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Abstract

Suffix trees and suffix arrays are classical data structures that are used to represent the set of
suffixes of a given string, and thereby facilitate the efficient solution of various string process-
ing problems—in particular on-line string searching. Here we investigate the potential of suitably
adapted binary search trees as competitors in this contextsuffirebinary search tree (SBST) and
its balanced counterpart, tiseffix AVL-tree, are conceptually simple, relatively easy to implement,
and offer time and space efficiency to rival suffix trees and suffix arrays, with distinct advantages in
some circumstances—for instance in cases where only a subset of the suffixes need be represented.

Construction of a suffix BST for an-long string can be achieved in(@) time, wherei is the
height of the tree. In the case of a suffix AVL-tree this will bé:@gn) in the worst case. Searching
for anm-long substring requires @: + /) time, wherd is the length of the search path. In the suffix
AVL-tree this is Qim + logn) in the worst case. The space requirements are lineay generally
intermediate between those for a suffix tree and a suffix array.

Empirical evidence, illustrating the competitiveness of suffix BSTs, is presented.

0 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Given a stringg = 0102. . .0, of lengthn, a suffix binary search tree (or SBST) for o
is a binary tree containing nodes, each labelled by a unique integer in the rangenl
the integer representing théth suffixo’ = o;0,11...0, of o. We refer to the node rep-
resenting suffix’ simply as node of the tree. Furthermore, the tree is structured so that,
for each node, o is lexicographically greater tharV for every nodej in its left subtree,
and lexicographically less tharf for every node in its right subtree.
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The concept of a suffix binary search tree is related to the suffix array, introduced by
Manber and Myers [7] as an alternative to the widely applicable suffix tree [8,9,11]. See
also [2] for an indication of suffix tree applications, and [4] for a detailed exposition of suf-
fix trees and suffix arrays. Suffix arrays have some advantages over suffix trees, particularly
in respect of space requirements, and we claim that suffix BSTs have their own potential
advantages, at least in some circumstances. In Section 5, we present empirical evidence
suggesting that, in practice, the suffix BST is broadly competitive with suffix trees and suf-
fix arrays in indexing real data, such as plain text or DNA strings. A particular advantage
is that a standard suffix BST can easily be constructed so as to represent a proper subset of
the suffixes of a text. For example, if the text is natural language, it might be appropriate to
represent in the tree only those suffixes that start on a word boundary, resulting in a saving
in space and construction time by a factor of the order #f#, wherew is the average
word length in the text.

Classical algorithms [8,9,11] construct a suffix tree for a string of lengtm
O log|X|) time and Qn) space, whereX' is the alphabet, and a recent more involved
algorithm described by Farach et al. [3] removes the dependence on alphabet size. Given a
suffix tree foro and a pattere of lengthm, an algorithm to determine whether the pattern
appears in the string can be implemented to run {m ©@g|%’|) time. The corresponding
time bounds for construction and search in the case of a suffix array [7]@fleg:) and
O@m + logn), using Qn) space.

For a suitably implemented SBST, a search requires-9!) time, wherd is the length
of the search path in the tree. This give&/O+ n) worst-case complexity, but typically in
practice, all search paths will havel@gn) length, and searching will be @ + logn)
on average. In fact, this becomes a worst-case bound if we use AVL rotations to balance
the tree on construction. (As we shall see, this is a feasible, but non-trivial extension.) The
construction time for our standard SBST can be as bad(a% @ the worst case, but for
a refined version, it can be achieved in®) time, where is theheight of the tree, In the
worst caseh can be® (n), but for random strings can be expected to be(fogn), and
in the case of the suffix AVL tree, construction can be accomplishedindgn) time in
the worst case.

Although both suffix trees and suffix arrays use linear space, the latter can be repre-
sented more compactly. This issue is explored in detail by Gusfield [4] and by Kurtz [6].
Traditional representations of a suffix tree [8] require B8tes, in the worst case, but more
compact representations are possible. The most economical, due to Kurtz [6], has a worst-
case requirement of 2bytes, though empirical evidence suggests an actual requirement
of around 1@-12: bytes in practical cases. For a suffix array, an implementation using
just =, bytes is feasible once the construction is complete, althougby8es are needed
during constructior.

As we shall see, in the standard implementation of an SBST, each node contains two
integers, two pointers and one additional bit. (Of course, the additional bit can easily be
incorporated as a sign in one of these integers.) In fact, using an array to house the tree,

1 In all cases, we exclude the space needed for the string itself, and we assume 4 bytes per integer or pointer
value.
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rather than dynamically created nodes, allows us to dispense with one of the integers.
Hence the space requirement for an SBST representing a string of leigyssentially

12n bytes. For the construction of the refined version, each node requires two additional
pointers, and, in the case of the suffix AVL tree, two further bits to indicatbatance

factor.

We refer again to the ease with which standard SBSTs can be used to represent a sub-
set of the suffixes—we call thegmrtial suffix SBSTs. For example, we can expect a
saving of 80% or more in space (and time for construction) if only suffixes starting on a
word boundary are included (when the string is plain text). Andersson et al. [1] describe
a complex method of adapting suffix trees for this purpose, but no implementation of this
method, or empirical evidence of its behaviour, have been reported. There appears to be no
discussion in the literature of any corresponding variant of the suffix array.

The remainder of this paper is organised as follows. Section 2 contains a detailed
description of the search algorithm for an SBST, together with proof of correctness, worst-
case complexity analysis, and an easy extension to find all occurrences of a given search
string. Section 3 contains a detailed description and analysis of algorithms for the con-
struction of an SBST, both the standard version and the refined variant that significantly
improves the worst-case performance (and indeed the performance in practice), together
with a brief discussion of partial SBSTs. Section 4 describes the construction of suffix
AVL-trees, and shows that this can be achieved {n @gn) time in the worst case. Fi-
nally, Section 5 contains empirical evidence comparing the performance, in practice, of
SBSTs with that of suffix trees and suffix arrays.

2. The SBST search algorithm
2.1. Anaive SBST

In the most basic form of an SBST, each node contains one suffix number together with
pointers to its two children. However, in order to improve the performance of the search
algorithm, we have to include some additional information in each node of the tree.

Suppose that we wish to find an occurrence, if one exists, of-fong patternx in an
n-long stringo by searching in a basic SBSIL, for o. A naive search is potentially very
inefficient, irrespective of the shape of the tree. If, at each node visited, comparisons begin
with the first character af, then up tan character comparisons may be required at each
node, giving a worst-case complexity that is no better th&an/), wherer is the height
of T,.

2.2. Avoiding repeated comparisons

The key to a more efficient SBST search algorithm is the need to avoid repeated equal
character comparisons. The number of unequal character comparisons during a search can-
not exceed the lengthof the search path (at most one per node visited). It will be our aim to
ensure that no character in the pattern can be involved in more than one equal comparison,
so that the complexity of search will be(®+ m) in the worst case.
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In order to establish how this can be achieved, we first require some terminology and
notation. Given two stringe and 8, we denote bylcp(a, 8) the length of thdongest
common prefix of ¢ and 8. For a given nodé in an SBST, deft (respectivelyright)
ancestor is any nodej such that is in the right (respectively left) subtree ¢f Theclosest
left ancestor cla; of i is the left ancestoj such that no descendant pis a left ancestor
of i. Theclosest right ancestor cra; is defined similarly.

We also define two values associated with each node, namely

0 if nodei is the root
m; = { max;lcp(o’,0/) otherwise, where the maximum is taken
over all ancestorg of nodei,
and
left  if nodei is in the left subtree
di = of the nodej for whichm; =lcp(a’, 0/),
right otherwise.

Note thatd; is undefined if is the root, but otherwise; andd; are defined for all nodes
(though there is a choice for the valuedffor those nodes for which Icp(o, 693) =
lcp(ol, %), and that choice may be made arbitrarily).

Itturns out, as we will see, that inclusion in each nbdéthe valuesn; andd; gives just
enough information to enable repeated equal character comparisons in the search algorithm
to be avoided.

The theorems that follow describe how the search for a swirghould proceed on
reaching a node At that point in the search, we need access to two values, namely

e llcp =max; Icp(o, o/") where the maximum is taken over all right ancestoo i;
o rlcp = max; Icp(er, /) where the maximum is taken over all left ancestpo ;.

Clearly, llcp = lcp(a, cra;) andricp = Icp(a, cla;). In addition, for brevity, we use to
stand for nodela; andg to stand for nodera;.
We make substantial use of Lemma 1, which is trivial to verify.

Lemmal. If o, 8 and y arestringssuchthat o < 8 < y, then lcp(e, y) = min(lcp(«, B),
lcp(B. ).

Theorem 1. If m; > max(llcp, ricp) then the search for « should continuein the direction
d; fromnode i. Furthermore the values of llcp and rlcp remain unchanged.

Proof. We haven; = max(cp(a’, a?), lcp(a’, 09)), llcp=Icp(a, o?), rlcp=Icp(a, o).
Supposern? < o' < a < oP. (A symmetrical argument applieséf! < a < o' < o?.)
Then from Lemma 1, we have

lep(o’, o?) =min(lcp(a’, ), lep(e, o 7)) 1)

and solcp(o’, o”) < lep(a, o¥). The fact thatm; > max(licp, ricp) > licp therefore
implies thatm; = lcp(c', 0?), for otherwisem; = Icp(a’,o?) < lep(a, o?) = llcp <
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max(llcp, ricp), which is a contradiction. It follows thak = right, as required. Hence,

lep(o!, o) = m; > max(llcp, ricp) > ricp = lep(a, 07), (2)
so by Lemma 1
lep(a, ) = min(lep(a’, o7), Icp(o’, @)) = lep(o”, ). (3)

It follows that the value ofricp should remain unchanged acp = lcp(ol, o) =
Icp(a, 07). It is immediate in this case that the valueltdp should remain unchanged
since there is no new left branch to considen

Prior to the next theorem we require a further lemma.
Lemma 2. At any node i in the search tree, max(licp, rlcp) > m; = llcp # rlcp.

Proof. Suppose thaticp = rlcp = ¢, so thataq(]_...t) =a(l..t) =0cP(1..1). But be-
causes? < o' < o? it follows thate?(1..1) =0'(1..t) =0c?(1..1), so thatm; >t =
max(llcp, ricp), a contradiction. O

Theorem 2.

(a) If m; < max(llcp, ricp) and max(llcp, ricp) = licp then the search for & should branch
right fromnode:. Furthermore, if d; = right then the value of rlcp remains unchanged,
otherwise rlcp should become m; . In either case, the value of IIcp remains unchanged.

(b) 1f m; < max(llcp, rlcp) and max(licp, ricp) = rlcp then the search for « should branch
left from node i. Furthermore, if d; = left, then the value of Ilcp remains unchanged,
otherwise Illcp should become m; . In either case, the value of rlcp remains unchanged.

Proof. We prove only part (a), the proof of (b) being similarolf <o <o’ < o? then,
by Lemma 1,

lep(at, o) = min(lep(e, o), Iep(a’, 0?)) < lep(a’, o?). (4)
Also,
m; <max(licp, ricp) = llcp = Iep(a, o) < lep(a’, o?). (5)

But m; = max(cp(c’, a?),lcp(e?, a9)) > lep(al, oP), giving a contradiction. Hence,
09 <ol <a < oP, and the search fax should branch right from node It is imme-
diate that the value dfcp should remain unchanged, since there is no new left branch to
consider.

If d; = right thenlcp(a?, 09) > lep(a?, o?). But, from Lemma 1 we have

lep(o”, o) = min(lcp(a”, &), Iep(e, 7)) = lep(o”, ) (6)
(sincelep(a, o?) = lep(ol, o) = llcp < m;). Solep(al, 09) > lep(ol, ). It follows
that

ricp=Icp(e, 0?) = min(lcp(a?, o), Iep(o”, a)) = Icp(o”, ) (7)
and hence the value oficp should remain unchanged.
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If d; = left, thenlcp(a?, oP) > lep(a?, o). But, by Lemma 1
lep(o”, o7) = min(lcp(o”, &), Iep(at, o). (8)

If Icp(o’, o”) = lcp(a, o?) thenllcp = lep(a, ) = lcp(o’, o”) = m;, contradicting the
fact thatm; < llcp. Hencelcp(ot, o?) = Icp(o’, ), andlcp(o?’,o?) > Icp(a’, 0?) >
Icp(a, o). It follows thatrlcp should become:;, as claimed. O

There are a further two symmetric cases where, with the appropriate information, the
decision to branch left or right can be made without performing any character comparisons.

Theorem 3.

(a) If m; =llcp > rlcp and d; = right, then the search path for & should branch right from
nodei; furthermore the values of ricp and Ilcp should remain unchanged.

(b) If m; =rlcp > llcp and d; = left, then the search path for « should branch left from
node i; furthermore the values of rlcp and llcp should remain unchanged.

Proof. We prove only part (a), the proof of (b) being similar. Fréiep = Icp(«, o”) and
ricp=Ilcp(a, 07), we have

m; =max(lcp(a’, a?), lep(o, 09)) = lep(a, oP) > Iep(et, 07). ©)
Fromd; = right we have

lep(o, 09) = lep(a’, o?). (10)

If 09 <a <o’ <oP, then by Lemma 1 we have
m; =llcp= |Cp(oz, ap) = min(lcp(a, ai), (oi, op))
<lep(o’, o) <lep(o’, 09) = min(lep(er, 09), Icp(er, o). (11)

By Lemma 1 we also haye mirep(er, o), lep(er, o)) < lep(a, o) =rlcp. This is a
contradiction. Hence? < o' <a < o and the search fax should branch right from
nodei. Fromlcp(e, %) =rlep < licp=m; = Icp(a?, o?) it follows that

lep(a, o) = min(lep(a, o), Icp(o”, 09)) = lep(er, o). (12)

Hence the value aficp remains unchanged. It is immediate that the valukapfremains
unchanged, since there is no new left branch to consider.

Of course there will be cases where these theorems do not apply. If none of the above
theorems applies (e.g., in the initial case, when=llcp = rlcp = 0) then character com-
parisons must be performed to determine the direction in which to branch. The remaining
cases are covered by Theorem 4.

Theorem 4. (a) If m; = llcp=rlcp, or (b) if m; =llcp > rlcp and d; = left, or (¢) if m; =
ricp > llcp and d; = right, then character comparisons must be performed to determine
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the direction of branching. If the search branches right from node i, say to node j, then
the value of Ilcp remains unchanged and the value of rlcp becomes equal to lcp(e, o).
Otherwise (the search branchesleft), the value of rlcp remains unchanged, and the value
of llcp becomes equal to lep(ar, o).

Proof. Supposen; = max(licp, ricp) = ¢. In all of the above cases, we know thdtanda

have a common prefix of length but we have no information about the characters in
positions + 1. Character comparisons are therefore necessary in these cases. Suppose that
o < o!, so that the search path branches left from node node j. (The argument is

similar if « > ¢! and the search branches right.) As there is no new right branch, it is
immediate that the value afcp remains unchanged. Nodas the last node on the path

to j from which the search branched left, so the valublaf becomescp(e, o/). O

We can now use the preceding theorems to describe a more efficient algorithm for
searching in an SBST. In so doing, we note that no actual reference is needed to the closest
ancestor nodeda; andcra;, though the curreritcp andrlcp values must be maintained
throughout.

We refer to this improved search algorithm asstamdard search algorithm. A pseudo-
code description of the algorithm appears in Fig. 1. Here, the children of ainade
represented dshild; andrchild;, which are assumed to be suffix numbers, with zero play-
ing the role of a null child.

Example. Fig. 2 shows an example of a suffix binary search tree for the 15-long string
CAATCACGGTCGGAC. Each node contains the suffix numbeogether with the values of
m; andd;.

Consider searching this tree for the strid@GA.

e Attheroot, node 1, we make one equal and one unequal character comparison, branch-
ing right withllcp= 0 andrlcp=1.

e At node 4, because 4 < max(lcp, ricp), we apply Theorem 2(b) to branch left with
Ilcp andrlcp unchanged.

e At node 5, because:s > max(licp, ricp), we apply Theorem 1 to branch right with
Ilcp andrlcp unchanged.

e At node 7 we make two equal and one unequal character comparisons, branching left
with llcp = 3 andrlcp unchanged.

e Finally at node 11, one further equal character comparison reveals that the search pat-
tern is present in the string beginning at position 11.

2.3. Analysis

Each time the loop is iterated, at least one of the following occurs:

o the search descends one level in the tree;
o the value oflicp is increased,;
o the value ofrlcp is increased.
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- - Algorithm to search for an occurrence @in the SBSTT;
- - returns its starting position i, or zero if there is none.
begin
i :=Root of T; llcp:= 0; rlcp := 0;
while i # null loop
if m; > max(llcp, rlcp) then
i ;= appropriate child of; - - by Theorem 1
esif m; < max(llcp, ricp) then
if Ilcp > rlcp then - - by Theorem 2(a)
i :=rchild;;
if d; =left then
rlep:=m;;
end if;
dsif rlcp > licp then - - by Theorem 2(b)
i :=Ichild;;
if d; =right then
llep:=m;;
end if;
end if;
elsif m; =llcp and llcp > rlcp and d; = right then - - by Theorem 3(a)
i :=rchild;;
elsif m; =rlcp and ricp > licp and d; = left then - - by Theorem 3(b)
i :=Ichild;;
else- - by Theorem 4
t:=maxk: a(m;+1...k)y=o(m; +i...k+i—-1)};
if t = || then
returni;
esift+i—1=nordsea(r+1) >o0(+i)then
i :=rchild;;
ricp:=t;
else
i :=Ichild;;
llep:=1;
end if;
end if;
end loop;
return O;
end;

Fig. 1. A standard search algorithm for an SBST.

Further, maxilcp, rlcp) never decreases in value. So the total number of iterations of the
loop is at most + 2|«|. In addition, no character im is ever involved more than once in

an equality comparison, so the total number of such comparisons in all calls of the max
function is bounded byx|, and the number of inequality comparisons is bounded by the
number of loop iterations. Hence the overall complexity of the standard search algorithm
is O(Je| + h), and we can expedt to be Qlogn), on average for random strings or on
typical plain text, where is the number of nodes (i.e., the length of the strr)gin fact,

as we shall see in Section 4, it is possible to maintain the SBST as an AVL tree during its
construction, thereby enabling us to guarantee/thatO(logn).
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Fig. 2. An SBST for strind>AATCACGGT CGGAC.

2.4. Locating all occurrences

Given an SBST,T,, for a stringo, and a patternx, the functionPos determines
whethera is a substring ob, and if successful returns a position, sgyin ¢ wherea
occurs. If we requirall the positions inr wherea occurs, then it suffices to partially tra-
verse the subtree rooted at nddesince all occurrences will be represented in that subtree.

Suppose that we have reached a npdethat subtree and we know whethgs closest
left and right ancestors represent occurrences.ofhe following two observations are
immediate:

(a) if j's closest left ancestor anfls closest right ancestor represent occurrencag of
then all nodes in the subtree rooted; atlso represent occurrencesogf

(b) if neitherj’s closest left ancestor noy’s closest right ancestor represent occurrences
of « then both represent stringsa or both represent strings «, so that no nodes in
the subtree rooted gtcan represent an occurrencexof

Consider the case wheyés closest left ancestor represents an occurrencelnft its
closest right ancestor does not (the case where only the right ancestor represents an occur-
rence ofo may be treated analogously) sf; > |«| andd; = left, then nodej represents
an occurrence af. In this case, it follows from (a) that all nodes jrs right subtree also
represent occurrences @f The nodes inj’s left subtree can be resolved recursively. If
d; =right, or if m; < |a| then j does not represent an occurrencexofin view of (b)
then, it follows that no node if’'s left subtree can represent an occurrence.dfhe nodes
in j's right subtree can be resolved recursively.



396 RW. Irving, L. Love/ Journal of Discrete Algorithms 1 (2003) 387-408

These observations lead to a recursive algorithm to partially traverse the subtree in ques-
tion, identifying those nodes that represent occurrences &urthermore, the traversal
visits only those nodes that cannot, a priori, be eliminated from consideration, and is opti-
mal in this sense, although, in the worst case, it may visit every node in the subtree even
when there is only one occurrence of the pattern in the string.

3. Building an SBST
3.1. Using the standard search algorithm

Clearly there are many possible SBSTs for a given string. An SBS& fan be built
in the same way as a binary search tree, namely by a sequence of insertions of all of
the suffixes ofr, in any order, into an initially empty tree. We assume, however, that the
suffixes are inserted in left to right order. We will see subsequently that this enables us to
add a refinement to the construction algorithm. For the moment we will concentrate on the
process of building the SBST with the correctandd values stored at each node.

The process of repeated insertion of all suffixes dfegins with the creation of a root
node representing®, with m1 = 0. Observe that the search algorithm described in the
previous section requires little modification to perform the task of insertion. Instead of
searching for a string in 7,,, we ask it to search far*1 in a binary search tree containing
the firstk suffixes ofo, and the search will terminate at the location whefeé! should
be inserted. Such a search will also make available, as a by-product, the malueand
dr+1. To be precise, the former will be m@dbcp, ricp) and, by definition, the latter may be
taken to bdeft if [lcp > rlcp, andright otherwise.

3.2. A'partial’ SBST

It is particularly straightforward to build an SBST that includes only a restricted set
of the suffixes of a given string. The processes involved in constructing suffix trees and
suffix arrays, differ from those involved in building SBSTs in this respect. The standard
construction of an SBST by repeated insertion of suffixes is not dependent on the fact that
all suffixes of the string are inserted.

This means that the standard construction algorithm requires little modification to build
a structure holding only a proper subset of the suffixes of a given string. This could be
appropriate, for example, in text processing where we may be interested only in suffixes
marking the start of a new word.

We denote the set of characters of interest, the so-catted set by C, and define the
suffixes of interest to be those that begin with a charactér but are not immediately
preceded by such a character. We denot@éngal SBST for this set of suffixes by, (C).

For a given stringr and set of characteis, T,(C) will clearly require less space than
T, (C) by a factor of some % w, wherew is the average ‘word length’ in the text, and we
can also expect a reduction in the time for construction by a similar factor.
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3.3. Arefined SBST build algorithm

Empirical evidence (Section 5) suggests that the standard SBST construction algorithm
performs well in practice for typical strings. However, regardless of the shape of the tree,
insertion of theith suffix of ann-long string may require as many as rim + 1 — i)
comparisons. The worst case complexity of this tree building algorithm is therefore no
better than @:2). For example, consider the use of this algorithm to construct an SBST
for a stringo of lengthn that is a square (i.en,even,oy, 24 = o; foralli, 1 <i <n/2).

Fortunately, an improvement exploiting the relationship between the suffixes to be in-
serted is possible. This results in an algorithm whereby the tree is buil¢zih)Qime in
the worst case, whereis the height of the tree.

We incorporate into our SBST, for each nage

o asuffix link,s;, i.e., an explicit pointer from nodieto node: + 1;

e a closest ancestor link; i.e., an explicit pointer from nodeto the closest ancestor
node; such thalcp(e?, o/) = m; (andi is in the subtree of nodg corresponding to
the value ofd;, i.e., if d; = left, thenz; = cra; and ifd; =right, thenz; = cla;).

We define thestart node for the insertion of suffix*1, denotedst; 1, as follows:
theroot ifm; <1,
nodes;, if m; >mg_ +1,
nodek  otherwise, wheré is the first node on a path of closest
ancestor links from node, for whichm; > my + 1.
Such a node is guaranteed to exist, because in the worst case, the root can take on the

role of nodek. We now establish that suffix:*1 must be inserted in the subtree rooted at
its start node.

Siy1=

Lemma 3. Inall cases, lcp(oitl, oSi+1) > m; — 1.

Proof. If m; <1 then the result is trivial. Otherwise, nodg; is reached from node,
by following a sequence of zero or more closest ancestor links, each of which is to a node
for which the firstm; — 1 characters of the suffix are unchanged. Hence

oSN (1. mi_) =0%1..mi—)=c"A...mi_1). O
Lemma 4. Theinsertion point for suffix 1 isin the subtree rooted at node st; ;1.

Proof. If st;11 is the root, then the lemma holds trivially. Otherwise, it suffices to show
that there can be no ancestor ngdsf st; 1 such thatt! < o/ < oSi+1 oro i+l < o/ <
UH_]‘.

If this were the case it would follow thacp(o’t1, oi+1) < lep(o/, oi+1). But
lep(o/, oSitt) < mg,,, <m; —1,and Lemma 3 gives a contradictiont

2 Except noder, which has no suffix link.
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Lemmas proved in Section 2 indicate how to branch from each node on the search
path from the root to a leaf during the insertion of suffix 1. We now describe how the
search for the insertion point far'+1 is initiated from the start nods; 1. In so doing,
we observe that, at any point during this search, we require only the larger of the current
llcp andrlcp values, the value of the smaller being irrelevant. The refined algorithm for
building an SBST therefore requires only a slight modification to the algorithm described
in the previous section.

Lemmab.

(a) If st;+1 isthe root, then the search begins as in the case of the standard SBST, with
llcp = rlcp = 0, and no characters matched;
(b) if stj+1 =s;; and d; = left, then we branch left from node st; 1, set ricp = 0, and

llcp=m; — 1,
(c) if st;11 =s;, and d; = right, then we branch right from node st; 1, set llcp= 0, and
rlcp=m; —1;

(d) otherwise, if stj;1 =k, sothat o' t1(1...m; — 1) =o*(1...m; — 1), then comparison
of characters from position m; in these 2 suffixes will reveal whether to branch left or
right, and the appropriate value of licp or rlcp.

Proof. We prove only (b) and (d), the proof of (a) being trivial, and the proof of (c) similar
to that of (b).

(b) Because!; = left, we haves’ < o%. Sinceo; = o, it follows thate’+1 < g%+l =
o%i+1, and so the search should branch left from neigle;. In addition, we know that
lep(oitl, oStit1) = Iep(of, 0%) — 1 =m; — 1, so thatlcp should be set to this value, and
ricp, the true value of which cannot be larger, can remain as zero.

(d) Because we know that't1(1...m; — 1) = o*(1...m; — 1), we need only com-
pare the substrings'*1(m; ...|o|) ando*(m;...|o|) to decide the direction in which
to branch. Suppose we mateh characters of these two substrings, and we find that
ot (m;...lo|) < o*(m;...|o]) (and similarly if the inequality is the other way). Then
we branch left from nodg, with llcp set tom; +m — 1, andrlcp set to zero. O

3.4. Analysis

Since the search paths for the insertion of many suffixes are likely to be shorter than in
the standard algorithm, this refined algorithm can be expected to reduce the average time
taken to build a suffix BST in practice. Indeed, the empirical results in Section 5 seem to
indicate a significant improvement. What has been achieved, though, in terms of the worst
case time complexity? The following lemmas allow us to show that the refined construction
algorithm also gives an improvement in this respect.

Lemma 6. During the entire execution of the refined construction algorithm, no more than
O(L) unequal character comparisons are made, where L is the path length of the final
tree.
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Proof. This follows at once from the observation that, during the insertion of each suffix,
at most one unequal character comparison takes place at each node on thepath.

Lemma 7. During the entire execution of the refined construction algorithm, no more than
O(n) equal character comparisons are made, where n is the length of the string.

Proof. During the insertion of suffix, no equality comparisons involving characer,
are made, for any > 0, if that character was involved in an equal character comparison
during the insertion of any previous suffix. Suppose, on the contrary, that an equality com-
parison involvings; 1, was made during the insertion of suffix- ¢, for somer > 1. Then
it is immediate thatn; _, > r 4+t + 1. Hence, during the insertion of suffix- ¢ + 1, that
suffix i and suffixst;_,+1 had a common prefix of length;_,, and hence no compar-
isons involvingo;+, would be made. The argument extends inductively to the insertion of
suffix i, giving a contradiction.

It follows that, during the refined construction, each characteriginvolved in at most
one equality comparison with a character that precedesit and so the total number of
equality comparisons is @), as claimed. O

Theorem 5. Using the refined algorithm, an SBST 7, for an n-long string o can be con-
structed in O(nh) time in the worst case, where £ is the height of the tree.

Proof. The complexity of the algorithm is determined by two factors, namely the number

of character comparisons and the number of node-to-node steps taken in the tree. Lemmas 6
and 7 together establish that the total number of character compariso(s)is=@(nh),

whereL is thepath length of the tree (since, for the latter, it is immediate that O(L)).

As far as steps in the tree are concerned, consider the insertion of any particular node
i + 1. The number of downward steps taken during the insertion of this node cannot exceed
the distance of the node from the root, while the number of upward steps cannot exceed
the heisght of the tree. Hence the total number of steps, summed over all insertions, is
O(mh).° O

4. Thesuffix AVL tree

On average, an SBST will be reasonably well balanced, and the expected height will be
O(dlogn), but will inevitably be no better than@) in the worst case. So the question arises
whether some standard tree balancing technique can be used to guarantee that the tree has
logarithmic height, while not adversely affecting the complexity of tree construction. In
this section, we explore thauffix AVL tree, i.e., the suffix binary search tree balanced
using rotations as in classical AVL trees [10].

Recall that, in an AVL tree, the heights of the left and right subtrees of every node differ
by at most one. If the tree becomes unbalanced by the insertion of a new modéica is

3 In fact, we conjecture that the appropriate worst case time boundZig, ®ut we lack a proof that the total
number of upward steps in the tree satisfies this bound.
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Table 1

The updated values of, d, andz after a single left rotation

d, dp lcag lcay, m, m), d, dy 7 z,
l [ f f mq mp dqg dp b f
l r f a mp mq d, —dj, b f
r [ 8 f Mg mp dqg dp 8 f

. dgy if mg > my, g fmg>=my

roor g a  maximg,mp) MiN(mg, mp) {—'du otherwise b [b otherwise

performed, and the balance property is restored. There are essentially four possible kinds
of rotations, aingle left rotation, adouble | eft rotation, and the mirror images of these two
cases aingleright and adouble right rotation. In fact, a double rotation can be envisaged

as the composition of two single rotations, a fact that we exploit in what follows. After an
insertion has been performed, at most one (single or double) rotation is required to restore
the AVL balance property.

It is well known that the sparsest possible AVL trees are Fibonacci trees, which are of
height approximately.24log, , for a tree withw nodes, so that every AVL tree has height
Odlogn).

AVL rotations can easily be applied to balance a naive SBST in which only suffix num-
bers are stored at the nodes. However, in our standard SBSTSs, each node contains two other
values that are tightly coupled to the structure of the tree, and in the refined version there
are a further two such values. Some or all of the d;, andz; values may change as a
result of a rotation that affects the ancestors of nadgt should be clear however, that
the s; values do not pose a problem in this respect.) Furthermore, it is not immediately
obvious whether enough information is available to enable the cofredt andz values
for affected nodes to be recalculated without significantly increasing the time complexity.

4.1. Balancing the SBST subtree

Suppose that we have a suffix AVL tree containing the fistffixes ofo, and we are

about to use the refined insertion algorithm to insert the saffi¥ into the subtree rooted

at nodest; 1. We concentrate only on the subtree rootedtat; for the moment, and in

the next subsection we describe how to ensure that the entire tree retains the AVL property.
It turns out that, for our proposed suffix AVL subtree,

e after a single left or single right rotation, at most ahealue, twoz values, and twan
values need to be updated, and this can be achieved in constant time;

o after a double left or double right rotation, at most twwalues, three values and
threem values need to be updated, and this can also be achieved in constant time.

We will prove in detail the results for a single rotation. Because a double rotation can be
viewed as a sequence of two single rotations, it follows at once that a double rotation can
also be achieved in constant time. However, although we state the rules for updating the
z andm values, we will omit the details of the proof.
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Fig. 3. A single left AVL rotation.

In the following, we consider the effect of some particular rotatiodjn We use the
symbol’ to indicate the (possibly altered) value of a parameter after the rotation has been
carried out; for example we refer i0;, 4/, cla;, cra;, etc. We represent the opposite of
directiond; by —d;, i.e.,—right = left and—left = right.

The following lemma is trivial to verify (although it does depend on our assumption
that, whericp(o?, 09%) = lcp(o, 0%@), we can choosé; to be eitheteft or right.

Lemma 8. If cla; = cla; and cra; = cra; thenm! =m; andd] = d;.

The next theorem characterises the alterations required to accomplish a single rotation.
The context is given in Fig. 3.

Theorem 6. Consider a single left rotation pivoted at node a, and let b be the right child
of node a. Then

(i) thevaluesof m;, z;, and d; are unchanged for all nodesi other than a and b;
(i) thenewm, z, and d valuesfor nodesa and b are as presented in Table 1.

Proof. (i) For all nodes in the tree, excluding nodesandb, cla; = cla; andcral = cra;.
It follows from Lemma 8 that for these nod@$,: d; andm! =m;. It follows also that for
these nodes; = z;.
(ii) Let the closest left and right ancestors of nadee nodeg and f respectively. (Itis
easy to verify that the results of the theorem continue to hold in the special cases in which
either or both of these do not exist.)
We first observe that, once the valuesipfandd, are established, the valueszgfand
z;, follow immediately. For example,, is equal tob or g according asl) is left or right,
and similarly forz;,.
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Within the binary search tree we have the lexicographic ordering
of <o <o’ <o’ (13)
Subcase ii(a) Suppogk = left (as in lines 1 and 3 of Table 1); then
mp =lcp(o?,07) > lep(a?, o). (14)
From Lemma 1, (13) and (14), it follows that
lep(o“, o) = min(lep(a®, o”), Iep(o”, /) = lep(a?, o%). (15)
It can be seen from this, and the definitionsijf andm,,, that
m!, = max(lcp(a?, o), Iep(a?, o%))
=max(icp(c?, /), lcp(o?, 08)) = my. (16)

It is immediate from (16) thad, = d,,. From (14), the definitions of;, andm,, and the
knowledge from (13) thatp(o?, o) > lcp(a?, 0'8), we have

my, = max(lcp(ah, of), |Cp(orh, og)) = |Cp(ob, af) =myp. a7

From this, it is immediate that, = d;,.
Subcase ii(b) Supposk = left andd, = right (as in line 2 of Table 1); then

ma =lcp(o?, 7)) > lep(a®, of) (18)
and

mp =lcp(o?, o) > lep(a®, o). (19)
From (19), (13) and (18), it follows that

lep(a®, o?) = 1cp(o”, o7) > lep(a®, o) = Iep(a?, o%). (20)
From (20) and the definitions a@f, andm,,, we obtain

m), =max(lcp(c?, o), lep(a?, 08)) = lcp(a?, o?) = my,. (21)
It is immediate from (21) thad), = left = d,,. It follows from (13), Lemma 1, and (19) that

lep(o“, o) =min(lep(a®, o®), Iep(o”, /) = lep(a?, o 7). (22)
It is immediate from (13), Lemma 1, and (16) that

lep(o”, 08) = min(lep(a®, 08), lep(a“, o?)) =lep(a?, o8). (23)
From (22), (23) and the definitions ef, andm,, we obtain

m), =max(cp(a”, o /), lep(a?, o¥))

=max(lcp(a?, /), Icp(a?, 08)) = maq. (24)

From this it is immediate that, = d, = —dj.
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Subcase ii(c) Supposk = dp =right (as in line 4 of Table 1); then
mg = ICp(o“, Jg) > |Cp(a“, af) (25)
and
my = ICp(ob, o) > |Cp(ah, Uf). (26)
From (25), (26) and the definition ef/,, it follows that
m!, =max(lcp(a?, a?), lcp(o®, o)) = max(ma, mp). (27)

From (27), it follows thatd), = right = d, if m, > m;, andd), = left = —d,, otherwise.
From (13), Lemma 1, (25) and (26), we obtain

lep(a?, of) = min(icp(a?, %), Iep(a?, o)) = min(my, my). (28)
Also by (13), Lemma 1, and (26), it follows that

lep(a®, o) =min(lep(a?, o®), Iep(o?, o 7)) = lep(a?, o 7). (29)
Egs. (28) and (29) and the definitionmg give us

m), =max(lcp(a®, o /), lep(o?, o#)) = max(icp(a?, o), min(ma, mp)). (30)

From (25) and (29), we obtain

mazlcp(oa,og) >|Cp(a“,af)zlcp(ab,of). (32)
From (26) we know thatz;, > Icp(a?, o). This, together with (31), gives us

|Cp(ab, Uf) <min(mg, mp). (32)
So, from (30) and (32), we obtain

mj, = min(mg, mp). (33)
From (28) and (33), we obtain

m), = min(my,, mp) = lcp(a”, %), (34)

and from this it follows that/, =right=d;. O

Corresponding to Theorem 6 and Table 1 there is, of course, an exactly analogous the-
orem and corresponding table for the case of a single right rotation. We omit the details.
The next theorem characterises the alterations required to accomplish a double rotation.
The context is given in Fig. 4.

Theorem 7. Consider a double |eft rotation pivoted first at node b, then at node a, and let
¢ be theleft child of b. Then,

(i) thevaluesof m;, z;, and d; are unchanged for all nodes i other than a, » and c;
(i) thenew m, z, and d valuesfor nodesa, b and ¢ are as presented in Tables 2 and 3.
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Fig. 4. A double left AVL rotation.

Table 2
The updated values @f andd after a double left rotation
dg dp dc m, m’b m, d), d; d.
max min d, if mp >me
I Ma da { b Mb = Me g
(mp,me) (mp, me) —d;, otherwise
l l r me mp mq dy dp —d,
l r ) myp, me my dg dp de
l r r me mp my dg dp =d,
max min i > me
rool ma da {d” itmp 2me
(mp,me) (mp, me) —d;, otherwise
max min dqg if mg >me
r ) mp i dy d,
(mg,me) (mg,me) —d, otherwise
max min i >
r r me {du if mq Zmp dy —d.
(mg, mp) (ma,mp) —d, otherwise
max min dy  ifmg>me
r r mp g dp de
(mg,me) (mg,me) —d, otherwise

As observed earlier, we omit the proof of this theorem for the sake of brevity. Full details
can be found in [5].

Once again, there are analogues corresponding to Theorem 7 and Tables 2 and 3 for the
case of a double right rotation.

4.2. Balancing the entire tree

We now show that, in the worst case, the balance property of the entire tree can be
restored in @Qk) time, whereh = O(logn) is the height of the tree.
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Table 3
The updated values afafter a double left rotation
da dp de Za b Zc z, A z,
if mp >me
l l I b foifmp =me
! ! ¢ { ¢ otherwise /
I l r f f c f
I r 1 f a c c f
I r r f a a c c f
" if mp > me
! ! b - { S itmp = me
" § f ¢ ¢ otherwise Y
if mp > me
l [8 | b Z Me
! g § ! “ ¢ otherwise ! §
ifmg>m
! b g 1 ma 2mp
" " § “ { ¢ otherwise ¢ §
g ifmg>me
" " " § “ “ { ¢__otherwise ¢ §

By proceeding as in the previous subsection, we can be sure that the subtree rooted at
&t;+1 is balanced, but this does not necessarily extend to the entire tree. If the height of that
subtree is unchanged as a result of the insertion (possibly following a rotation) then the
entire tree will also be balanced, and no ancestors of aipgdeneed be considered. But if
the height of the subtree has increased then the balance factor of one or more ancestor nodes
may have to be updated, and a rotation pivoted at some ancestor node may be necessary.
The nodes that may have to be considered are those on the patlfraro the root. As
soon as we reach a node on this path that is the root of a subtree whose height is unchanged,
whether or not a rotation has been carried out to achieve this, we can stop.

So the question arises as to how we access the relevant nodes, starting frestanode
Suppose we refer to this node as ngd&Ve cannot step up the path directly, but we can
immediately access the closest ancestor ngdand knowing the value af; enables us
to locate the path from; to j, and therefore the reverse of this, in constant time per node.
Hence we can adjust the balance factors of nodes on that path, as necessary, and identify
and apply a rotation at one of these nodes should it be required. Even after so doing, if
the height of the subtree rootedzathas increased, we can apply the same process to that
node, and can continue iteratively all the way back to the root should this be necessary. In
the event that a rotation is required at whatever stage; theandd values can be updated
(in constant time) exactly as described previously.

The total number of operations carried out, even in the worst case, during the insertion
of a new node and any subsequent updating and rebalancing is bounded by a constant times
the distance from the root of the new node. This clearly applies even if we have to step our
way back up the tree towards the root by following a sequence of closest ancestor links.

4.3. Analysis of suffix AVL tree construction
We have shown that, when a new node is inserted during the construction of a suffix

AVL tree, the number ofn, z, andd values that may have to updated is bounded by a
constant, and each update can be achieved in constant time. Furthermore adjustments to
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Table 4
Construction times using strings of length 1 000 000
File type | 2| Construction time

SBSTS SBSTA SBSTR SBSTP ST SA
Text 79 87 11.2 3.0 1.4 3.5 15
DNA 4 8.9 11.5 2.9 - 3.4 23
Protein 21 B 12.2 4.1 - 3.4 25
Code 98 e} 12.6 2.8 - 3.1 3B
Random 4 a 11.6 3.1 - 3.5 a
Random 64 D 11.4 8.1 - 3.2 3

balance factors of nodes, and any necessary rotation, can be identified and carried out in

O(h) time, whereh is the height of the tree (even though, in the case of the refined version,

the algorithm for achieving this is a little more complicated than for a standard AVL tree).
Since, as for a standard AVL tree, the height of a suffix AVL tree (@), it follows

that a suffix AVL tree can be constructed irifdogn) time.

5. Empirical results

To evaluate the practical utility of SBSTs, we carried out computational experiments
similar to those used in [7] to compare the performance of suffix arrays with that of suffix
trees. All programs were compiled with the highest level of optimisation, and were run
under Solaris on a 450 Mhz workstation. All cpu times recorded in Tables 4 and 7 are in
seconds.

Table 4 summarises the results obtained for the various construction algorithms us-
ing strings of 1 000000 characters. Suffix trees (ST in the tables) were constructed using
Kurtz’s tightly coded implementations [6], choosing in each case the list or hash-table ver-
sion, whichever was faster (the list version for DNA and random text with alphabet size 4,
the hash-table version in the other case). The suffix array implementation (SA in the tables)
was the one used in the experiments of Manber and Myers [7].

Four variants of the SBST were included, namely

SBSTS—the standard construction algorithm;

SBSTA—standard construction with AVL balancing;

SBSTR—the refined construction algorithm;

SBSTP—the standard construction algorithm for a partial SBST (for text only).

A variety of files were used, namely

o ordinary English plain text (the first million characters of ‘War and Peace’);
e a DNA sequence;

4 The authors are grateful to Gene Myers for providing source code for this implementation.
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Table 5
Construction statistics using a plain text string of length 1 000 000

Construction statistics

SBSTS SBSTR SBSTP ST
Nodes created 1000000 1000000 175454 1518457
Nodes accessed 67047855 8316402 4077277 21265311

Character comparisons 44740736 5486249 5886192 18525149

Table 6
Construction statistics using a DNA string of length 1 000 000

Construction statistics

SBSTS SBSTR ST
Nodes created 1000000 1000000 1661657
Nodes accessed 26653063 6751230 12510875
Character comparisons 39994578 4379745 11560423

e a concatenation of protein sequences (with separators);
e program code;
e random strings over alphabets of sizes 4 and 64.

From the table, it is clear that the construction refinement has a significant impact on
average performance as well as on worst-case complexity. On the other hand, in spite of
the worst-case guarantee provided by suffix AVL-trees, the empirical evidence strongly
suggests that the overheads of maintaining balance substantially outweigh the benefits in
practice. As expected, the partial SBST is constructed in a fraction of the time required for
the full standard SBST.

Tables 5 and 6 give an alternative comparison of the various tree construction algo-
rithms based on counting certain key operations. As well as recording the number of nodes
in each structure, this table also indicates the number of nodes accessed and the number
of individual character comparisons made during the construction. Table 5 covers the con-
struction of standard, refined, and partial SBSTs, and suffix trees with the children of each
node represented as a list, for a plain text file of 1 000 000 characters, and Table 6 covers
all but the partial case for a DNA text file of the same length.

Of course, these are not the only operations that affect the running times of the various
algorithms—integer and direction comparisons, for example, are also significant in SBST
construction. However, the results show the expected significant reduction in nodes ac-
cessed and characters compared in the refined algorithm relative to the standard algorithm
for SBSTs. The suffix tree has, of course, more nodes, and in terms of node accesses and
character comparisons appears to lie intermediate between the standard and refined SBSTSs.

Table 7 summarises the results obtained for the various search algorithms. In each case,
searches were conducted for all substrings of length 50 of the original string of length
1000000. In this table, we include just a single column representing the standard and
refined SBSTSs, since these two construction algorithms build structurally identical trees.
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Table 7
Search times for all substrings of length 50
File type | 2] Search time

SBSTS ST SA
Text 79 9.0 15 8.2
DNA 4 9.3 96 6.2
Protein 21 9.9 12 6.7
Code 97 9.2 12 7.3
Random 4 9.7 B 6.2
Random 64 9.6 23 7.0

In this case, the suffix tree implementation is our own tightly coded version, using a list of
children at each node.

The table confirms the speed advantage of suffix arrays for on-line string searching, but
also shows that the SBST is competitive with the suffix tree in this respect, at least with the
version represented using a list of children at each node.

Overall, at least in the particular experiments that were carried out, the SBST performed
creditably in comparison with suffix trees and suffix arrays. The results show the refined
and partial versions to be particularly competitive on real data sets.
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