
Acta Informatica 33, 547–557 (1996)

c© Springer-Verlag 1996

Chromatic binary search trees

A structure for concurrent rebalancing?

Otto Nurmi 1, Eljas Soisalon-Soininen2

1Department of Computer Science, University of Helsinki, Teollisuuskatu 23, FIN-00510 Helsinki, Finland
2Laboratory of Information Processing Science, Helsinki University of Technology, Otakaari 1,
FIN-02150 Espoo, Finland

Received December 5, 1991 / May 2, 1995

Abstract. We propose a new rebalancing method for binary search trees that allows
rebalancing and updating to be uncoupled. In this way we obtain fast updates and,
whenever the search tree is accessed by multiple users, a high degree of concurrency.
The trees we use are obtained by relaxing the balance conditions ofred-blacktrees.
The relaxed red-black trees, calledchromatic trees, contain information of possible
imbalance such that the rebalancing can be done gradually as a shadow process, or it
can be performed separately when no urgent operations are present.

1. Introduction

Red-black trees[6] are balanced binary search trees with several properties that make
them a good choice for an in-core structure whenever fast random access of data
is desired. They haveO(n) size andO(logn) access time, and they can be updated
in O(logn) time, wheren is the number of keys stored in the tree. After insertions
and deletions the tree must be rebalanced byrotations in order to keep these time
bounds. For red-black trees there exists a bottom-up rebalancing method, i.e. rebal-
ancing advances upward the tree, that requires at most three single rotations for an
update operation [14, 15]. They have a top-down rebalancing method, i.e. rebalancing
advances downward the tree, that needsO(logn) time for an update operation and
O(logn) rotations (see [6]). When red-black trees are used inpriority search trees
[10], the trees can be updated inO(logn) time. They make thepersistent trees[12]
efficient. Red-black trees are calledsymmetric binary B-treesin [2] andbalanced trees
in [14, 15].

We assume that the data structure implements a totally ordered finite set of el-
ements chosen from a given domain; its operations aresearch, insert,and delete.
Insert and delete operations are calledupdate operations. Each individual operation
is assigned to a separate process. The processes that perform updating are called
updaters.

? The work is supported by the Academy of Finland. A version of this paper appeared at the 9th ACM
Conference on Principles of Database Systems, Denver, Colorado, 1991.



548 O. Nurmi, E. Soisalon-Soininen

If several processes operate concurrently in a data structure there must be a way
to prevent simultaneous writing and reading the same part of the structure. A common
strategy for concurrency control in tree structures is that a processlocks some parts
of the tree; other processes cannot access a locked part. For efficiency, only a small
part of the structure should be locked at a time. The sooner the parts are unlocked
the sooner the individual processes terminate.

In a conventional bottom-up rebalancing method rebalancing transformations are
carried out when an updater returns from the inserted or deleted node to the root. If
a bottom-up method is used in a concurrent environment, the path from the root to a
leaf need be locked for the time a writer operates; otherwise the process can lose the
path to the root. During the time the root is locked by an updater, no other process
can access the tree. Thus, at most one updater can be active at a time.

There exists a top-down balancing method for red-black trees [6] in which an
updater modifies the tree on the way from the root to the leaf to be inserted or
deleted. Since no further rebalancing is necessary after an operation, an updater needs
never to return the path to the root. Only a constant number of nodes must be locked
at a time. The height of the tree isO(logn) all the time, and any key can thus be
found inO(logn) time.

We shall take a different approach to the rebalancing problem by uncoupling
the rebalancing and updating. The updaters perform no rebalancing but leave certain
information for separate rebalancing processes, which will later retain the balance. A
rebalancing process can run as a shadow process concurrently with other processes
(cf. on-the-flygarbage collection [3]) or it can be activated when there are only few
other active processes. Several rebalancers can work concurrently.

In our approach, a process locks a small constant number of nodes at a time. Since
the updaters do no rebalancing and the separate rebalance operation is divided into
several small steps the nodes can be unlocked rapidly. The tree may temporarily be
out of balance, i.e. its height is not necessarily bounded byO(logn).

The separation of updating and rebalancing was proposed already by Guibas and
Sedgewick in [6]. Their solution seems to allow only insertions. ForAVL-trees[1]
a solution without deletions was presented by Kessels in [7]. It was completed with
deletions in [11]. As we shall see the uncoupling is much simpler for red-black trees
and, thus, less nodes need be locked at a time.

In Sect. 2 we review the definition of (balanced) red-black trees and extend the
definition to include certain unbalanced trees. The implementation of the update op-
erations is discussed in Sect. 3 and the separate rebalance operations are presented
in Sect. 4. A concurrency control method for the operations is discussed in Sect. 5.
Section 6 contains conclusions and some remarks.

2. Chromatic binary trees

In this section we recapitulate the balance conditions for a red-black tree and then
relax the conditions so that certain unbalanced trees will satisfy them. The loose
conditions are needed since we shall permit for an updater to leave the tree in an
unbalanced shape.

We shall only considerleaf-orientedbinary search trees, which are full binary
trees (each node has either two or no children) with the keys stored in the leaves.
The internal nodes containrouters, which guide a search through the structure. The
router stored in a nodev must be greater than or equivalent to any key stored in the



Chromatic binary search trees 549

leaves ofv’s left subtree and smaller than any key in the leaves ofv’s right subtree.
We do not require the routers to be keys present in the tree. The loose definition of
the routers enables a very simple strategy for concurrency control, as will be shown
in Sect. 5. The routers far away from a leaf need not be updated even after deleting
a key.

With each edgee of the tree we associate a non-negative integerw(e), called the
weightor color of e. An edgee is red if w(e) = 0 andblack if w(e) = 1. If w(e) > 1,
the edge isoverweighted. If e = (u, v) is an edge of the tree,w(e) is stored inv,
i.e. the weight of the edge between a node and its child is stored in the child.

Theweighted lengthof a path is the sum of the weights of its edges. Theweighted
level of a node is the weighted length of the path from the root to the node. The
weighted level of the root is 0.

The definition of a (balanced) red-black tree is adopted from [6]:

Definition 1. A full binary treeT with the following balance conditions is ared-black
tree:

B1: The parent edges ofT ’s leaves are black.
B2: The weighted level of all leaves ofT is the same.
B3: No path fromT ’s root to its leaf contains two consecutive red edges.
B4: T has only red and black edges.ut

Red-black trees, as defined above, arebalanced, i.e. their height is bounded by
O(logn) wheren is the number of their nodes (or the number of their leaves) (see
Bayer [2], in which red edges are calledhorizontaland black edgesvertical).

Tarjan [14, 15] has defined update operations for red-black trees in which re-
balancing is carried out immediately when a leaf has been inserted or deleted. The
rebalancing transformations may propagate from the inserted or deleted node towards
the root of the tree. Although the method of [14, 15] never requires more than a
constant number of rotations after an update operation, the number of other needed
rebalancing actions (calledpromoteanddemotein [14, 15]) can beΘ(logn) wheren
is the number of nodes in the tree. The method is inefficient if high degree concur-
rency is desired. In the update operations of Guibas and Sedgewick [6] the balancing
is done before inserting or deleting a leaf. In their method, the need for balancing
transformations may propagate only in the top-down direction. The method can be
used in a concurrent environment in such a way that only a few nodes need to be
locked at a time. It does not support separation of updating and balancing when
deletions are present.

The trees we shall use will be defined by relaxing the red-black balance conditions
B1–B4 given in Definition 1. We withdraw the conditions B3 and B4 and allow all
non-zero weights in the edges closest to the leaves. The condition B2 is needed as
such in the relaxed definition.

Definition 2. A full binary treeT with the following conditions is a chromatic tree:
RB1: The parent edges ofT ’s leaves are not red.
RB2: The weighted level of all the leaves ofT is the same. ut

A chromatic tree can be out of balance but any red-black tree is a chromatic tree.
An empty tree is a red-black tree and so is a tree consisting only of a single leaf.



550 O. Nurmi, E. Soisalon-Soininen

ww

(a) (b)

2

2

w

3

- 1 1 + ww

ww

1

Fig. 1a,b.Update operations. (Only the involved nodes are depicted; the operations have symmetric variants.
A circle denotes any node, a square denotes a leaf; a line without an associated weight denotes a black
edge.) (a) Insertion: an internal node and a leaf are inserted. (b) Deletion: a leaf and an internal node are
deleted.

3. Updating a chromatic tree

The update operations for a chromatic tree are designed so that they keep the weak
balance conditions RB1 and RB2 of Definition 2. The conditions are loose enough
to prevent the need of immediate rebalancing. Since the tree must be a full binary
tree an insert operation adds a new internal node and a new leaf into the tree. (For
simplicity, we do not consider the trivial cases in which the tree is initially empty
or consist of a single leaf.) A delete operation removes a leaf and an internal node.
Since the routers are not necessarily keys present in the tree, even a delete operation
does not need to modify routers far away from the deleted nodes. The operations are
described below (cf. Fig. 1).

Insertion: The new key is searched from the tree. If the key is found the process
terminates. An unsuccessful search ends up in a leaf, sayv. A new internal nodeu is
inserted in the structure in the place ofv, andv and a new leaf containing the new
key are made children ofu. The children are ordered such that the one containing the
smaller key will beu’s left child. The router foru is a copy of the key contained in
its left child.

The parent edge ofu gets the weight ofv’s old parent edge−1. The weights of
the child edges ofu are set to 1.

Deletion: The key to be deleted is searched from the structure. If it is not found, the
process terminates. Otherwise, the leaf containing the key is removed. Its parent is
replaced by the parent’s other child, sayu.

The weight ofu’s new parent edge is the sum of the weight ofu’s old parent
edge and the weight of the parent edge of the removed internal node.

The new weights are assigned in such a way that the conditions RB1 and RB2
hold true.

An insertion may introduce a new red edge and several insertions may introduce
a sequence of consecutive red edges to the path from the root to a leaf. A deletion
can introduce a new overweighted edge or it can increase an existing overweight.

4. Rebalancing a chromatic tree

This section describes the actions performed by a rebalancing process. The process
searches for violations of the red-black conditions and when one is found it updates
the weights of a few edges, and it may additionally perform a single or a double



Chromatic binary search trees 551

rotation. The operations are designed such that the conditions RB1 and RB2 of a
chromatic tree hold and the tree will be modified toward a red-black tree.

A pair c = ((v, u), (u, t)) of two consecutive edges of a chromatic tree is ared-red
conflict at vif both edges (v, u) and (u, t) are red. The nodev is the leading nodeof
c. A node may have at most 4 red-red conflicts.

If a nodev has the child edgese1 = (v, u) ande2 = (v, t) andw(e1) > 1 orw(e2) >
1 there areoverweight conflictsat v. The number of overweight conflicts atv is the
sum of the overweight in its child edges, i.e.v has max(0, w(e1)−1)+max(0, w(e2)−1)
overweight conflicts. A node may have both overweight and red-red conflicts.

The operations for red-red conflicts are similar with those defined in [14, 15]; the
difference is that we do not care if a new conflict will arise “closer” to the root of the
tree. The “distance” to the root from a red-red conflictc = ((v, u), (u, t)) is measured
by the number of nodes that lie outside the subtree rooted atu. Some of these nodes
may appear betweenv and the root of the tree during the rebalancing while, as we
shall see, the nodes in the subtree rooted atu will never be moved abovev. The new
conflict is left for another separate rebalancing action.

The operations for overweighted edges resemble the operations that are performed
after a deletion in [14, 15]. As in the case of a red-red conflict, we do not immediately
remove the new conflict that may arise “closer” to the root. The operations may create
new red-red conflicts below the node in which the operation was performed.

The rebalancing process searches nodes that have conflicts. When the process has
found such a node it will remove the conflict by using one of the transformation rules
defined below. Note that the transformations are designed such that a red-red conflict
at nodev is not found if all adjacent edges ofv are red. In that case the conflict at
the parent node ofv must first be removed.

The rebalancing transformations defined below are illustrated in Fig. 2a–e. In
figures a broken line denotes a red edge, a double line an overweighted edge; for
other denotations see Fig. 1.

Definition 3. LetT be a chromatic tree andv one of its nodes that have conflicts. The
rebalancing transformation atv is defined depending on the weights of some edges
close tov (if several of the cases apply, choose one of them):

Case 1.Both of the child edges ofv are red, and eitherv is the root or the parent
edge ofv has a non-zero weight: Set the color of the child edges black; ifv is not
the root, then decrease the weight of the parent edge ofv by 1. Note that in this case
at least one of the grandchild edges ofv is red, because it was assumed that there is
a conflict atv.

Case 2.The left (resp. right) child edge (v, u) of v is red, its other child edge is not
red, and the left (right) child edge ofu is red: Perform a single rotation to the right
(left) at nodev. See Fig. 2(b).

In this case the number of red-red conflicts in the subtree initially with rootv
is decreased by 1. Notice that if the weight of right child of nodeu is 0, then a
new red-red conflict will be created atu. But then two red-red conflicts atv will be
removed by the rotation and thus the total number of red-red conflicts in this subtree
will be decreased.

Case 3.The left (resp. right) child edge (v, u) of v is red, its other child edge is not
red, and the right (left) child edge ofu is red: Perform a double rotation to the right
(left) at nodev; see Fig. 2(c).



552 O. Nurmi, E. Soisalon-Soininen

v v

w - 1w > 0

A

u

v

C

B

u

A
v

B C

w w

v

v

u
D

tA

2
w

B C

1

A

u

t

3

B C D

w1
w w w2

3w

w

v

w

w

- 1 w

v

> 12w > 03

1 

w 2

+ 1

3
- 1

1 

1 > 1

A

u

v

B

2 > 0 3

C

1

A

u

B

w

v

w

C

A B

u

w

C

v

- 11w
2 - 1

3

w

w

w

3

ww 2

(b)(a)

(c)
(d)

(e)

Fig. 2a–e.Rebalance operations. (All operations but (a) have symmetric variants. A broken line denotes
a red edge, a double line denotes an overweighted edge; for other denotations see Fig. 1.) (a) Case 1 (the
red child edges of the lowermost nodes are not shown): the weights are adjusted. (b) Case 2: a single
rotation. (c) Case 3: a double rotation. (d) Case 4: the weights are adjusted. (e) Case 5: a single rotation
is performed and the weights are adjusted.

As in Case 2 the number of red-red conflicts in the subtree initially with rootv
is decreased by 1. In this case new red-red conflicts may appear at nodet, the right
child node ofu, but, as is easily counted from Fig. 2(c) the total number of red-red
conflicts in this subtree is decreased.

Case 4.One of the child edges ofv is overweighted and the other is not red: Decrease
the weights of the child edges by one; ifv is not the root then increase the weight of
the parent edge ofv by one. See Fig. 2(d).

Case 5.The left (resp. right) child edge ofv is overweighted, its other child edge
leading to a nodeu is red, and the left (right) child edge ofu is not red: Perform
a single rotation to the left (right) at nodev, and after that perform the operation
defined in Case 4 in the left (right) child. See Fig. 2(e).ut

Next we want to show that the rebalancing transformations as defined above
indeed will retain the conditions of a chromatic tree.



Chromatic binary search trees 553

Lemma 1. LetT be a chromatic tree and assume that any one of the transformations
given in Definition3 is applied toT . Then the transformed treeT ′ is a chromatic tree.

Proof. From illustrations it is clear that the weighted lengths of the paths form the
root to the leaves remain the same. Thus the condition RB2 is fulfilled. The only
possibility to obtain a violation of condition RB1 is in Case 4 (and thus in Case 5)
when the weights of the child edges of the nodev are decreased. But then ifT ′ had
a violation of condition RB1,T would already have had a violation of the condition
RB2. ut

We shall show that any sequence of the rebalancing transformations, long enough,
will ultimately lead to a red-black tree. This is important since we shall not fix the
order in which the transformations are to be applied. If we had to, we had to lock
more than a constant number of nodes at a time. We first need the following lemma.

Lemma 2. Given a chromatic tree that does not satisfy the balance conditions for
red-black trees, the tree has at least one node at which a rebalancing transformation
can be carried out.

Proof. The only conflict for which no rebalancing action is possible is a red-red
conflict at a node whose all adjacent edges are red. The tree must, however, have
another node closer to the root that has a red-red conflict and whose parent edge is
not red (at the latest the root is such a node). In that node one of the transformations
of Cases 1, 2, and 3 can be used.ut
Let T be a chromatic tree andu its node. Byoutside(u) we denote the number of
T ′s nodes that are not contained in the subtree rooted atu. Let c = ((v, u), (u, t)) be a
red-red conflict ofT . Thered-red distanceof c, rd(c), is defined byrd(c) = outside(u)
and thetotal red-red distancein T , rd(T ) by

rd(T ) =
∑

c∈R(T )

rd(c),

in which R(T ) is the set of red-red conflicts ofT .
If e = (v, u) is an overweight edge, theoverweight distance od(e) of e is defined

by od(e) = (w(e) − 1) · outside(u). The total overweight distanceof T , od(T ), is
defined by

od(T ) =
∑

e∈E(T ) andw(e)>1

od(e),

in which E(T ) is the set of edges ofT .
We shall characterize the balance of a treeT by a quadruple (o(T ), od(T ), r(T ),

rd(T )), in which o(T ) is the number of overweight conflicts inT , r(T ) is the number
of red-red conflicts ofT , andod(T ) andrd(T ) are as defined above. Let<· denote
the alphabetic order of the quadruples (that is, (a′, b′, c′, d′) <· (a, b, c, d) if a′ < a or
a′ = a andb′ < b or a′ = a, b′ = b andc′ < c or a′ = a, b′ = b, c′ = c andd′ < d).
We say that a treeT ′ is closer to a red black treeT , T ′ ≺ T , if

(o(T ′), od(T ′), r(T ′), rd(T ′)) <· (o(T ), od(T ), r(T ), rd(T )).

Notice that the smallest elements in this relation are red-black trees.
We shall show that whenever a rebalancing transformation is applied in a chro-

matic treeT it will result a treeT ′ with T ′ ≺ T .
First we show that the red-red conflicts can be removed using the transformation

of Cases 1, 2, and 3 without creating new overweight in the tree.



554 O. Nurmi, E. Soisalon-Soininen

Lemma 3. Let T be a chromatic tree with at least one red-red conflict, and letT ′ be
a chromatic tree that has been obtained fromT by applying one of the transformations
of Cases1, 2, and3 of Definition3. ThenT ′ ≺ T .

Proof. When an operation as defined in any of Cases 1, 2, and 3 is applied at nodev
(which is the leading node of the conflictc = ((v, u), (u, t)) to be removed) then the
number of red-red conflicts will be decreased in the subtreeS originally rooted with
the nodev.

One conflict with leading nodev is removed, and if a new red-red conflictc1 is
created within this subtree then another conflictc2, uniquely depending onc1, has
been removed. Altogether we can conclude that within the subtreeS the number of
red-red conflicts has decreased.

Some red-red conflicts of the tree may be pushed lower in Cases 2 and 3, but
whenever this happens for a conflictc′ = ((v′, u′), (u′, t′)) the number of nodes in the
subtree rooted atu′ does not change.

In Case 1, if the grandparent edge of the leading node is red and the parent edge
becomes red a new conflict arises. But this conflict has smaller red-red distance than
the removed one. Denote byS′ the tree obtained fromS by the transformation. If the
edge leading to the root ofS′ is red, we have one new red-red conflict in Cases 2
and 3. However, the red-red distance of this new conflict is smaller than the red-red
distance of the removed conflict. Hence we can conclude that eitherr(T ′) < r(T ) or
r(T ′) = r(T ) andrd(T ′) < rd(T ).

As to the overweight conflicts, it is clear that no new ones are created. Some
overweight conflicts may be pushed lower in the tree, but for each overweight conflict
e in T od(c) is retained in the transformation. Thuso(T ′) ≤ o(T ) and od(T ′) ≤
od(T ).

We can conclude that (o(T ′), od(T ′), r(T ′), rd(T ′)) <· (o(T ), od(T ), r(T ), rd(T ))
and thusT ′ ≺ T . ut

For Cases 4 and 5 we have:

Lemma 4. LetT be a chromatic tree with at least one overweight conflict, and letT ′
be a chromatic tree that has been obtained fromT by applying one of the transforma-
tions of Cases4 and 5. ThenT ′ ≺ T .

Proof. The transformation of Case 4 either removes a conflict or pushes overweight
upward. Thus in this caseo(T ) ≤ o(T ) and od(T ′) < od(T ). Assume then that
for the overweighted edge (v, t) with the weightw((v, t)) > 1 the transformation of
Case 5 is applied. As the result we may have an overweighted edge (v, t) with weight
w((v, t)) − 1 lower in the tree. That is,o(T ′) < o(T ). Thus in both casesT ′ ≺ T .

ut
The following theorem tells us that we do not need to fix the order in which a

rebalancer removes the conflicts.

Theorem 1. Given a chromatic tree, any sequence of rebalancing transformations that
is long enough, modifies the tree into a red-black tree.

Proof. In Lemma 1 we have seen that we can always apply a transformation in
a chromatic tree that is not a red-black tree. In Lemma 2 we have seen that any
transformation modifies a treeT to a treeT ′ with T ′ ≺ T . The last tree in the
sequence is a treeS with (o(S), od(S), r(S), rd(S)) = (0, 0, 0, 0), which is a red-black
tree. ut



Chromatic binary search trees 555

It is possible to construct a procedure that rebalances a chromatic tree by visiting its
nodesO(1) times. The procedure traverses the tree in the inorder (see [15], e.g.) and
whenever it encounters a conflict, it makes the appropriate rebalancing transforma-
tions. The traversal must be extended in such a way that possible new red-red conflicts
in already visited left subtrees are removed immediately. Since red-red conflicts do
not propagate downwards this can be accomplished by visiting a constant number of
already visited nodes. After a rotation, the procedure must take care not to go to an
already traversed subtree that has been moved from the left.

There is another algorithm that takes an arbitrary binary search tree and transforms
it to a complete binary tree (in which the level of the leaves differs at most by one)
by usingΘ(n) time andO(1) working space [13]. That algorithm always rebuilds the
whole tree whereas the one sketched above does only some local rebuilding when
the tree has only some balance violations. The red-black balance conditions are, of
course, much weaker than the ones for a complete binary tree.

In a concurrent environment, we cannot fix the order in which a rebalancer tra-
verses the tree. Otherwise, the rebalancer should lock paths from the root to the leaves
of the tree. The length of such a path is not bounded by a constant. In the next section
we shall show that by allowing a nondeterministic traversal for the rebalancer only a
small constant number of nodes need be locked at a time.

5. Concurrency control in a chromatic tree

In this section we present a simple locking strategy for chromatic trees. It prevents
simultaneous writing and reading the same data but still allows a high degree of
concurrency. The strategy is based on the one of Ellis [4, 5], which was originally
developed for AVL and 2-3 trees.

As discussed earlier, we define that a strategy for concurrency control isefficient,
if, at a point of time, any process prohibits the access of other processes only to a
constant number of nodes. The strategies of [4, 5, 8, 9] are all efficient in that sense.

A process that performs search operations is called areader and a process that
may modify the tree (update and rebalance operations) is called awriter.

As in [4, 5] we use three kinds of locks, which we callr-locks, w-locks,and
x-locks(they are calledρ-, α-, andξ-locks in [4, 5]). If a reader holds anr-lock in a
node, the node cannot bew-locked norx-locked by other processes but another reader
can r-lock it. If a process holds aw-lock in a node, the node cannot bew-locked
nor x-locked by other processes but it can ber-locked by a reader. Finally, if a node
is x-locked, no other process can access the node. A reader usesr-locks to exclude
writers, a writer usesw-locks to exclude other writers andx-locks to exclude all other
processes.

Our strategy is that a readerr-locks the node whose contents it is reading. A
writer x-locks the nodes, whose contents is to be modified. During the search phase
of an update operation and when a rebalancer checks whether a transformation should
be performed or not, the nodes can be accessed by readers; the writers usew-locks
instead ofx-locks during this first phase. (If they usedr-locks instead, there could
arise a dead-lock situation when thew-locks are converted tox-locks after the search
phase.) The nodes are always locked in the top-down direction in order to avoid
dead-lock situations.



556 O. Nurmi, E. Soisalon-Soininen

When a reader advances from the root to a leaf, it usesr-lock coupling, i.e. it
r-locks the child to be visited next, before it releases ther-lock in the currently visited
node. Thus, a reader keeps at most two locks at a time.

A writer that will perform an insert operation usesw-lock couplingduring the
search phase. When the search terminates at a leaf, the lock in the parent is released
and thew-lock in the leaf is converted to anx-lock. Then the leaf is changed to an
internal node with two new leaves as children. The key stored in it is copied into one
new leaf; the key to be inserted is stored in the other new leaf. Finally, the router in
the internal node and the weights of the edges are assigned as explained in Sect. 3.
By using this technique, we do not need tox-lock the parent of the node where the
search terminated. The process keeps at most two locks in the tree at a time.

During a delete operation, three nodes must be locked on the lowest level: the leaf
to be deleted, its sibling, and its parent. To achieve this, a process that will perform
a delete operation usesw-lock coupling during the search phase. When the leaf to
be deleted has been found, its parent is still keptw-locked, and the processw-locks
the sibling of the leaf. Then itx-locks the parent of the leaf, the leaf itself, and its
sibling. Now the leaf is deleted, the contents of the sibling is copied to the parent
and the sibling is deleted, and after adjusting the weights, the only remaining lock is
released. If the sibling node was a leaf, the parent must be made to a leaf before the
copying. By copying the contents of the sibling to the parent we avoid the need to
x-lock the grandparent of the deleted leaf. The process locks at most three nodes at
a time.

The rebalancing processes traverse the tree nondeterministically. In the node cur-
rently visited, a process nondeterministically chooses one of the rebalancing transfor-
mations and checks, whether the transformation applies and, finally, if it applies, it is
performed by the process. During the checking phase, the processw-locks the nodes
whose color-fields must be investigated. In the worst case it mustw-lock four nodes
(the visited node, its children, and one of its grandchildren). The nodes arew-locked
in the top-down direction. Just before the transformation, it converts thew-locks of
the nodes whose contents will be changed tox-locks. If the rotations are implemented
by exchanging the contents of nodes, the parent of the conflict node can freely be
accessed by other processes. Thus, four nodes must bex-locked in the worst case
(Case 5).

If a rebalancing process decides that the chosen rebalancing transformation does
not apply, it releases immediately all locks and continues searching for other conflicts.

We have not required that the rebalancer should always perform a transformation if
one of them applies. If the rebalancer had to choose a transformation deterministically
always when one of them applies it shouldw-lock seven nodes in the worst case in
order to select the right type of a transformation.

Let us assume, that a setS of search, insert, and delete operations are executed
concurrently with rebalance operations. Only one process can hold anx-lock in a node
at a time. All nodes modified by a writer arex-locked until the operation is complete.
Thus, neither a search operation nor the searching phase of an update operation can
take a wrong path from the root to a leaf. This means that the search operations
of S give the same answers as they would give in some serial execution ofS. The
dead-lock situations are avoided by always locking the nodes in top-down direction,
and by excluding other writers before a writer convertsw-locks tox-locks. Since the
search operations give the same answers as in some serial execution ofS and the
concurrent execution ofS is terminates we can conclude that the locking strategy
behaves correctly.



Chromatic binary search trees 557

6. Conclusions

We have presented a method to update binary search trees in such a way that the
rebalancing task can be left for a separate process that performs maybe severallocal
modifications in the tree. The trees can temporarily be out of balance but we expect
that the update operations insert and delete keys so evenly in the tree that the execution
times of the operations remain tolerable. In that case, however, the conventional
updating operations do not need to perform much rebalancing, but they must spend
time in checking whether or not a rebalancing transformation must be performed. In a
concurrent environment, even the top-down updaters must lock several nodes during
the checking phase.

We have split the rebalancing transformations to pieces as small as possible in
order to decrease the number of locks needed and to make the processes fast. The
sooner the processes unlock the nodes the higher degree of concurrency is obtained.
There are, of course, several ways to combine our rebalancing transformations to
larger pieces.

Difficult problems that arise if keys can be stored in internal nodes of the tree
were avoided by using leaf-oriented search trees in which the routing information of
the internal nodes need not be keys present in the structure. Other solutions for the
problem can be found in [4, 5, 8, 9].

There is a method to uncouple updating and rebalancing in AVL-trees (see [7, 11]),
but it is more complicated than the one for red-black trees, and the rebalancers must
lock more nodes at a time. This strengthens the usefulness of red-black trees as an
in-core data structure.

References

1. Adel’son-Vels’kii, G.M., Landis, E.M.: An algorithm for the organization of information. Soviet Math.
Dokl. 3, 1259–1262 (1962)

2. Bayer, R.A.: Symmetric binary B-trees: Data structure and maintenance algorithms. Acta Inform.1,
290–306 (1972)

3. Dijkstra, E.W., Lamport, L., Martin, A.J., Scholten, C.S., Steffens, E.F.M.: On-the-fly garbage collec-
tion: An exercise in cooperation. Comm. ACM21, 699–975 (1978)

4. Ellis, C.S.: Concurrent search in AVL-trees. IEEE Trans. ComputersC-29, 811-817 (1980)
5. Ellis, C.S.: Concurrent search and insertions in 2–3 trees. Acta Inform.14, 63–86 (1980)
6. Guibas, L.J., Sedgewick, R.: A dichromatic framework for balanced trees. In: Proceedings of the 19th

IEEE Symp. Foundations of Computer Science, 1978, 8–21.
7. Kessels, J.L.W.: On-the-fly optimization of data structures. Comm. ACM26, 895–901 (1983)
8. Kung, H.T., Lehman, P.L.: A concurrent database manipulation problem: Binary search trees. ACM

Trans. Database Syst.5, 339–353 (1980)
9. Manber, U, Ladner, R.E.: Concurrency control in a dynamic search structure. ACM Trans. Database

Syst.9, 439–455 (1984)
10. McCreight, E.M.: Priority search trees. SIAM J. Comput.14, 257–276 (1985)
11. Nurmi, O., Soisalon-Soininen, E., Wood, D.: Concurrency control in database structures with relaxed

balance. In: Proceedings of the 6th ACM Conf. Principles of Database Systems, 1987, 170–176.
12. Sarnak, N., Tarjan, R.E.: Planar point location using persistent search trees. Comm. ACM29, 669–679

(1986)
13. Stout, Q.F., Warren, B.L.: Tree rebalancing in optimal time and space. Comm. ACM29, 902–908

(1986)
14. Tarjan, R.E.: Updating a balanced search tree inO(1) rotations. Inf. Proc. Lett.16, 253–257 (1983)
15. Tarjan, R.E.: Data Structures and Network Algorithms. Society for Industrial and Applied Mathematics,

Philadelphia, Pa, 1983.


