
e set of
cess-
itably

nt,
ges in
esented.

g
fix

-
hat,
Journal of Discrete Algorithms 1 (2003) 387–408

www.elsevier.com/locate/jda

The suffix binary search tree and suffix AVL tree

Robert W. Irving∗, Lorna Love

Department of Computing Science, University of Glasgow, Glasgow G12 8RZ, Scotland, UK

Abstract

Suffix trees and suffix arrays are classical data structures that are used to represent th
suffixes of a given string, and thereby facilitate the efficient solution of various string pro
ing problems—in particular on-line string searching. Here we investigate the potential of su
adapted binary search trees as competitors in this context. Thesuffix binary search tree (SBST) and
its balanced counterpart, thesuffix AVL-tree, are conceptually simple, relatively easy to impleme
and offer time and space efficiency to rival suffix trees and suffix arrays, with distinct advanta
some circumstances—for instance in cases where only a subset of the suffixes need be repr

Construction of a suffix BST for ann-long string can be achieved in O(nh) time, whereh is the
height of the tree. In the case of a suffix AVL-tree this will be O(n logn) in the worst case. Searchin
for anm-long substring requires O(m+ l) time, wherel is the length of the search path. In the suf
AVL-tree this is O(m + logn) in the worst case. The space requirements are linear inn, generally
intermediate between those for a suffix tree and a suffix array.

Empirical evidence, illustrating the competitiveness of suffix BSTs, is presented.
 2003 Elsevier B.V. All rights reserved.

Keywords: Binary search tree; AVL tree; Suffix tree; Suffix array; String searching

1. Introduction

Given a stringσ = σ1σ2 . . . σn of lengthn, a suffix binary search tree (or SBST) for σ
is a binary tree containingn nodes, each labelled by a unique integer in the range 1. . .n,
the integeri representing theith suffix σ i = σiσi+1 . . . σn of σ . We refer to the node rep
resenting suffixσ i simply as nodei of the tree. Furthermore, the tree is structured so t
for each nodei, σ i is lexicographically greater thanσj for every nodej in its left subtree,
and lexicographically less thanσk for every nodek in its right subtree.

* Corresponding author.
E-mail addresses: rwi@dcs.gla.ac.uk (R.W. Irving), love@dcs.gla.ac.uk (L. Love).

1570-8667/$ – see front matter 2003 Elsevier B.V. All rights reserved.

doi:10.1016/S1570-8667(03)00034-0

http://www.elsevier.com/locate/jda

388 R.W. Irving, L. Love / Journal of Discrete Algorithms 1 (2003) 387–408

The concept of a suffix binary search tree is related to the suffix array, introduced by
. See
suf-

icularly
tential
vidence
d suf-
ntage
ubset of
iate to
saving

ed
Given a
ern
g

n

alance
.) The
r

repre-
z [6].
re
worst-
ment
sing
d

ns two
ily be
e tree,

r pointer
Manber and Myers [7] as an alternative to the widely applicable suffix tree [8,9,11]
also [2] for an indication of suffix tree applications, and [4] for a detailed exposition of
fix trees and suffix arrays. Suffix arrays have some advantages over suffix trees, part
in respect of space requirements, and we claim that suffix BSTs have their own po
advantages, at least in some circumstances. In Section 5, we present empirical e
suggesting that, in practice, the suffix BST is broadly competitive with suffix trees an
fix arrays in indexing real data, such as plain text or DNA strings. A particular adva
is that a standard suffix BST can easily be constructed so as to represent a proper s
the suffixes of a text. For example, if the text is natural language, it might be appropr
represent in the tree only those suffixes that start on a word boundary, resulting in a
in space and construction time by a factor of the order of 1+ w, wherew is the average
word length in the text.

Classical algorithms [8,9,11] construct a suffix tree for a string of lengthn in
O(n log|Σ|) time and O(n) space, whereΣ is the alphabet, and a recent more involv
algorithm described by Farach et al. [3] removes the dependence on alphabet size.
suffix tree forσ and a patternα of lengthm, an algorithm to determine whether the patt
appears in the string can be implemented to run in O(m log|Σ|) time. The correspondin
time bounds for construction and search in the case of a suffix array [7] are O(n logn) and
O(m+ logn), using O(n) space.

For a suitably implemented SBST, a search requires O(m+ l) time, wherel is the length
of the search path in the tree. This gives O(m+ n) worst-case complexity, but typically i
practice, all search paths will have O(logn) length, and searching will be O(m + logn)
on average. In fact, this becomes a worst-case bound if we use AVL rotations to b
the tree on construction. (As we shall see, this is a feasible, but non-trivial extension
construction time for our standard SBST can be as bad as O(n2) in the worst case, but fo
a refined version, it can be achieved in O(nh) time, whereh is theheight of the tree, In the
worst case,h can be�(n), but for random strings,h can be expected to be O(logn), and
in the case of the suffix AVL tree, construction can be accomplished in O(n logn) time in
the worst case.

Although both suffix trees and suffix arrays use linear space, the latter can be
sented more compactly. This issue is explored in detail by Gusfield [4] and by Kurt
Traditional representations of a suffix tree [8] require 28n bytes, in the worst case, but mo
compact representations are possible. The most economical, due to Kurtz [6], has a
case requirement of 20n bytes, though empirical evidence suggests an actual require
of around 10n–12n bytes in practical cases. For a suffix array, an implementation u
just 5n bytes is feasible once the construction is complete, although 9n bytes are neede
during construction.1

As we shall see, in the standard implementation of an SBST, each node contai
integers, two pointers and one additional bit. (Of course, the additional bit can eas
incorporated as a sign in one of these integers.) In fact, using an array to house th

1 In all cases, we exclude the space needed for the string itself, and we assume 4 bytes per integer o
value.

R.W. Irving, L. Love / Journal of Discrete Algorithms 1 (2003) 387–408 389

rather than dynamically created nodes, allows us to dispense with one of the integers.

itional

t a sub-
t a
on a

scribe
f this

o be no

tailed
worst-
search
con-

cantly
gether

suffix
i-
ice, of

r with
earch

y
begin

ach

equal
rch can-
m to
arison,
Hence the space requirement for an SBST representing a string of lengthn is essentially
12n bytes. For the construction of the refined version, each node requires two add
pointers, and, in the case of the suffix AVL tree, two further bits to indicate itsbalance
factor.

We refer again to the ease with which standard SBSTs can be used to represen
set of the suffixes—we call thesepartial suffix SBSTs. For example, we can expec
saving of 80% or more in space (and time for construction) if only suffixes starting
word boundary are included (when the string is plain text). Andersson et al. [1] de
a complex method of adapting suffix trees for this purpose, but no implementation o
method, or empirical evidence of its behaviour, have been reported. There appears t
discussion in the literature of any corresponding variant of the suffix array.

The remainder of this paper is organised as follows. Section 2 contains a de
description of the search algorithm for an SBST, together with proof of correctness,
case complexity analysis, and an easy extension to find all occurrences of a given
string. Section 3 contains a detailed description and analysis of algorithms for the
struction of an SBST, both the standard version and the refined variant that signifi
improves the worst-case performance (and indeed the performance in practice), to
with a brief discussion of partial SBSTs. Section 4 describes the construction of
AVL-trees, and shows that this can be achieved in O(n logn) time in the worst case. F
nally, Section 5 contains empirical evidence comparing the performance, in pract
SBSTs with that of suffix trees and suffix arrays.

2. The SBST search algorithm

2.1. A naive SBST

In the most basic form of an SBST, each node contains one suffix number togethe
pointers to its two children. However, in order to improve the performance of the s
algorithm, we have to include some additional information in each node of the tree.

Suppose that we wish to find an occurrence, if one exists, of anm-long patternα in an
n-long stringσ by searching in a basic SBSTTσ for σ . A naive search is potentially ver
inefficient, irrespective of the shape of the tree. If, at each node visited, comparisons
with the first character ofα, then up tom character comparisons may be required at e
node, giving a worst-case complexity that is no better than O(mh), whereh is the height
of Tσ .

2.2. Avoiding repeated comparisons

The key to a more efficient SBST search algorithm is the need to avoid repeated
character comparisons. The number of unequal character comparisons during a sea
not exceed the lengthl of the search path (at most one per node visited). It will be our ai
ensure that no character in the pattern can be involved in more than one equal comp
so that the complexity of search will be O(h+m) in the worst case.

390 R.W. Irving, L. Love / Journal of Discrete Algorithms 1 (2003) 387–408

In order to establish how this can be achieved, we first require some terminology and

r

s

lgorithm
notation. Given two stringsα andβ , we denote bylcp(α,β) the length of thelongest
common prefix of α and β . For a given nodei in an SBST, aleft (respectivelyright)
ancestor is any nodej such thati is in the right (respectively left) subtree ofj . Theclosest
left ancestor clai of i is the left ancestorj such that no descendant ofj is a left ancesto
of i. Theclosest right ancestor crai is defined similarly.

We also define two values associated with each node, namely

mi =



0 if nodei is the root,

maxj lcp
(
σ i, σ j

)
otherwise, where the maximum is taken

over all ancestorsj of nodei,

and

di =



left if nodei is in the left subtree

of the nodej for whichmi = lcp
(
σ i, σ j

)
,

right otherwise.

Note thatdi is undefined ifi is the root, but otherwisemi anddi are defined for all node
(though there is a choice for the value ofdi for those nodesi for which lcp(σ i, σ clai) =
lcp(σ i , σ crai), and that choice may be made arbitrarily).

It turns out, as we will see, that inclusion in each nodei of the valuesmi anddi gives just
enough information to enable repeated equal character comparisons in the search a
to be avoided.

The theorems that follow describe how the search for a stringα should proceed on
reaching a nodei. At that point in the search, we need access to two values, namely

• llcp = maxj lcp(α,σ j) where the maximum is taken over all right ancestorsj of i;
• rlcp = maxj lcp(α,σ j) where the maximum is taken over all left ancestorsj of i.

Clearly, llcp = lcp(α, crai) and rlcp = lcp(α, clai). In addition, for brevity, we usep to
stand for nodeclai andq to stand for nodecrai .

We make substantial use of Lemma 1, which is trivial to verify.

Lemma 1. If α, β and γ are strings such that α < β < γ , then lcp(α, γ) = min(lcp(α,β),
lcp(β, γ)).

Theorem 1. If mi > max(llcp, rlcp) then the search for α should continue in the direction
di from node i . Furthermore the values of llcp and rlcp remain unchanged.

Proof. We havemi = max(lcp(σ i , σp), lcp(σ i , σ q)), llcp= lcp(α,σp), rlcp= lcp(α,σ q).
Supposeσq < σ i < α < σp . (A symmetrical argument applies ifσq < α < σ i < σp .)
Then from Lemma 1, we have

(1)lcp
(
σ i, σp

) = min
(
lcp

(
σ i,α

)
, lcp

(
α,σp

))
and so lcp(σ i, σp) � lcp(α,σ i). The fact thatmi > max(llcp, rlcp) � llcp therefore
implies thatmi = lcp(σ i , σ q), for otherwisemi = lcp(σ i , σp) � lcp(α,σp) = llcp �

R.W. Irving, L. Love / Journal of Discrete Algorithms 1 (2003) 387–408 391

max(llcp, rlcp), which is a contradiction. It follows thatdi = right, as required. Hence,

d

,

ch to
(2)lcp
(
σ i, σ q

) =mi > max(llcp, rlcp) � rlcp = lcp
(
α,σq

)
,

so by Lemma 1

(3)lcp
(
α,σq

) = min
(
lcp

(
σ i, σ q

)
, lcp

(
σ i,α

)) = lcp
(
σ i,α

)
.

It follows that the value ofrlcp should remain unchanged asrlcp = lcp(σ i , α) =
lcp(α,σ q). It is immediate in this case that the value ofllcp should remain unchange
since there is no new left branch to consider.✷

Prior to the next theorem we require a further lemma.

Lemma 2. At any node i in the search tree, max(llcp, rlcp) > mi ⇒ llcp �= rlcp.

Proof. Suppose thatllcp = rlcp = t , so thatσq(1 . . t) = α(1 . . t) = σp(1 . . t). But be-
causeσq < σ i < σp it follows that σq(1 . . t) = σ i(1 . . t) = σp(1 . . t), so thatmi � t =
max(llcp, rlcp), a contradiction. ✷
Theorem 2.

(a) If mi < max(llcp, rlcp) and max(llcp, rlcp)= llcp then the search for α should branch
right from node i . Furthermore, if di = right then the value of rlcp remains unchanged,
otherwise rlcp should become mi . In either case, the value of llcp remains unchanged.

(b) If mi < max(llcp, rlcp) and max(llcp, rlcp) = rlcp then the search for α should branch
left from node i . Furthermore, if di = left, then the value of llcp remains unchanged,
otherwise llcp should become mi . In either case, the value of rlcp remains unchanged.

Proof. We prove only part (a), the proof of (b) being similar. Ifσq < α < σ i < σp then,
by Lemma 1,

(4)lcp
(
α,σp

) = min
(
lcp

(
α,σ i

)
, lcp

(
σ i, σp

))
� lcp

(
σ i, σp

)
.

Also,

(5)mi < max(llcp, rlcp)= llcp = lcp
(
α,σp

)
� lcp

(
σ i, σp

)
.

But mi = max(lcp(σ i , σp), lcp(σ i , σ q)) � lcp(σ i, σp), giving a contradiction. Hence
σq < σ i < α < σp , and the search forα should branch right from nodei. It is imme-
diate that the value ofllcp should remain unchanged, since there is no new left bran
consider.

If di = right thenlcp(σ i , σ q)� lcp(σ i , σp). But, from Lemma 1 we have

(6)lcp
(
σ i, σp

) = min
(
lcp

(
σ i,α

)
, lcp

(
α,σp

)) = lcp
(
σ i,α

)
(since lcp(α,σp) = lcp(σ i , σp) ⇒ llcp � mi). So lcp(σ i , σ q) � lcp(σ i , α). It follows
that

(7)rlcp = lcp
(
α,σq

) = min
(
lcp

(
σq,σ i

)
, lcp

(
σ i,α

)) = lcp
(
σ i,α

)
and hence the value ofrlcp should remain unchanged.

392 R.W. Irving, L. Love / Journal of Discrete Algorithms 1 (2003) 387–408

If di = left, thenlcp(σ i, σp)� lcp(σ i, σ q). But, by Lemma 1

n, the
risons.

above
-
aining
(8)lcp
(
σ i, σp

) = min
(
lcp

(
σ i,α

)
, lcp

(
α,σp

))
.

If lcp(σ i , σp) = lcp(α,σp) thenllcp = lcp(α,σp) = lcp(σ i, σp) = mi , contradicting the
fact thatmi < llcp. Hencelcp(σ i, σp) = lcp(σ i, α), and lcp(σ i, σp) � lcp(σ i , σ q) �
lcp(α,σ q). It follows thatrlcp should becomemi , as claimed. ✷

There are a further two symmetric cases where, with the appropriate informatio
decision to branch left or right can be made without performing any character compa

Theorem 3.

(a) If mi = llcp > rlcp and di = right, then the search path for α should branch right from
node i; furthermore the values of rlcp and llcp should remain unchanged.

(b) If mi = rlcp > llcp and di = left, then the search path for α should branch left from
node i; furthermore the values of rlcp and llcp should remain unchanged.

Proof. We prove only part (a), the proof of (b) being similar. Fromllcp = lcp(α,σp) and
rlcp = lcp(α,σ q), we have

(9)mi = max
(
lcp

(
σ i, σp

)
, lcp

(
σ i, σ q

)) = lcp
(
α,σp

)
> lcp

(
α,σq

)
.

Fromdi = right we have

(10)lcp
(
σ i, σ q

)
� lcp

(
σ i, σp

)
.

If σq < α < σ i < σp , then by Lemma 1 we have

mi = llcp = lcp
(
α,σp

) = min
(
lcp

(
α,σ i

)
,
(
σ i, σp

))
(11)� lcp

(
σ i, σp

)
� lcp

(
σ i, σ q

) = min
(
lcp

(
α,σq

)
, lcp

(
α,σ i

))
.

By Lemma 1 we also have min(lcp(α,σ i), lcp(α,σ q)) � lcp(α,σ q) = rlcp. This is a
contradiction. Henceσq < σ i < α < σp and the search forα should branch right from
nodei. Fromlcp(α,σ q) = rlcp < llcp =mi = lcp(σ i, σ q) it follows that

(12)lcp
(
α,σq

) = min
(
lcp

(
α,σ i

)
, lcp

(
σ i, σ q

)) = lcp
(
α,σ i

)
.

Hence the value ofrlcp remains unchanged. It is immediate that the value ofllcp remains
unchanged, since there is no new left branch to consider.✷

Of course there will be cases where these theorems do not apply. If none of the
theorems applies (e.g., in the initial case, whenmi = llcp = rlcp = 0) then character com
parisons must be performed to determine the direction in which to branch. The rem
cases are covered by Theorem 4.

Theorem 4. (a) If mi = llcp = rlcp, or (b) if mi = llcp > rlcp and di = left, or (c) if mi =
rlcp > llcp and di = right, then character comparisons must be performed to determine

R.W. Irving, L. Love / Journal of Discrete Algorithms 1 (2003) 387–408 393

the direction of branching. If the search branches right from node i , say to node j , then

s in
ose that

, it is
th

m for
closest
d

-

lay-

tring
f

branch-

th

th

ing left

ch pat-
the value of llcp remains unchanged and the value of rlcp becomes equal to lcp(α,σ i).
Otherwise (the search branches left), the value of rlcp remains unchanged, and the value
of llcp becomes equal to lcp(α,σ i).

Proof. Supposemi = max(llcp, rlcp) = t . In all of the above cases, we know thatσ i andα
have a common prefix of lengtht , but we have no information about the character
positiont + 1. Character comparisons are therefore necessary in these cases. Supp
α < σ i , so that the search path branches left from nodei to nodej . (The argument is
similar if α > σ i and the search branches right.) As there is no new right branch
immediate that the value ofrlcp remains unchanged. Nodei is the last node on the pa
to j from which the search branched left, so the value ofllcp becomeslcp(α,σ i). ✷

We can now use the preceding theorems to describe a more efficient algorith
searching in an SBST. In so doing, we note that no actual reference is needed to the
ancestor nodesclai andcrai , though the currentllcp andrlcp values must be maintaine
throughout.

We refer to this improved search algorithm as thestandard search algorithm. A pseudo
code description of the algorithm appears in Fig. 1. Here, the children of a nodei are
represented aslchildi andrchildi , which are assumed to be suffix numbers, with zero p
ing the role of a null child.

Example. Fig. 2 shows an example of a suffix binary search tree for the 15-long s
CAATCACGGTCGGAC. Each node contains the suffix numberi together with the values o
mi anddi .

Consider searching this tree for the stringCGGA.

• At the root, node 1, we make one equal and one unequal character comparison,
ing right with llcp = 0 andrlcp = 1.

• At node 4, becausem4 < max(llcp, rlcp), we apply Theorem 2(b) to branch left wi
llcp andrlcp unchanged.

• At node 5, becausem5 > max(llcp, rlcp), we apply Theorem 1 to branch right wi
llcp andrlcp unchanged.

• At node 7 we make two equal and one unequal character comparisons, branch
with llcp = 3 andrlcp unchanged.

• Finally at node 11, one further equal character comparison reveals that the sear
tern is present in the string beginning at position 11.

2.3. Analysis

Each time the loop is iterated, at least one of the following occurs:

• the search descends one level in the tree;
• the value ofllcp is increased;
• the value ofrlcp is increased.

394 R.W. Irving, L. Love / Journal of Discrete Algorithms 1 (2003) 387–408

- - Algorithm to search for an occurrence ofα in the SBSTT ;

f the
in
e max

the
rithm

on

ing its
- - returns its starting position inσ , or zero if there is none.
begin

i := Root ofT ; llcp := 0; rlcp := 0;
while i �= null loop

if mi > max(llcp, rlcp) then
i := appropriate child ofi; - - by Theorem 1

elsif mi < max(llcp, rlcp) then
if llcp > rlcp then - - by Theorem 2(a)

i := rchildi ;
if di = left then

rlcp := mi ;
end if;

elsif rlcp > llcp then - - by Theorem 2(b)
i := lchildi ;
if di = right then

llcp := mi ;
end if;

end if;
elsif mi = llcp and llcp > rlcp and di = right then - - by Theorem 3(a)

i := rchildi ;
elsif mi = rlcp and rlcp > llcp and di = left then - - by Theorem 3(b)

i := lchildi ;
else - - by Theorem 4

t := max{k: α(mi + 1. . . k)= σ(mi + i . . . k + i − 1)};
if t = |α| then

return i;
elsif t + i − 1= n or else α(t + 1) > σ(t + i) then

i := rchildi ;
rlcp := t ;

else
i := lchildi ;
llcp := t ;

end if;
end if;

end loop;
return 0;

end;

Fig. 1. A standard search algorithm for an SBST.

Further, max(llcp, rlcp) never decreases in value. So the total number of iterations o
loop is at mosth+ 2|α|. In addition, no character inα is ever involved more than once
an equality comparison, so the total number of such comparisons in all calls of th
function is bounded by|α|, and the number of inequality comparisons is bounded by
number of loop iterations. Hence the overall complexity of the standard search algo
is O(|α| + h), and we can expecth to be O(logn), on average for random strings or
typical plain text, wheren is the number of nodes (i.e., the length of the stringσ). In fact,
as we shall see in Section 4, it is possible to maintain the SBST as an AVL tree dur
construction, thereby enabling us to guarantee thath= O(logn).

R.W. Irving, L. Love / Journal of Discrete Algorithms 1 (2003) 387–408 395

-
tree.

e

of

ces
n

n occur-

. If
Fig. 2. An SBST for stringCAATCACGGTCGGAC.

2.4. Locating all occurrences

Given an SBST,Tσ , for a stringσ , and a patternα, the functionPos determines
whetherα is a substring ofσ , and if successful returns a position, sayk, in σ whereα
occurs. If we requireall the positions inσ whereα occurs, then it suffices to partially tra
verse the subtree rooted at nodek, since all occurrences will be represented in that sub

Suppose that we have reached a nodej in that subtree and we know whetherj ’s closest
left and right ancestors represent occurrences ofα. The following two observations ar
immediate:

(a) if j ’s closest left ancestor andj ’s closest right ancestor represent occurrencesα
then all nodes in the subtree rooted atj also represent occurrences ofα;

(b) if neitherj ’s closest left ancestor norj ’s closest right ancestor represent occurren
of α then both represent strings> α or both represent strings< α, so that no nodes i
the subtree rooted atj can represent an occurrence ofα.

Consider the case wherej ’s closest left ancestor represents an occurrence ofα but its
closest right ancestor does not (the case where only the right ancestor represents a
rence ofα may be treated analogously). Ifmj � |α| anddj = left, then nodej represents
an occurrence ofα. In this case, it follows from (a) that all nodes inj ’s right subtree also
represent occurrences ofα. The nodes inj ’s left subtree can be resolved recursively
dj = right, or if mj < |α| then j does not represent an occurrence ofα. In view of (b)
then, it follows that no node inj ’s left subtree can represent an occurrence ofα. The nodes
in j ’s right subtree can be resolved recursively.

396 R.W. Irving, L. Love / Journal of Discrete Algorithms 1 (2003) 387–408

These observations lead to a recursive algorithm to partially traverse the subtree in ques-
al
s opti-
e even

f all of
t the

us to
on the

t
the

ad of
g

e

set
s and
dard
ct that

build
ld be

uffixes

n
e

tion, identifying those nodes that represent occurrences ofα. Furthermore, the travers
visits only those nodes that cannot, a priori, be eliminated from consideration, and i
mal in this sense, although, in the worst case, it may visit every node in the subtre
when there is only one occurrence of the pattern in the string.

3. Building an SBST

3.1. Using the standard search algorithm

Clearly there are many possible SBSTs for a given string. An SBST forσ can be built
in the same way as a binary search tree, namely by a sequence of insertions o
the suffixes ofσ , in any order, into an initially empty tree. We assume, however, tha
suffixes are inserted in left to right order. We will see subsequently that this enables
add a refinement to the construction algorithm. For the moment we will concentrate
process of building the SBST with the correctm andd values stored at each node.

The process of repeated insertion of all suffixes ofσ begins with the creation of a roo
node representingσ 1, with m1 = 0. Observe that the search algorithm described in
previous section requires little modification to perform the task of insertion. Inste
searching for a stringα in Tσ , we ask it to search forσk+1 in a binary search tree containin
the firstk suffixes ofσ , and the search will terminate at the location whereσk+1 should
be inserted. Such a search will also make available, as a by-product, the valuesmk+1 and
dk+1. To be precise, the former will be max(llcp, rlcp) and, by definition, the latter may b
taken to beleft if llcp > rlcp, andright otherwise.

3.2. A ‘partial’ SBST

It is particularly straightforward to build an SBST that includes only a restricted
of the suffixes of a given string. The processes involved in constructing suffix tree
suffix arrays, differ from those involved in building SBSTs in this respect. The stan
construction of an SBST by repeated insertion of suffixes is not dependent on the fa
all suffixes of the string are inserted.

This means that the standard construction algorithm requires little modification to
a structure holding only a proper subset of the suffixes of a given string. This cou
appropriate, for example, in text processing where we may be interested only in s
marking the start of a new word.

We denote the set of characters of interest, the so-calledword set by C, and define the
suffixes of interest to be those that begin with a character inC but are not immediately
preceded by such a character. We denote thepartial SBST for this set of suffixes byTσ (C).
For a given stringσ and set of charactersC, Tσ (C) will clearly require less space tha
Tσ (C) by a factor of some 1+w, wherew is the average ‘word length’ in the text, and w
can also expect a reduction in the time for construction by a similar factor.

R.W. Irving, L. Love / Journal of Discrete Algorithms 1 (2003) 387–408 397

3.3. A refined SBST build algorithm

orithm
tree,

re no
BST

be in-

r

e on the
at

node

how
Empirical evidence (Section 5) suggests that the standard SBST construction alg
performs well in practice for typical strings. However, regardless of the shape of the
insertion of theith suffix of ann-long string may require as many as min(i, n + 1 − i)

comparisons. The worst case complexity of this tree building algorithm is therefo
better than O(n2). For example, consider the use of this algorithm to construct an S
for a stringσ of lengthn that is a square (i.e.,n even,σn/2+i = σi for all i, 1� i � n/2).

Fortunately, an improvement exploiting the relationship between the suffixes to
serted is possible. This results in an algorithm whereby the tree is built in O(nh) time in
the worst case, whereh is the height of the tree.

We incorporate into our SBST, for each nodei,2

• a suffix link,si , i.e., an explicit pointer from nodei to nodei + 1;
• a closest ancestor linkzi ; i.e., an explicit pointer from nodei to the closest ancesto

nodej such thatlcp(σ i, σ j) = mi (andi is in the subtree of nodej corresponding to
the value ofdi , i.e., if di = left, thenzi = crai and ifdi = right, thenzi = clai).

We define thestart node for the insertion of suffixσ i+1, denotedsti+1, as follows:

sti+1 =




the root ifmi � 1,

nodeszi if mi >mszi
+ 1,

nodek otherwise, wherek is the first node on a path of closest

ancestor links from nodeszi for whichmi >mk + 1.

Such a node is guaranteed to exist, because in the worst case, the root can tak
role of nodek. We now establish that suffixσ i+1 must be inserted in the subtree rooted
its start node.

Lemma 3. In all cases, lcp(σ i+1, σ sti+1)� mi − 1.

Proof. If mi � 1 then the result is trivial. Otherwise, nodesti+1 is reached from nodeszi
by following a sequence of zero or more closest ancestor links, each of which is to a
for which the firstmi − 1 characters of the suffix are unchanged. Hence

σ sti+1(1 . . .mi−1)= σ szi (1 . . .mi−1)= σ i+1(1 . . .mi−1). ✷
Lemma 4. The insertion point for suffix σ i+1 is in the subtree rooted at node sti+1.

Proof. If sti+1 is the root, then the lemma holds trivially. Otherwise, it suffices to s
that there can be no ancestor nodej of sti+1 such thatσ i+1 < σj < σ sti+1 orσ sti+1 < σj <

σ i+1.
If this were the case it would follow thatlcp(σ i+1, σ sti+1) � lcp(σ j , σ sti+1). But

lcp(σ j , σ sti+1) � msti+1 <mi − 1, and Lemma 3 gives a contradiction.✷
2 Except noden, which has no suffix link.

398 R.W. Irving, L. Love / Journal of Discrete Algorithms 1 (2003) 387–408

Lemmas proved in Section 2 indicate how to branch from each node on the search
e

urrent
for

ribed

ilar

t
d

-
h
that
n

han in
ge time
em to
worst

uction
path from the root to a leaf during the insertion of suffixi + 1. We now describe how th
search for the insertion point forσ i+1 is initiated from the start nodesti+1. In so doing,
we observe that, at any point during this search, we require only the larger of the c
llcp andrlcp values, the value of the smaller being irrelevant. The refined algorithm
building an SBST therefore requires only a slight modification to the algorithm desc
in the previous section.

Lemma 5.

(a) If sti+1 is the root, then the search begins as in the case of the standard SBST, with
llcp = rlcp = 0, and no characters matched;

(b) if sti+1 = szi and di = left, then we branch left from node sti+1, set rlcp = 0, and
llcp =mi − 1;

(c) if sti+1 = szi and di = right, then we branch right from node sti+1, set llcp = 0, and
rlcp =mi − 1;

(d) otherwise, if sti+1 = k, so that σ i+1(1 . . .mi − 1)= σk(1 . . .mi − 1), then comparison
of characters from position mi in these 2 suffixes will reveal whether to branch left or
right, and the appropriate value of llcp or rlcp.

Proof. We prove only (b) and (d), the proof of (a) being trivial, and the proof of (c) sim
to that of (b).

(b) Becausedi = left, we haveσ i < σzi . Sinceσi = σzi it follows thatσ i+1 < σzi+1 =
σ sti+1, and so the search should branch left from nodesti+1. In addition, we know tha
lcp(σ i+1, σ sti+1) = lcp(σ i, σ zi)− 1 = mi − 1, so thatllcp should be set to this value, an
rlcp, the true value of which cannot be larger, can remain as zero.

(d) Because we know thatσ i+1(1 . . .mi − 1) = σk(1 . . .mi − 1), we need only com
pare the substringsσ i+1(mi . . . |σ |) andσk(mi . . . |σ |) to decide the direction in whic
to branch. Suppose we matchm characters of these two substrings, and we find
σ i+1(mi . . . |σ |) < σk(mi . . . |σ |) (and similarly if the inequality is the other way). The
we branch left from nodek, with llcp set tomi +m− 1, andrlcp set to zero. ✷
3.4. Analysis

Since the search paths for the insertion of many suffixes are likely to be shorter t
the standard algorithm, this refined algorithm can be expected to reduce the avera
taken to build a suffix BST in practice. Indeed, the empirical results in Section 5 se
indicate a significant improvement. What has been achieved, though, in terms of the
case time complexity? The following lemmas allow us to show that the refined constr
algorithm also gives an improvement in this respect.

Lemma 6. During the entire execution of the refined construction algorithm, no more than
O(L) unequal character comparisons are made, where L is the path length of the final
tree.

R.W. Irving, L. Love / Journal of Discrete Algorithms 1 (2003) 387–408 399

Proof. This follows at once from the observation that, during the insertion of each suffix,

rison
com-

r-
n of

f

ber
mmas 6

r node
xceed
xceed
ns, is

will be
ses

tree has
n. In
ed

differ

l

at most one unequal character comparison takes place at each node on the path.✷
Lemma 7. During the entire execution of the refined construction algorithm, no more than
O(n) equal character comparisons are made, where n is the length of the string.

Proof. During the insertion of suffixi, no equality comparisons involving characterσi+r

are made, for anyr > 0, if that character was involved in an equal character compa
during the insertion of any previous suffix. Suppose, on the contrary, that an equality
parison involvingσi+r was made during the insertion of suffixi − t , for somet � 1. Then
it is immediate thatmi−t � r + t + 1. Hence, during the insertion of suffixi − t + 1, that
suffix i and suffixsti−t+1 had a common prefix of lengthmi−t , and hence no compa
isons involvingσi+r would be made. The argument extends inductively to the insertio
suffix i, giving a contradiction.

It follows that, during the refined construction, each character inσ is involved in at most
one equality comparison with a character that precedes it inσ , and so the total number o
equality comparisons is O(n), as claimed. ✷
Theorem 5. Using the refined algorithm, an SBST Tσ for an n-long string σ can be con-
structed in O(nh) time in the worst case, where h is the height of the tree.

Proof. The complexity of the algorithm is determined by two factors, namely the num
of character comparisons and the number of node-to-nodesteps taken in the tree. Le
and 7 together establish that the total number of character comparisons is O(L) = O(nh),
whereL is thepath length of the tree (since, for the latter, it is immediate thatn = O(L)).
As far as steps in the tree are concerned, consider the insertion of any particula
i+1. The number of downward steps taken during the insertion of this node cannot e
the distance of the node from the root, while the number of upward steps cannot e
the height of the tree. Hence the total number of steps, summed over all insertio
O(nh).3 ✷

4. The suffix AVL tree

On average, an SBST will be reasonably well balanced, and the expected height
O(logn), but will inevitably be no better than O(n) in the worst case. So the question ari
whether some standard tree balancing technique can be used to guarantee that the
logarithmic height, while not adversely affecting the complexity of tree constructio
this section, we explore thesuffix AVL tree, i.e., the suffix binary search tree balanc
using rotations as in classical AVL trees [10].

Recall that, in an AVL tree, the heights of the left and right subtrees of every node
by at most one. If the tree becomes unbalanced by the insertion of a new node, arotation is

3 In fact, we conjecture that the appropriate worst case time bound is O(L), but we lack a proof that the tota
number of upward steps in the tree satisfies this bound.

400 R.W. Irving, L. Love / Journal of Discrete Algorithms 1 (2003) 387–408

Table 1

e kinds
o

ged
r an

restore

are of
ht

um-
wo other

there
a

at
iately

exity.

d

operty.

e.

an be
n can
the
The updated values ofm, d , andz after a single left rotation

da db lcaa lcab m′
a m′

b
d ′
a d ′

b
z′a z′

b

l l f f ma mb da db b f

l r f a mb ma da ¬db b f

r l g f ma mb da db g f

r r g a max(ma,mb) min(ma,mb)

{
da if ma �mb

¬da otherwise
db

{
g if ma � mb

b otherwise
g

performed, and the balance property is restored. There are essentially four possibl
of rotations, asingle left rotation, adouble left rotation, and the mirror images of these tw
cases asingle right and adouble right rotation. In fact, a double rotation can be envisa
as the composition of two single rotations, a fact that we exploit in what follows. Afte
insertion has been performed, at most one (single or double) rotation is required to
the AVL balance property.

It is well known that the sparsest possible AVL trees are Fibonacci trees, which
height approximately 1.44 log2n, for a tree withn nodes, so that every AVL tree has heig
O(logn).

AVL rotations can easily be applied to balance a naive SBST in which only suffix n
bers are stored at the nodes. However, in our standard SBSTs, each node contains t
values that are tightly coupled to the structure of the tree, and in the refined version
are a further two such values. Some or all of themi , di , andzi values may change as
result of a rotation that affects the ancestors of nodei. (It should be clear however, th
the si values do not pose a problem in this respect.) Furthermore, it is not immed
obvious whether enough information is available to enable the correctm, d , andz values
for affected nodes to be recalculated without significantly increasing the time compl

4.1. Balancing the SBST subtree

Suppose that we have a suffix AVL tree containing the firsti suffixes ofσ , and we are
about to use the refined insertion algorithm to insert the suffixσ i+1 into the subtree roote
at nodesti+1. We concentrate only on the subtree rooted atsti+1 for the moment, and in
the next subsection we describe how to ensure that the entire tree retains the AVL pr

It turns out that, for our proposed suffix AVL subtree,

• after a single left or single right rotation, at most oned value, twoz values, and twom
values need to be updated, and this can be achieved in constant time;

• after a double left or double right rotation, at most twod values, threez values and
threem values need to be updated, and this can also be achieved in constant tim

We will prove in detail the results for a single rotation. Because a double rotation c
viewed as a sequence of two single rotations, it follows at once that a double rotatio
also be achieved in constant time. However, although we state the rules for updatingd ,
z andm values, we will omit the details of the proof.

R.W. Irving, L. Love / Journal of Discrete Algorithms 1 (2003) 387–408 401

been
of

tion

tation.

which
Fig. 3. A single left AVL rotation.

In the following, we consider the effect of some particular rotation inTσ . We use the
symbol′ to indicate the (possibly altered) value of a parameter after the rotation has
carried out; for example we refer tom′

i , d
′
i , cla′

i , cra′
i , etc. We represent the opposite

directiondi by ¬di , i.e.,¬right = left and¬left = right.
The following lemma is trivial to verify (although it does depend on our assump

that, whenlcp(σ i, σ clai)= lcp(σ i, σ crai), we can choosedi to be eitherleft or right.

Lemma 8. If cla′
i = clai and cra′

i = crai then m′
i =mi and d ′

i = di .

The next theorem characterises the alterations required to accomplish a single ro
The context is given in Fig. 3.

Theorem 6. Consider a single left rotation pivoted at node a, and let b be the right child
of node a. Then

(i) the values of mi , zi , and di are unchanged for all nodes i other than a and b;
(ii) the new m, z, and d values for nodes a and b are as presented in Table 1.

Proof. (i) For all nodesi in the tree, excluding nodesa andb, cla′
i = clai andcra′

i = crai .
It follows from Lemma 8 that for these nodes,d ′

i = di andm′
i =mi . It follows also that for

these nodes,z′
i = zi .

(ii) Let the closest left and right ancestors of nodea be nodesg andf respectively. (It is
easy to verify that the results of the theorem continue to hold in the special cases in
either or both of these do not exist.)

We first observe that, once the values ofd ′
a andd ′

b are established, the values ofz′
a and

z′
b follow immediately. For example,z′

a is equal tob or g according asd ′
a is left or right,

and similarly forz′
b.

402 R.W. Irving, L. Love / Journal of Discrete Algorithms 1 (2003) 387–408

Within the binary search tree we have the lexicographic ordering

t

(13)σg < σa < σb < σf .

Subcase ii(a) Supposedb = left (as in lines 1 and 3 of Table 1); then

(14)mb = lcp
(
σb,σf

)
� lcp

(
σb,σ a

)
.

From Lemma 1, (13) and (14), it follows that

(15)lcp
(
σa,σf

) = min
(
lcp

(
σa,σ b

)
, lcp

(
σb,σf

)) = lcp
(
σb,σ a

)
.

It can be seen from this, and the definitions ofm′
a andma , that

m′
a = max

(
lcp

(
σa,σ b

)
, lcp

(
σa,σg

))
(16)= max

(
lcp

(
σa,σf

)
, lcp

(
σa,σg

)) =ma.

It is immediate from (16) thatd ′
a = da . From (14), the definitions ofm′

b andmb and the
knowledge from (13) thatlcp(σ b, σ a) � lcp(σ b, σ g), we have

(17)m′
b = max

(
lcp

(
σb,σf

)
, lcp

(
σb,σg

)) = lcp
(
σb,σf

) =mb.

From this, it is immediate thatd ′
b = db.

Subcase ii(b) Supposeda = left anddb = right (as in line 2 of Table 1); then

(18)ma = lcp
(
σa,σf

)
� lcp

(
σa,σg

)
and

(19)mb = lcp
(
σb,σ a

)
� lcp

(
σb,σf

)
.

From (19), (13) and (18), it follows that

(20)lcp
(
σa,σ b

)
� lcp

(
σb,σf

)
� lcp

(
σa,σf

)
� lcp

(
σa,σg

)
.

From (20) and the definitions ofmb andm′
a , we obtain

(21)m′
a = max

(
lcp

(
σa,σ b

)
, lcp

(
σa,σg

)) = lcp
(
σa,σ b

) =mb.

It is immediate from (21) thatd ′
a = left = da . It follows from (13), Lemma 1, and (19) tha

(22)lcp
(
σa,σf

) = min
(
lcp

(
σa,σ b

)
, lcp

(
σb,σf

)) = lcp
(
σb,σf

)
.

It is immediate from (13), Lemma 1, and (16) that

(23)lcp
(
σb,σg

) = min
(
lcp

(
σa,σg

)
, lcp

(
σa,σ b

)) = lcp
(
σa,σg

)
.

From (22), (23) and the definitions ofma andm′
b, we obtain

m′
b = max

(
lcp

(
σb,σf

)
, lcp

(
σb,σg

))
(24)= max

(
lcp

(
σa,σf

)
, lcp

(
σa,σg

)) =ma.

From this it is immediate thatd ′
b = da = ¬db.

R.W. Irving, L. Love / Journal of Discrete Algorithms 1 (2003) 387–408 403

Subcase ii(c) Supposeda = db = right (as in line 4 of Table 1); then

us the-
etails.
otation.
(25)ma = lcp
(
σa,σg

)
� lcp

(
σa,σf

)
and

(26)mb = lcp
(
σb,σ a

)
� lcp

(
σb,σf

)
.

From (25), (26) and the definition ofm′
a , it follows that

(27)m′
a = max

(
lcp

(
σa,σ b

)
, lcp

(
σa,σg

)) = max(ma,mb).

From (27), it follows thatd ′
a = right = da if ma � mb, andd ′

a = left = ¬da otherwise.
From (13), Lemma 1, (25) and (26), we obtain

(28)lcp
(
σb,σg

) = min
(
lcp

(
σa,σg

)
, lcp

(
σa,σ b

)) = min(ma,mb).

Also by (13), Lemma 1, and (26), it follows that

(29)lcp
(
σa,σf

) = min
(
lcp

(
σa,σ b

)
, lcp

(
σb,σf

)) = lcp
(
σb,σf

)
.

Eqs. (28) and (29) and the definition ofm′
b give us

(30)m′
b = max

(
lcp

(
σb,σf

)
, lcp

(
σb,σg

)) = max
(
lcp

(
σb,σf

)
,min(ma,mb)

)
.

From (25) and (29), we obtain

(31)ma = lcp
(
σa,σg

)
� lcp

(
σa,σf

) = lcp
(
σb,σf

)
.

From (26) we know thatmb � lcp(σ b, σf). This, together with (31), gives us

(32)lcp
(
σb,σf

)
� min(ma,mb).

So, from (30) and (32), we obtain

(33)m′
b = min(ma,mb).

From (28) and (33), we obtain

(34)m′
b = min(ma,mb)= lcp

(
σb,σg

)
,

and from this it follows thatd ′
b = right = db. ✷

Corresponding to Theorem 6 and Table 1 there is, of course, an exactly analogo
orem and corresponding table for the case of a single right rotation. We omit the d
The next theorem characterises the alterations required to accomplish a double r
The context is given in Fig. 4.

Theorem 7. Consider a double left rotation pivoted first at node b, then at node a, and let
c be the left child of b. Then,

(i) the values of mi , zi , and di are unchanged for all nodes i other than a, b and c;
(ii) the new m, z, and d values for nodes a, b and c are as presented in Tables 2 and 3.

404 R.W. Irving, L. Love / Journal of Discrete Algorithms 1 (2003) 387–408

etails

3 for the

an be
Fig. 4. A double left AVL rotation.

Table 2
The updated values ofm andd after a double left rotation

da db dc m′
a m′

b m′
c d ′

a d ′
b d ′

c

l l l ma
max

(mb,mc)

min

(mb,mc)
da

{
db if mb � mc

¬db otherwise
dc

l l r mc mb ma da db ¬dc

l r l mb mc ma da db dc

l r r mc mb ma da db ¬dc

r l l ma
max

(mb,mc)

min

(mb,mc)
da

{
db if mb � mc

¬db otherwise
dc

r l r
max

(ma,mc)
mb

min

(ma,mc)

{
da if ma � mc

¬da otherwise
db dc

r r l
max

(ma,mb)
mc

min

(ma,mb)

{
da if ma �mb

¬da otherwise
db ¬dc

r r r
max

(ma,mc)
mb

min

(ma,mc)

{
da if ma � mc

¬da otherwise
db dc

As observed earlier, we omit the proof of this theorem for the sake of brevity. Full d
can be found in [5].

Once again, there are analogues corresponding to Theorem 7 and Tables 2 and
case of a double right rotation.

4.2. Balancing the entire tree

We now show that, in the worst case, the balance property of the entire tree c
restored in O(h) time, whereh = O(logn) is the height of the tree.

R.W. Irving, L. Love / Journal of Discrete Algorithms 1 (2003) 387–408 405

Table 3

oted at
of that
n the

if
or nodes
cessary.

hanged,

e
an

ode.
identify
ing, if
that

ary. In
d

ertion
nt times
ep our
nks.

suffix
y a
ents to
The updated values ofz after a double left rotation

da db dc za zb zc z′a z′
b

z′c
l l l f f b c

{
f if mb �mc

c otherwise
f

l l r f f a c f f

l r l f a b c c f

l r r f a a c c f

r l l g f b c
{
f if mb �mc

c otherwise
f

r l r g f a
{
g if mb � mc

c otherwise
f g

r r l g a b
{
g if ma � mb

c otherwise
c g

r r r g a a
{
g if ma �mc

c otherwise
c g

By proceeding as in the previous subsection, we can be sure that the subtree ro
sti+1 is balanced, but this does not necessarily extend to the entire tree. If the height
subtree is unchanged as a result of the insertion (possibly following a rotation) the
entire tree will also be balanced, and no ancestors of nodesti+1 need be considered. But
the height of the subtree has increased then the balance factor of one or more ancest
may have to be updated, and a rotation pivoted at some ancestor node may be ne
The nodes that may have to be considered are those on the path fromsti+1 to the root. As
soon as we reach a node on this path that is the root of a subtree whose height is unc
whether or not a rotation has been carried out to achieve this, we can stop.

So the question arises as to how we access the relevant nodes, starting from nodsti+1.
Suppose we refer to this node as nodej . We cannot step up the path directly, but we c
immediately access the closest ancestor nodezj , and knowing the value ofdj enables us
to locate the path fromzj to j , and therefore the reverse of this, in constant time per n
Hence we can adjust the balance factors of nodes on that path, as necessary, and
and apply a rotation at one of these nodes should it be required. Even after so do
the height of the subtree rooted atzj has increased, we can apply the same process to
node, and can continue iteratively all the way back to the root should this be necess
the event that a rotation is required at whatever stage, them, z, andd values can be update
(in constant time) exactly as described previously.

The total number of operations carried out, even in the worst case, during the ins
of a new node and any subsequent updating and rebalancing is bounded by a consta
the distance from the root of the new node. This clearly applies even if we have to st
way back up the tree towards the root by following a sequence of closest ancestor li

4.3. Analysis of suffix AVL tree construction

We have shown that, when a new node is inserted during the construction of a
AVL tree, the number ofm, z, andd values that may have to updated is bounded b
constant, and each update can be achieved in constant time. Furthermore adjustm

406 R.W. Irving, L. Love / Journal of Discrete Algorithms 1 (2003) 387–408

Table 4

d out in
rsion,
ree).

ents
suffix
e run
are in

s us-
using

le ver-
ize 4,
tables)
Construction times using strings of length 1 000 000

File type |Σ | Construction time

SBSTS SBSTA SBSTR SBSTP ST SA

Text 79 8.7 11.2 3.0 1.4 3.5 15.5
DNA 4 8.9 11.5 2.9 – 3.4 23.7
Protein 21 9.8 12.2 4.1 – 3.4 25.6
Code 98 10.4 12.6 2.8 – 3.1 35.8
Random 4 9.1 11.6 3.1 – 3.5 8.1
Random 64 9.0 11.4 8.1 – 3.2 8.3

balance factors of nodes, and any necessary rotation, can be identified and carrie
O(h) time, whereh is the height of the tree (even though, in the case of the refined ve
the algorithm for achieving this is a little more complicated than for a standard AVL t

Since, as for a standard AVL tree, the height of a suffix AVL tree is O(logn), it follows
that a suffix AVL tree can be constructed in O(n logn) time.

5. Empirical results

To evaluate the practical utility of SBSTs, we carried out computational experim
similar to those used in [7] to compare the performance of suffix arrays with that of
trees. All programs were compiled with the highest level of optimisation, and wer
under Solaris on a 450 Mhz workstation. All cpu times recorded in Tables 4 and 7
seconds.

Table 4 summarises the results obtained for the various construction algorithm
ing strings of 1 000 000 characters. Suffix trees (ST in the tables) were constructed
Kurtz’s tightly coded implementations [6], choosing in each case the list or hash-tab
sion, whichever was faster (the list version for DNA and random text with alphabet s
the hash-table version in the other case). The suffix array implementation (SA in the
was the one used in the experiments of Manber and Myers [7].4

Four variants of the SBST were included, namely

• SBSTS—the standard construction algorithm;
• SBSTA—standard construction with AVL balancing;
• SBSTR—the refined construction algorithm;
• SBSTP—the standard construction algorithm for a partial SBST (for text only).

A variety of files were used, namely

• ordinary English plain text (the first million characters of ‘War and Peace’);
• a DNA sequence;

4 The authors are grateful to Gene Myers for providing source code for this implementation.

R.W. Irving, L. Love / Journal of Discrete Algorithms 1 (2003) 387–408 407

Table 5

ct on
pite of
ongly
efits in
ed for

algo-
nodes
number
e con-
f each
covers

arious
SBST
es ac-
gorithm
ses and
SBSTs.
h case,
ength
rd and
trees.
Construction statistics using a plain text string of length 1 000 000

Construction statistics

SBSTS SBSTR SBSTP ST

Nodes created 1000000 1000000 175454 1518457
Nodes accessed 67047855 8316402 4077277 21265311
Character comparisons 44740736 5486249 5886192 18525149

Table 6
Construction statistics using a DNA string of length 1 000 000

Construction statistics

SBSTS SBSTR ST

Nodes created 1000000 1000000 1661657
Nodes accessed 26653063 6751230 12510875
Character comparisons 39994578 4379745 11560423

• a concatenation of protein sequences (with separators);
• program code;
• random strings over alphabets of sizes 4 and 64.

From the table, it is clear that the construction refinement has a significant impa
average performance as well as on worst-case complexity. On the other hand, in s
the worst-case guarantee provided by suffix AVL-trees, the empirical evidence str
suggests that the overheads of maintaining balance substantially outweigh the ben
practice. As expected, the partial SBST is constructed in a fraction of the time requir
the full standard SBST.

Tables 5 and 6 give an alternative comparison of the various tree construction
rithms based on counting certain key operations. As well as recording the number of
in each structure, this table also indicates the number of nodes accessed and the
of individual character comparisons made during the construction. Table 5 covers th
struction of standard, refined, and partial SBSTs, and suffix trees with the children o
node represented as a list, for a plain text file of 1 000 000 characters, and Table 6
all but the partial case for a DNA text file of the same length.

Of course, these are not the only operations that affect the running times of the v
algorithms—integer and direction comparisons, for example, are also significant in
construction. However, the results show the expected significant reduction in nod
cessed and characters compared in the refined algorithm relative to the standard al
for SBSTs. The suffix tree has, of course, more nodes, and in terms of node acces
character comparisons appears to lie intermediate between the standard and refined

Table 7 summarises the results obtained for the various search algorithms. In eac
searches were conducted for all substrings of length 50 of the original string of l
1 000 000. In this table, we include just a single column representing the standa
refined SBSTs, since these two construction algorithms build structurally identical

408 R.W. Irving, L. Love / Journal of Discrete Algorithms 1 (2003) 387–408

Table 7

list of

g, but
ith the

ormed
fined

lgo-

Assoc.

iology,

uting

) 1149–

2 (5)

23 (2)

auk

ium on
Search times for all substrings of length 50

File type |Σ | Search time

SBSTS ST SA

Text 79 9.0 12.5 8.2
DNA 4 9.3 9.6 6.2
Protein 21 9.9 12.9 6.7
Code 97 9.2 14.2 7.3
Random 4 9.7 9.8 6.2
Random 64 9.6 25.7 7.0

In this case, the suffix tree implementation is our own tightly coded version, using a
children at each node.

The table confirms the speed advantage of suffix arrays for on-line string searchin
also shows that the SBST is competitive with the suffix tree in this respect, at least w
version represented using a list of children at each node.

Overall, at least in the particular experiments that were carried out, the SBST perf
creditably in comparison with suffix trees and suffix arrays. The results show the re
and partial versions to be particularly competitive on real data sets.

References

[1] A. Andersson, N.J. Larsson, K. Swanson, Suffix trees on words, Algorithmica 23 (1999) 246–260.
[2] A. Apostolico, The myriad virtues of subword trees, in: A. Apostolico, Z. Galil (Eds.), Combinatorial A

rithms on Words, in: NATO ASI Ser., Vol. F12, Springer, Berlin, 1985, pp. 85–96.
[3] M. Farach, P. Ferragina, S. Muthukrishnan, On the sorting complexity of suffix tree construction, J.

Comput. Mach. 47 (6) (2000) 987–1011.
[4] D. Gusfield, Algorithms on Strings, Trees, and Sequences, Computer Science and Computational B

Cambridge University Press, Cambridge, 1997.
[5] R.W. Irving, L. Love, The suffix binary search tree and suffix AVL tree, Technical Report, Comp

Science Department, University of Glasgow, Technical Report TR-2000-54, 2000.
[6] S. Kurtz, Reducing the space requirement of suffix trees, Software Practice Experience 29 (1999

1171.
[7] U. Manber, G. Myers, Suffix arrays: A new method for on-line string searches, SIAM J. Comput. 2

(1993) 935–948.
[8] E. McCreight, A space-economical suffix tree construction algorithm, J. Assoc. Comput. Mach.

(1976) 262–272.
[9] E. Ukkonen, On-line construction of suffix trees, Algorithmica 14 (3) (1995) 249–260.

[10] G. Adel’son Velskii, E. Landis, An algorithm for the organisation of information, Dokl. Akad. N
SSSR 146 (1962) 263–266; English translation in Soviet Math. Dokl. 3.

[11] P. Weiner, Linear pattern matching algorithms, in: Proceedings of the IEEE 14th Annual Sympos
Switching and Automata Theory, 1973, pp. 1–11.

	The suffix binary search tree and suffix AVL tree
	Introduction
	The SBST search algorithm
	A naive SBST
	Avoiding repeated comparisons
	Analysis
	Locating all occurrences

	Building an SBST
	Using the standard search algorithm
	A `partial' SBST
	A refined SBST build algorithm
	Analysis

	The suffix AVL tree
	Balancing the SBST subtree
	Balancing the entire tree
	Analysis of suffix AVL tree construction

	Empirical results
	References

