the unique path connect-
ing them in each tree. We describe an O(n log n) time for computing this distance,
making extensive use of tree decomposition techniques introduced by Brodal et al.
(Algorithmica 38(2):377–395, 2004).

Keywords Phylogeny · Tree comparison metrics · Path-length metric · Tree
decomposition

Mathematics Subject Classification 68Q25 · 92D15 · 05CO5

1 Introduction

A phylogenetic tree is a tree describing the evolution of a set of entities X (species,
genes etc.), which will be called taxa from now onwards. Here trees are considered as
undirected, or unrooted. Degree-one nodes are called leaves and a bijective function
associates each taxon to a leaf. Internal nodes represent putative ancestral taxa and
branch lengths quantify the evolutionary distances between nodes.

Tree comparison metrics provide a quantitative measure of the similarity or dif-
ference between two phylogenetic trees. They have proven invaluable for statistical

B David Bryant
david.bryant@otago.ac.nz

Celine Scornavacca
celine.scornavacca@umontpellier.fr

1 Department of Mathematics and Statistics, University of Otago, Dunedin, New Zealand

2 ISEM, CNRS, Université de Montpellier, IRD, EPHE, Montpellier, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-019-00594-5&domain=pdf
http://orcid.org/0000-0003-1963-5535

Algorithmica (2019) 81:3692–3706 3693

testing (e.g. [9,11,13]), for visualisation [8], and for the construction of consensus trees
[3,10,14]. By far the most well-known tree comparison metric is the Robinson–Foulds
metric [12], which equals the number of bipartitions1 that are in one tree and not the
other. However many other different metrics have also been proposed, each one based
on a different characteristic of the trees being compared.

Here we consider pairs of trees on the same set of taxa. Also, our trees are binary,
i.e. each internal node has degree three. The path-length between two taxa in a phy-
logenetic tree is the sum of the branch lengths along the unique path between them.
The path-length distance between two trees T1 and T2 is given by

Δ(T1, T2) =
∑

i j

(pi j − qi j)
2, (1)

where pi j is the path length between taxa i and j in the first tree and qi j is the path
length in the second tree. We note that

√
Δ(T1, T2) is a metric in the mathematical

sense. The first explicit description of the metric appears in [11] (without branch
lengths) and [10] (with branch lengths), though closely related ideas appear much
earlier (e.g. [6,7,15]).

Given a phylogeny with n leaves, it takes O(n2) time to construct the set of all path-
lengths p12, p13, . . . , p(n−1)n , using the dynamic programming algorithm presented
in [4]. Hence the path-length distance can be easily computed in O(n2) time. Ourmain
contribution in this paper is to show that we can compute this distance in O(n log n)

time, which is almost, but not quite, linear in the size of the problem input.
Expanding (1) gives

Δ(T1, T2) =
∑

i j

(pi j)
2 +

∑

i j

(qi j)
2 − 2

∑

i j

pi j qi j . (2)

The first two terms can be evaluated in linear time using dynamic programming, as
outlined in Sect. 2. To compute the third term efficiently we first introduce a tree
decomposition technique (Sect. 3) allowing the sum to be evaluated in O(n log n)

time (Sect. 4). Both the tree decomposition and algorithm of Sect. 4 draw heavily on
an algorithm of [2] for computing the quartet distance between two trees.

2 Sums of Squared Distances

In this section we show how to compute the sum of squared distances
∑

i j p
2
i j in a

tree in linear time. We begin by introducing some notation that will be used in the rest
of the paper.

Select an arbitrary leaf ρ and consider both T1 and T2 as rooted trees with root ρ.
We think of ρ being at the top of the tree and the other leaves being at the bottom of
the tree. For any two edges e, e′ we write e � e′ if the path from e to ρ passes through

1 A bipartition A|B with A ∪ B = X is in a phylogenetic tree T = (V , E) if there exists an edge e ∈ E
such that its removal creates two trees with taxon sets A and B.

123

3694 Algorithmica (2019) 81:3692–3706

e′. We write e ≺ e′ if e � e′ and e �= e′. Hence if e is the edge incident with the root
ρ then e′ ≺ e for all other edges e′. We say that e is external if it is incident to a leaf
other than ρ; otherwise e is internal. When e is internal let eL and eR denote the edges
incident and immediately below e.

We will use e, e′ to denote edges in T1 and f , f ′ to denote edges in T2. We let xe
denote the length of an edge e in T1 and y f the length of an edge f in T2. Let Ai j denote
the set of edges on the path from i to j in T1 and let Bi j denote the corresponding set
in T2. Hence

pi j =
∑

e∈Ai j

xe qi j =
∑

f ∈Bi j
y f .

Let n(e) denote the number of leaves � such that the path from � to ρ passes through
e. Define

α(e) =
∑

e′�e

n(e′)xe′ .

Proposition 1

∑

i j

(pi j)
2 =

∑

e internal

[
xe(n − n(e))(2α(e) − n(e)xe) + 2α(eL)α(eR)

]

+
∑

e external

[
x2e (n − n(e))n(e)

]
.

Proof Given two edges e1, e2 we let

χ(e1, e2) = |{pairs i j : e1, e2 ∈ Ai j }|, (3)

the number of pairs of taxa having both e1 and e2 on the path between them. Then

∑

i j

(pi j)
2 =

∑

i j

⎛

⎝
∑

e1∈Ai j

xe1

⎞

⎠

⎛

⎝
∑

e2∈Ai j

xe2

⎞

⎠

=
∑

i j

∑

e1,e2∈Ai j

xe1xe2 (4)

=
∑

e1

∑

e2

∑

i j :e1,e2∈Ai j

xe1xe2 (5)

=
∑

e1

∑

e2

xe1xe2χ(e1, e2) (6)

123

Algorithmica (2019) 81:3692–3706 3695

If e1 ≺ e2 then e1 �= e2 and χ(e1, e2) = n(e1)(n − n(e2)). Hence, for any e2 we
have

∑

e1:e1≺e2

xe1xe2χ(e1, e2) = xe2(n − n(e2))
∑

e1:e1≺e2

xe1n(e1)

= xe2(n − n(e2))(α(e2) − n(e2)xe2).

If e1 � e2 and e2 � e1 then χ(e1, e2) = n(e1)n(e2). Furthermore there is an edge
e with children eL , eR such that, without loss of generality, e1 � eL and e2 � eR . For
such an edge e we have

∑

e1:e1�eL

∑

e2:e2�eR

xe1xe2χ(e1, e2) =
∑

e1:e1�eL

∑

e2:e2�eR

xe1xe2n(e1)n(e2)

= α(eL)α(eR).

Summing up over all e1, e2 in (6) we have

∑

i j

(pi j)
2 =

∑

e1

∑

e2

xe1xe2χ(e1, e2)

= 2
∑

e2

∑

e1≺e2

xe1xe2χ(e1, e2) + 2
∑

e

∑

e1�eL

∑

e2�eR

xe1xe2χ(e1, e2)

+
∑

e

xexeχ(e, e)

= 2
∑

e2 internal

xe2(n − n(e2))(α(e2) − n(e2)xe2) + 2
∑

e internal

α(eL)α(eR)

+
∑

e

xexen(e)(n − n(e))

and the result follows. 	

Proposition 2 The sum

∑
i j (pi j)

2 can be computed in linear time.

Proof If e is external, n(e) = 1 and α(e) = xe. Otherwise

n(e) = n(eL) + n(eR)

and

α(e) =
∑

e′�e

n(e′)xe′

=
∑

e′�eL

n(e′)xe′ +
∑

e′�eR

n(e′)xe′ + n(e)xe

= α(eL) + α(eR) + n(e)xe.

123

3696 Algorithmica (2019) 81:3692–3706

Hence with a post-order traversal of the tree we can compute n(e) and α(e) for all
edges e in O(n) time. Computing the sum takes a further O(n) time by Proposition 1.∑

i j (qi j)
2 can be computed in the same way. 	

3 Segment Decomposition

In this section we introduce a hierarchical decomposition of the edge set of T2 that
forms the structure used in our dynamical programming algorithm in Sect. 4.

Let Q be a connected subset of E(T2), the set of edges of T2.We define the boundary
of Q to be the set of vertices incident both to edges within Q and to edges outside Q:

∂Q = {v : there are e ∈ Q, e′ /∈ Q incident with v}.

The degree of Q is the cardinality of ∂Q. A segment of T2 is a connected subset of
E(T2) with degree at most two.

A segment decomposition for T2 is a binary tree TD such that

(D1) The leaves of TD correspond to edges in E(T2) (i.e. minimal segments);
(D2) Each node of TD corresponds to a segment of T2;
(D3) The segment corresponding to an internal node of TD equals the disjoint union

of the segments corresponding to its children.

An example of segment decomposition is given in Fig. 1.
The main result in this section is that we can, in linear time, construct a segment

decomposition for T with height O(log n).
The definition of a segment decomposition is based on the tree decomposition used

by [2] to compute quartet-based distances, which in turn are based on techniques for
efficient parsing of expressions [1,5]. The main difference with [2] is that the segment
decomposition is based on partitioning the set of edges, rather that the set of vertices,
and that we were able to obtain a tighter bound on the height.

Our algorithm for constructing TD is agglomerative. At each stage, the nodes in TD
form a forest, each component being a rooted tree with a unique maximal (root) node.
We start with a single degree one vertex for each edge in E(T2); these will become the

(a) (b)

Fig. 1 a A phylogenetic tree and b a segment decomposition for it

123

Algorithmica (2019) 81:3692–3706 3697

leaves of TD . For each iteration, we identify pairs of maximal nodes corresponding to
pairs of segments which can be combined to give new segments.Wemake the nodes in
each pair children of a new node. The process continues until one component remains
and TD is a single rooted tree.

The following Proposition shows that in any partition of E(T2) into segments we
can always find a large number of pairs of disjoint segments which can be merged to
give other segments.

Proposition 3 Let T be a binary tree. Let M be a collection of segments which
partition E(T). Then there are at least |M |

4 non-overlapping pairs (A, B) such that
A, B ∈ M and A ∪ B is a segment of T .

Proof Let GM = (VM ,EM) be the graph with vertex set

VM =
⋃

A∈M
∂A

and edge set

EM = {{u, v} : ∂A = {u, v} for some A ∈ M } .

Decompose GM into maximal paths P1, P2, . . . , Pκ with the property that for each
degree three vertex v of GM and each path Pi at most one of the edges incident with v

is contained in Pi . For each i , letMi be the set of elements A ∈ M such that ∂A ⊆ Pi .
The setsMi partitionM .

Fix one path Pi = v1, v2. . . . , v�. We order the elements of Mi lexicographically
with respect to the indices of their boundary vertices. In other words, if A, B ∈ Mi

satisfy ∂A = {v j , vk} and ∂B = {v�, vm} (where we might have j = k or � =
m) then we write A < B if max(j, k) < max(�,m) or max(j, k) = max(�,m)

and min(j, k) < min(�,m). With this ordering, if Ak and Ak+1 are adjacent then
(Ak ∪ Ak+1) is connected and has degree at most two. Hence by pairing off A1 and
A2, A3 and A4, and so on, we can construct � |Mi |

2 disjoint pairs. An example is given
in Fig. 2.

The total number of pairs we obtain this way is given by
∑κ

i=1� |Mi |
2 . We will

determine a lower bound for this sum. Let d be the number of degree three vertices
in GM . Since GM is connected and acyclic there are d + 2 paths Pi which contain
a degree one vertex in GM and d − 1 paths which do not. If Pi contains a degree
one vertex then Mi contains at least one component with degree two and another
component with boundary equal to the degree one vertex, so |Mi | ≥ 2. If Pi contains
no degree one vertices then |Mi | is at least one. Let x denote the number of paths
Pi which contain a degree one vertex and for which |Mi | is odd (and hence at least
three). We have

|M | =
κ∑

i=1

|Mi | ≥ 3x + 2(d + 2 − x) + (d − 1) = x + 3d + 3

as well as 0 ≤ x ≤ d + 2 and d ≥ 0.

123

3698 Algorithmica (2019) 81:3692–3706

(a) (b)

Fig. 2 a A phylogenetic tree with the segment decomposition M = {{e1, e2, e3, e7}, {e4, e5, e6},
{e8}, {e9, e13}, {e10, e11, e12}} drawn on it, with boundary sets respectively {t, s}, {t, t}, {s, s},
{s, q}, {q, q}. b The corresponding GM . For this decomposition, there is a single maximal path P1 =
t, s, q := v1, v2, v3 and boundary sets become respectively {v1, v2}, {v1, v1}, {v2, v2}, {v2, v3}, {v3, v3}.
Thus, the ordering ofM is {{e4, e5, e6}, {e1, e2, e3, e7}, {e8}, {e9, e13}, {e10, e11, e12}}

We have that |Mi | is even for at least (d + 2) − x paths ending in a degree one
vertex, and for these paths |Mi |

2 = �|Mi |
2 . Thus

|M |
2

−
κ∑

i=1

⌊ |Mi |
2

⌋
≤ x

2
+ d − 1

2
.

To bound the right hand side, note that the linear program

max x + d

subj. to x − d ≤ 2

x + 3d ≤ |M | − 3

has solution d = |M |−5
4 , x = |M |+3

4 and so x + d ≤ 2|M |−2
4 . Hence

|M |
2

−
κ∑

i=1

⌊ |Mi |
2

⌋
≤ |M |

4
− 3

4

and
∑κ

i=1� |Mi |
2 , the number of pairs, is bounded below by |M |

4 . 	

We can now state the algorithm for constructing TD . Initially TD is a set of isolated

vertices. As the algorithm progresses, vertices are combined into larger trees, so that
each iteration TD is a forest. The algorithm terminates when TD contains a single tree.

At each iteration letM denote the partition of the edge set of E(T) into segments
corresponding to the maximal elements of the incomplete tree TD . Rather than store

123

Algorithmica (2019) 81:3692–3706 3699

this partition explicitly, we maintain a linked list B of boundary nodes. For each
element v in the list we maintain pointers to maximal nodes TD corresponding to
segments in M having v in their boundaries. In addition, we maintain pointers from
each node in TD to the boundary nodes of the corresponding segments.

1. Initialize TD with a forest of degree-one vertices corresponding to each edge of
E(T2). Hence we initialise B with one element for each vertex in V (T2), with
the associated pointers. At this point, M is the partition of E(T2) putting each
edge into a separate block.

2. While TD is disconnected do

(a) Using the construction in Proposition 3 determine a set of at least k ≥ |M |
4

pairs (A1, B1), . . . , (Ak, Bk) of disjoint elements of M such that A j ∪ Bj

has at most two boundary points.
(b) For each pair (Ai , Bi), i = 1, 2, . . . , k, create a newnode of TD corresponding

to Ai ∪ Bi and with children corresponding to Ai and Bi .
(c) Update the listB of boundary vertices and the associated pointers.

Theorem 4 We can construct a segment decomposition tree TD for T2 with height
O(log n) in O(n) time.

Proof We only merge nodes if the union of their corresponding segments is also a
segment. Hence TD will be a segment decomposition tree. It remains to prove the
bound on height and running time.

We note that |M | reduces by a factor of 3
4 each iteration. Hence the number of

iterations is at most log 4
3
(2n − 3), which is also a bound on the height of the tree.

Using the list of boundary points B we can construct construct GM and iden-
tify pairs, in O(|M |) time each iteration. Thus the total running time is at most

O(n(
∑

i=0

(3
4

)i
)) = O(n) time. 	

We can strengthen the height bound. We say that a tree is k-locally balanced if, for
all nodes v in the tree, the height of the subtree rooted at v is at most k · (1+ log |v|),
where |v| is the number of leaves in the subtree rooted at v. As the algorithm can be
applied recursively on each node of TD we have that the global height bound applies
to each node. Hence

Corollary 5 The segment decomposition TD is (1/ log 4
3)-locally balanced.

4 Computing the Inner Product

In this section we show that
∑

i j pi j qi j can be computed in O(n log n) time, so that
the main result follows from Eq. (2). Once again we make a lot of use of numerous
ideas from [2], though with a modified decomposition and a 2-coloring, rather than
a 3-coloring. The overall strategy of using the decomposition to updated calculations
from one edge to the next efficiently is the same, and our Lemma 10 is a restatement
of Lemma 7 in [2].

123

3700 Algorithmica (2019) 81:3692–3706

Fig. 3 Illustration of the
definition of χ̃(c, f). For the
coloring indicated, the pairs of
taxa which cross the edge f and
have different colors are {1, 4},
{3, 4}, {2, 5}, and {2, 6}. Hence
χ̃(c, f) = 4

f

1

2

3

4

5

6

There are many aspects of our problem which are simpler, for one thing we only
need to consider 2-colorings rather than 3-colorings. Furthermore the differences in
the decompositions used mean that several results need to be proved anew.

A (taxon) coloring is an assignment c of the colors black and white to the taxa. For
each edge e of T1 we let ce denote a coloring assigning black to those taxa on one side
of e and white to those on the other. For each edge f in E(T2) and each colouring c
of the set of taxa, we let χ̃ (c, f) denote the number of pairs of taxa i j such that i and
j have different colours and they label leaves on different sides of f (Fig. 3).

Lemma 6 ∑

i j

pi j qi j =
∑

e∈E(T1)

∑

f ∈E(T2)

xe y f χ̃(ce, f) (7)

Proof

∑

i j

pi j qi j =
∑

i j

⎛

⎝
∑

e:e∈Ai j

xe

⎞

⎠

⎛

⎝
∑

f : f ∈Bi j
y f

⎞

⎠

=
∑

i j

∑

e∈Ai j

∑

f ∈Bi j
xe y f (8)

=
∑

e∈E(T1)

∑

f ∈E(T2)

xe y f χ̃(ce, f). (9)

	

For the remainder of this section we will assume that the vertices in T2 are indexed

v1, v2, . . . , v2n−2. The actual ordering does not matter; it is only used to help presen-
tation.

Let TD be the segment decomposition tree constructed for T2 using the Algorithm
in Sect. 3. For each node v of TD we let Qv ⊆ E(T2) denote corresponding segment
in T2. The overall strategy at this point is to compute values for each node in TD
which will allow us to: (i) compute, for an initial choice of e ∈ E(T1), the sum∑

f ∈E(T2) xe y f χ̃ (ce, f) in linear time, and (ii) update this computation efficiently as
we iterate in a particular way through edges e of T1.

We will store three pieces of information at every non-root node v of TD , the
exact type of information stored being dependent on the degree of the segment Qv

corresponding to v.
If Qv is degree one then we store:

123

Algorithmica (2019) 81:3692–3706 3701

• Two integer counts wv, bv

• A description (e.g. coefficients) for a quadratic polynomial φv(·, ·) with two vari-
ables.

If Qv has degree two then we store:

• Two integer counts wv, bv

• A description (e.g. coefficients) for a quadratic polynomial φv(·, ·, ·, ·) with four
variables.

The exact interpretation ofwv , bv and φv is given below as statements (C1)–(C3) in the
proof of Lemma 7. The basic intuition is that v is a node in the segment decomposition,
so corresponds to a segment Qv , a subset of the edge set of T2. The counts bv and wv

are the numbers of leaves coloured black and white (respectively) by ce in the segment
Qv . The polynomial φv plays a key role in the computation of

∑
f ∈Qv

y f χ̃ (ce, f)
which, at the top of the decomposition tree, provides

∑
f ∈E(T2) xe y f χ̃(ce, f).

We now show how the values bv, wv and φv are computed using a colouring c of
the taxa. We start at the leaves of TD and work upwards towards the root.

Suppose that v is a leaf of TD , so that Qv contains a single edge f of T2. There are
two cases.

1. The edge f is incident with a leaf u of T2, so Qv has degree one. If c(u) is black
then bv = 1 and wv = 0, while if c(u) is white we have wv = 1 and bv = 0. In
either case

φv(b, w) = y f (b · wv + w · bv). (10)

2. The edge f is not incident with a leaf of T2, so Qv has degree two. Then bv =
wv = 0 and

φv(b1, w1, b2, w2) = (b1w2 + b2w1)y f . (11)

Now suppose that v is an internal vertex of TD . Once again there are several cases,
however in all cases we have

bv = bvL + bvR

wv = wvL + wvR .

3. Suppose QvL and QvR have degree one. Then

φv(b, w) = φvL (b + bvR , w + wvR) + φvR (b + bvL , w + wvL). (12)

4. Suppose QvL has degree two and QvR has degree one, where ∂QvL = {vi , v j }
and QvR = {v j }.
(a) If Qv has degree one and i < j then

φv(b, w) = φvL (b, w, bvR , wvR) + φvR (b + bvL , w + wvL); (13)

(b) If Qv has degree one and i > j then

φv(b, w) = φvL (bvR , wvR , b, w) + φvR (b + bvL , w + wvL); (14)

123

3702 Algorithmica (2019) 81:3692–3706

(c) If Qv has degree two and i < j then

φv(b1, w1, b2, w2) = φvL (b1, w1, b2 + bvR , w2 + wvR)

+φvR (b1 + b2 + bvL , w1 + w2 + wvL); (15)

(d) If Qv has degree two and i > j then

φv(b1, w1, b2, w2) = φvL (b1 + bvR , w1 + wvR , b2, w2)

+φvR (b1 + b2 + bvL , w1 + w2 + wvL). (16)

5. The case when QvL has degree one and QvR has degree two is symmetric.
6. Suppose that QvL and QvR have degree two, that ∂QvL = {vi , v j } and ∂QvR =

{v j , vk}.We can assume that i < k since the alternative case follows by symmetry.
This leaves three possibilities:

(a) If i < j and j < k then

φv(b1, w1, b2, w2) = φvL (b1, w1, b2 + bvR , w2 + wvR)

+φvR (b1 + bvR , w1 + wvR , b2, w2); (17)

(b) If i < j and j > k then

φv(b1, w1, b2, w2) = φvL (b1, w1, b2 + bvR , w2 + wvR)

+φvR (b2, w2, b1 + bvL , w1 + wvL); (18)

(c) If j < i and (hence) j < k then

φv(b1, w1, b2, w2) = φvL (b1 + bvR , w1 + wvR , b1, w1)

+φvR (b1 + bvR , w1 + wvR , b2, w2). (19)

An illustration for several of these cases can be found in Fig. 4.

Lemma 7 Suppose that bv, wv and φv have been computed as above for all nodes of
TD except the root. Let vL and vR be the children of the root of TD. Then

∑

f ∈E(T2)

χ̃ (c, f)y f = φVL (bvR , wvR) + φVR (bvL , wvL).

Proof For any node v of TD we let Lv denote the set of leaves of T2 not incident with
an edge of Qv . If Qv has degree two and boundary {vi , v j }, i < j , then we let L(1)

v

be the leaves in Lv which are closest to vi and L(2)
v the leaves in Lv which are closest

to v j . Let c̃ be any colouring of the leaves of T2, possibly distinct from c. Let B and
W be the sets of leaves that c̃ colours black and white respectively.

We will establish the following claims for all nodes v in TD , using induction on the
height of the node.

123

Algorithmica (2019) 81:3692–3706 3703

(a) (b)

(c) (d)

Fig. 4 Cartoons of segment merging for several cases discussed in the main text. Grey “blobs” are used to
illustrate segments and v1, v2, v3 are the boundaries of these segments

(C1) bv andwv are the number of leaves incident with edges in Qv which are coloured
black and white by c (and hence by c̃).

(C2) If Qv has degree one, b = |B ∩ Lv| and w = |W ∩ Lv| then
∑

f ∈Qv

χ̃(c̃, f)y f = φv(b, w).

(C3) If Qv has degree two, b1 = |B ∩ L(1)
v |, w1 = |W ∩ L(1)

v |, b2 = |B ∩ L(2)
v |, and

w2 = |B ∩ L(2)
v | then

∑

f ∈Qv

χ̃(c̃, f)y f = φv(b1, w1, b2, w2).

We start by considering any leaf v of TD . In this case, Qv contains a single edge
f . If f is an edge incident to a leaf coloured white then bv = 0, wv = 1 as required,
and χ̃ (c̃, f) equals the number of leaves coloured black by c̃, so

χ̃ (c̃, f)y f = |B ∩ Lv|y f = (bwv + wbv)y f = φv(b, w).

The same holds if the leaf is coloured black.
If the edge f is internal then bv = wv = 0, and χ̃ (c̃, f) is equal to the number of
paths crossing f connecting leaves with different colours, or

|B ∩ L(1)
v ||W ∩ L(2)

v | + |W ∩ L(1)
v ||B ∩ L(2)

v | = b1w2 + w1b2,

so χ̃(c̃, f)y f = φv(b1, w1, b2, w2).
Now consider the case when v is an internal node of TD , other than the root. Let vL

and vR be the two children of v. Note that Qv is the disjoint union of QvL and QvR ,
so bv = bvL + bvR and wv = wvL + wvR , proving (C1).

123

3704 Algorithmica (2019) 81:3692–3706

Furthermore, we have
∑

f ∈Qv

χ̃ (c̃, f) =
∑

f ∈QvL

χ̃(c̃, f) +
∑

f ∈QvR

χ̃(c̃, f).

If QvL has degree one then, by the induction hypothesis,

∑

f ∈QvL

χ̃ (c̃, f) = φvL (b
′, w′)

where b′ and w′ are the numbers of leaves coloured black and white that are not
incident with edges in QvL . Similarly, if QvL has degree two then, by the induction
hypothesis,

∑

f ∈QvL

χ̃ (c̃, f) = φvL (b
′
1, w

′
1, b

′
2, w

′
2)

where b′
1 and w′

1 are the numbers of leaves coloured black and white that are not
incident with edges in QvL and are closer to the boundary vertex of QvL with the
smallest index, while b′

2 and w′
2 are the numbers of leaves coloured black and white

that are not incident with edges in QvL and are closer to the boundary vertex of QvL

with the largest index. The symmetric result holds for QvR .
The different cases in Eqs. (12)–(19) now correspond to the different counts for b′, w′
or for b′

1, w
′
1, b

′
2, w

′
2 depending on whether QvL and QvR have degree one or two,

and whether the boundary vertices in common had the highest or lower index for each
segment.

Nowsuppose that vL and vR are the children of the root of TB . Then ∂(QvL ∪QvR) =
∅ so QvL and QvR must both have degree one.We have that E(T2) is the disjoint union
of QvL and QvR . Any leaf not incident to a leaf in QvL is incident to a leaf in QvR and
vice versa. Hence as required. 	

Evaluating Eqs. (12)–(19) takes constant time and space per each node of TD , since
we manipulate and store a constant number of polynomials with at most four variables
and total degree at most two. Thus, evaluating Eqs. (12)–(19) takes O(n) time and
space for each colouring, and since we want to sum this quantity over all colourings ce
from edges e ∈ E(T1) a naive implementation would still take O(n2) time. The key to
improving this bound is in the use of efficient updates. We make use of the following
upper bound in [2]. Recall from Corollary 5 that the segment decomposition tree TD
we construct is TD is (1/ log 4

3)-locally balanced.

Lemma 8 The union of k root-to-leaf paths in a c-locally balanced rooted binary tree
with n leaves contains at most k(3 + 4c) + 2ck log(n/k) nodes.

Proof This is Lemma 2 in [2].

Lemma 9 Suppose that we have computed bv ,wv and the functions φv for all v ∈ TD,
using a leaf colouring c. Let c̃ be a colouring which differs from c at k leaves. Then
we can update the values bv , wv and the functions φv in O(k + k log(n/k)) time.

123

Algorithmica (2019) 81:3692–3706 3705

Fig. 5 Recursive algorithm Sum

Proof Let F ′ be the set of edges of T2 which are incident to a leaf for which c and c̃
have a different colour, so |F ′| = k. The only nodes v in TD which need to updated
are those with f ∈ Qv for some f ∈ F ′. This is a union of the paths from k leaves of
TD to the root of TD , and so by Lemma 8, it has size O(k + k · log(nk)). 	

The final step is to show that we can navigate the edges in E(T1) so that the total
number of changes in the colourings is bounded appropriately. Suppose that T1 is
rooted at the leaf ρ (the same as T2). For each internal node u in T1 we let Small(u)
denote the child of u with the smallest number of leaf descendants and let Large(u)
denote the child with the largest number of leaf descendants, breaking ties arbitrarily.

The recursive function SUM(u) in Fig. 5 returns the sum of

∑

f ∈E(T2)

xe y f χ̃ (ce, f)

over all edges e ∈ E(T1). Initially we let e be the edge incident with the root ρ. Let c
be the colouring where ρ is black and all other leaves white. We initialise TD and fill
out the values bv , wv and φv for all nodes v of TD using the colouring c. We then call
Sum(u) where u is the unique internal node adjacent to ρ.

We see that the algorithm makes a pre-order traversal of T1, evaluating the sum

∑

f ∈E(T2)

xe y f χ̃ (ce, f)

for each edge e and accumulating the total. Thus by Lemma 6, the algorithm returns∑
i j pi j qi j .
The running time is dominated by the time required to update TD . For each leaf, the

update is made after only one leaf changes colour, so this takes O(n log n) summed
over all leaves. For every other node u in the tree, the number of nodes of TD to update

123

3706 Algorithmica (2019) 81:3692–3706

is O(k+ k log(n/k))where k is the number of leaves in the subtree rooted at Small(u)
Lemma 8.

Lemma 10 Let T be a rooted binary tree with n leaves and for each internal node u
of T let ku denote the number of leaves in the smallest subtree rooted at a child of u.
Then

∑

u internal

ku log(n/ku) ≤ n log n.

Proof This is a restatement of Lemma 7 in [2]. 	

Theorem 11 Algorithm Sum computes

∑
i j pi j qi j in O(n log n) time. Hence the path

length distance between T1 and T2 can be computed in O(n log n) time.

Acknowledgements This research was made possible due to travel funds made available from a Mars-
den Grant to DB. Both authors thank David Swofford for help finding an error in an earlier version of
Proposition 1.

References

1. Brent, R.P.: The parallel evaluation of general arithmetic expressions. J. ACM (JACM) 21(2), 201–206
(1974)

2. Brodal, G.S., Fagerberg, R., Pedersen, C.N.: Computing the quartet distance between evolutionary
trees in time O(n log n). Algorithmica 38(2), 377–395 (2004)

3. Bryant, D.: A classification of consensus methods for phylogenetics. DIMACS Ser. Discrete Math.
Theor. Comput. Sci. 61, 163–184 (2003)

4. Bryant, D., Waddell, P.: Rapid evaluation of least squares and minimum evolution criteria on phylo-
genetic trees. Mol. Biol. Evol. 15(10), 1346–1359 (1997)

5. Cohen, R.F., Tamassia, R.: Dynamic expression trees. Algorithmica 13(3), 245–265 (1995)
6. Farris, J.S.: A successive approximations approach to character weighting. Syst. Biol. 18(4), 374–385

(1969)
7. Hartigan, J.A.: Representation of similarity matrices by trees. J. Am. Stat. Assoc. 62(320), 1140–1158

(1967)
8. Hillis, D.M., Heath, T.A., John, K.S.: Analysis and visualization of tree space. Syst. Biol. 54(3),

471–482 (2005)
9. Holmes, S.: Statistical approach to tests involving phylogenies. In: Gascuel, O. (ed.) Mathematics of

Phylogeny and Evolution, chap. 4, pp. 91–117. New York: Oxford University Press (2005)
10. Lapointe, F.J., Cucumel, G.: The average consensus procedure: combination of weighted trees con-

taining identical or overlapping sets of taxa. Syst. Biol. 46(2), 306–312 (1997)
11. Penny, D., Watson, E.E., Steel, M.A.: Trees from languages and genes are very similar. Syst. Biol.

42(3), 382–384 (1993)
12. Robinson, D., Foulds, L.: Comparison of phylogenetic trees. Math. Biosci. 53, 131–147 (1981)
13. Susko, E.: Improved least squares topology testing and estimation. Syst. Biol. 60(5), 668–675 (2011)
14. Swofford, D.L.: When are phylogeny estimates from molecular and morphological data incongruent?

In: Miyamoto, M.M., Cracraft, J. (eds.) Phylogenetic Analysis of DNA Sequences, pp. 295–333.
Oxford University Press, Oxford (1991)

15. Williams, W.T., Clifford, H.T.: On the comparison of two classifications of the same set of elements.
Taxon 20(4), 519–522 (1971)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	An O(n logn) Time Algorithm for Computing the Path-Length Distance Between Trees
	Abstract
	1 Introduction
	2 Sums of Squared Distances
	3 Segment Decomposition
	4 Computing the Inner Product
	Acknowledgements
	References

