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Load the following packages

library(rstan)
library(rstanarm)
library(ggplot2)
library(bayesplot)

theme_set(bayesplot::theme_default())

set.seed(1)
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Bayesian Inference in Stan

During this lab and the following one, we consider a real problem,
albeit the data are simulated, and we focus on the following Bayesian
data analysis workflow

Model building

Model checking

Model expansion

Model comparison

We leverage Stan to carry out Bayesian inference for the
Coackroaches’ example
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Outline

1 Cockroaches’ example: Problem, goals and materials

2 Cockroaches’ example: Poisson regression model

3 Cockroaches’ example: Negative Binomial regression model
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Section 1

Cockroaches’ example: Problem, goals and materials
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Cockroaches’ example: The problem

Imagine that you are a statistician working as an independent
contractor

One of your clients is a company that owns many residential buildings
throughout New York City

The property manager explains that they are concerned about the
number of cockroach complaints that they receive from their buildings

They tried to solve the problem with monthly visits from a pest
inspector but this solution is

expensive

not very effective due to the difficulty in finding the tenants at home
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Cockroaches’ example: Possible solution and goals

Possible alternative: deploy long term bait stations installed
throughout the apartment building

The property manager

asks you to explore the relationship between roaches and bait stations
to shed light on the effectiveness of this solution

would also like to learn how these results generalize to buildings they
haven’t treated, so they can understand the potential costs of pest
control at buildings not recorded for the experiment and also the ones
they are acquiring
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Cockroaches’ example: Experiment and first attempt

A subset of the company’s buildings (10) have been randomly
selected for an experiment:

At the beginning of each month, a pest inspector randomly places a
number of bait stations throughout the building (thereafter traps)

At the end of the month, the manager records the total number of
cockroach complaints in that building (thereafter complaints)

This is done for 12 successive months, for a total of 120 observations

At first, we will model the number of complaints as a function of
the number of traps, ignoring variation over time and across
buildings
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Cockroaches’ example: Data

Load and explore the dataset in the file pest_data.RDS

The dataset includes 14 variables and 120 observations:

What is the structure of your data?

What kind of variables do you have?

What is the outcome variable and the explanatory ones?

data <- readRDS('pest_data.RDS')
str(data)
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Cockroaches’ example: Data structure

## ’data.frame’: 120 obs. of 14 variables:
## $ mus : num 0.369 0.359 0.282 0.129 0.452 ...
## $ building_id : int 37 37 37 37 37 37 37 37 37 37 ...
## $ wk_ind : int 1 2 3 4 5 6 7 8 9 10 ...
## $ date : Date, format: ...
## $ traps : num 8 8 9 10 11 11 10 10 9 9 ...
## $ floors : num 8 8 8 8 8 8 8 8 8 8 ...
## $ sq_footage_p_floor : num 5149 5149 5149 5149 5149 ...
## $ live_in_super : num 0 0 0 0 0 0 0 0 0 0 ...
## $ monthly_average_rent: num 3847 3847 3847 3847 3847 ...
## $ average_tenant_age : num 53.9 53.9 53.9 53.9 53.9 ...
## $ age_of_building : num 47 47 47 47 47 47 47 47 47 47 ...
## $ total_sq_foot : num 41192 41192 41192 41192 41192 ...
## $ month : num 1 2 3 4 5 6 7 8 9 10 ...
## $ complaints : num 1 3 0 1 0 0 4 3 2 2 ...
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Cockroaches’ example: Data description

The variables we will be using in this lab and in the following labs:

complaints: Number of complaints per building per month
building_id: Unique building identifier
traps: Number of traps used per month per building
date: Date at which the number of complaints are recorded
month: Month of the year
live_in_super: Whether the building has a live-in -superintendent
age_of_building: Age of the building
total_sq_foot: Total square footage of the building
average_tenant_age: Average age of the tenants per building
monthly_average_rent: Average monthly rent per building
floors: Number of floors per building
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Cockroaches’ example: Data

Create a new data frame only containing such variables

Svar <- c("complaints", "building_id", "traps", "date",
"live_in_super","age_of_building", "month",
"total_sq_foot", "average_tenant_age",
"monthly_average_rent", "floors")

pest_data <- data[, Svar]

Number of buildings

N_buildings <- length(unique(pest_data$building_id))
N_buildings

## [1] 10
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Cockroaches’ example: Exploratory analysis

Make some plots for:

Exploring the distribution of the number of complaints

Analysing the relation between complaints and traps

ggplot(pest_data, aes(x = complaints)) +
geom_bar()

ggplot(pest_data, aes(x = traps, y = complaints)) +
geom_jitter()
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Cockroaches’ example: Exploratory analysis
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Cockroaches’ example: Exploratory analysis
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Section 2

Cockroaches’ example: Poisson regression model
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Cockroaches’ example: (simple) Poisson regression model

How we could analyse the number of complaints?

Knowing that the number of complaints over a month is unlikely to
be zero and that rarely there are a large number of complaints over a
month, a sensible probability distribution assumption to model the
outcome variable complaints could be the Poisson distribution

We start modelling the number of complaints using the number of
traps through a Poisson regression model

complaintsi ∼ Poisson(λi), i = 1, . . . , 120
λi = exp (ηi)
ηi = α + β1 trapsi

Our model’s mean parameter is the rate of complaints per 1 month
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Cockroaches’ example: (simple) Poisson regression model

Of course, the model can be equivalently written in a different way

complaintsb,t ∼ Poisson(λb,t), b = 1, . . . , 10, t = 1, . . . , 12
λb,t = exp (ηb,t)
ηb,t = α + β1 trapsb,t

Here, b is an index for the building and t for the time
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Cockroaches’ example: (simple) Poisson regression model

Organise the data: arrange the data into a list to match Stan requirements

stan_dat <- list(
N = nrow(pest_data),
complaints = pest_data$complaints,
traps = pest_data$traps

)
str(stan_dat)

## List of 3
## $ N : int 120
## $ complaints: num [1:120] 1 3 0 1 0 0 4 3 2 2 ...
## $ traps : num [1:120] 8 8 9 10 11 11 10 10 9 9 ...
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Cockroaches’ example: (simple) Poisson regression model
Our model is saved into simple_poisson_regression.stan. Take
a look to it. It includes 5 blocks:

functions

data

parameters

model

generated quantities

At first, we will explore the data, parameters and model blocks, which
are needed for sampling from the posterior

Then, we analyse the functions and generated quantities blocks,
which are needed for the posterior predictive checks (PPCs)
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Cockroaches’ example: (simple) Poisson regression model

Data block:

sample size (constrain to be >= 1)

outcome (a vector of integer of length N)

covariate (a vector of length N)

data{
int<lower=1> N;
int<lower=0> complaints[N];
vector<lower=0>[N] traps;

}
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Cockroaches’ example: (simple) Poisson regression model

Parameters block: our model accept two parameters alpha and
beta1, both real and unconstrained

parameters {
real alpha;
real beta1;

}
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Cockroaches’ example: (simple) Poisson regression model

Model block:

Prior specification: we considered two weakly informative prior, since
we expect negative slope on traps and a positive intercept, that is

α ∼ N (log(4), 1) β1 ∼ N (−0.25, 1)

Likelihood: implemented by using the poisson_log(eta), which is
more efficient and stable than poisson(exp(eta))

model {
beta1 ~ normal(-0.25, 1);
alpha ~ normal(log(4), 1);
complaints ~ poisson_log(alpha + beta1 * traps);
// Alternatively
// complaints ~ poisson(exp(alpha + beta1 * traps));

}
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Cockroaches’ example: (simple) Poisson regression model

Model block can be equivalently specified by means of target
statement

model {
target += normal_lpdf(alpha | log(4), 1);
target += normal_lpdf(beta1 | -0.25, 1);
target += poisson_log_lpmf(complaints| alpha + beta1 * traps);

}

Or by mixing sampling notation and target statement

model {
beta1 ~ normal(-0.25, 1);
alpha ~ normal(log(4), 1);
target += poisson_log_lpmf(complaints|alpha + beta1 * traps);

}
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Cockroaches’ example: (simple) Poisson regression model

Then, we compile the model

comp_model_P <- stan_model('simple_poisson_regression.stan')

Sample draws from the posterior

fit_P1 <- sampling(comp_model_P,
data = stan_dat,
refresh = 0)

Print the posterior summary of the regression parameters

print(fit_P1, pars = c('alpha','beta1'),
probs = c(0.1, 0.5, 0.9))
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Cockroaches’ example: (simple) Poisson regression model

Negative β1 implies that a high number of traps appears to be
associated with fewer complaints in the following month

## Inference for Stan model: simple_poisson_regression.
## 4 chains, each with iter=2000; warmup=1000; thin=1;
## post-warmup draws per chain=1000, total post-warmup draws=4000.
##
## mean se_mean sd 10% 50% 90% n_eff
## alpha 2.58 0.01 0.16 2.38 2.57 2.78 731
## beta1 -0.19 0.00 0.02 -0.22 -0.19 -0.16 753
## Rhat
## alpha 1
## beta1 1
##
## Samples were drawn using NUTS(diag_e) at Fri May 05 17:55:17 2023.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
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Cockroaches’ example: (simple) Poisson regression model
Alternative: use the stan_glm() wrapper of the rstanarm package

fit2 <- stan_glm(complaints ~ traps,
data = pest_data,
family = poisson,
prior_intercept = normal(log(4), 1),
prior = normal(-0.25, 1),
refresh = 0, warmup = 1000,
chains = 4, iter = 2000)

round(summary(fit2)[1 : 2, 1 : 8], 2)

## mean mcse sd 10% 50% 90%
## (Intercept) 2.61 0 0.16 2.40 2.61 2.81
## traps -0.20 0 0.02 -0.23 -0.20 -0.17
## n_eff Rhat
## (Intercept) 2553 1
## traps 2244 1
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Cockroaches’ example: (simple) Poisson regression model

MLE

fit3 <- glm(complaints ~ traps,
data = pest_data,
family = poisson)

round(summary(fit3)$coefficients[, 1 : 2], 2)

## Estimate Std. Error
## (Intercept) 2.61 0.16
## traps -0.20 0.02
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Cockroaches’ example: (simple) Poisson regression model

Visualizing Markov chain Monte Carlo (MCMC) draws from the
posterior distribution of the parameters (traceplot and autocorrelation
function, histogram and scatterplot)

res_array <- as.array(fit_P1, pars = c('alpha', 'beta1'))
res_matrix <- as.matrix(fit_P1, pars = c('alpha', 'beta1'))
mcmc_trace(res_array)
mcmc_acf(res_array)
mcmc_acf(res_matrix)
mcmc_hist(res_array)
mcmc_scatter(res_array, alpha = 0.2)

See in the R script, equivalent or alternative plots according to the
way of extracting the sample draws. In addition take a look to:
https://cran.r-project.org/web/packages/bayesplot/vignettes/
plotting-mcmc-draws.html
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Cockroaches’ example: (simple) Poisson regression model

alpha beta1
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Cockroaches’ example: (simple) Poisson regression model
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Cockroaches’ example: (simple) Poisson regression model
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Cockroaches’ example: (simple) Poisson regression model

alpha beta1
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Cockroaches’ example: (simple) Poisson regression model
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Cockroaches’ example: (simple) Poisson regression model

The plots above allow to inspect the draws from the posterior
distribution, but they don’t say anything about how well the model
fits

For such purposes, posterior predictive checks (PPCs) aim to compare
the observed data with the simulated data from the posterior
predictive distribution

Idea: if a model is a good fit then we should be able to use it to
generate data that looks a lot like the data we observed

In the following, we define y rep as the replicated data that could have
been observed (in-sample replication). We usually distinguish between
y rep and ỹ , which is any future observable value or vector of
observable quantities (out-of-sample replication)
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Cockroaches’ example: (simple) Poisson regression model
Recall that if we disallow improper priors, then Bayesian modeling is
generative

To generate the data used for PPCs we simulate from the posterior
predictive distribution, that is the distribution of the outcome variable
implied by a model after using the observed data y to update our
beliefs about unknown model parameters θ

The posterior predictive distribution for observation y rep, conditionally
on X (a matrix of predictor variables), is

p(y rep|y , X ) =
∫

Θ
p(y rep|θ, X )π(θ|y , X )dθ

For each draw s = 1, . . . , S, of the parameters from the posterior
distribution, θ(s) ∼ π(θ|y , X ), we draw ỹ rep (s) from the posterior
predictive distribution by simulating from the data model conditional
on parameters θ(s) (and X )
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Cockroaches’ example: (simple) Poisson regression model

Sample predicted values from the model for posterior predictive
checks is carried out in the generated quantities block

For each observation we simulate y rep using the simulated parameters

The result will be a matrix of draws y rep with nrow = iter and
ncol = n (the sample size)

generated quantities{
int y_rep[N];
for (n in 1:N) {

real eta_n = alpha + beta1 * traps[n];
y_rep[n] = poisson_log_safe_rng(eta_n);

}
}

37/90



Cockroaches’ example: (simple) Poisson regression model

The generated quantities block above make use of a user defined
function that we specify in the functions block

This is done to avoid potential numerical problems during warmup
which could appear using poisson_log_rng()

functions{
int poisson_log_safe_rng(real eta) {

real pois_rate = exp(eta);
if (pois_rate >= exp(20.79))

return -9;
return poisson_rng(pois_rate);

}
}
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Cockroaches’ example: (simple) Poisson regression model

Then, we extract the generated quantity y_rep (Each row of the
matrix is a draw from the posterior predictive distribution, i.e. a
vector with one element for each of the data points in y)

There are a lot of graphical posterior predictive checking within the
bayesplot package, all with the prefix ppc_. See
http://mc-stan.org/bayesplot/articles/graphical-ppcs.html

We start by comparing the distribution of y and the distributions of
some of the simulated datasets (first 200 rows) in the y_rep matrix

y_rep <- as.matrix(fit_P1, pars = "y_rep")
ppc_dens_overlay(y = stan_dat$complaints, y_rep[1 : 200,])
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Cockroaches’ example: (simple) Poisson regression model

The replicated datasets are not as dispersed as the observed data.
They don’t seem to capture the rate of zero in the observed data
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Cockroaches’ example: (simple) Poisson regression model

Plot of the observed proportion of zeros and histogram of the
proportion of zeros in each of the simulated datasets

prop_zero <- function(x) mean(x == 0)
ppc_stat(pest_data$complaints, y_rep,

stat = "prop_zero", binwidth = 0.005)
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Cockroaches’ example: (simple) Poisson regression model

Clearly the model does not capture this feature of the data
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Cockroaches’ example: (simple) Poisson regression model

Plot of the standardised residuals of the observed vs predicted number
of complaints

mean_y_rep <- colMeans(y_rep)
std_resid <- (stan_dat$complaints - mean_y_rep) /

sqrt(mean_y_rep)
ggplot() +

geom_point(mapping = aes(x = mean_y_rep, y = std_resid)) +
geom_hline(yintercept = c(-2,2))
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Cockroaches’ example: (simple) Poisson regression model
Residuals are mostly positive, thus the model tends to underestimate
the number of complaints

−2.5

0.0

2.5

5.0

7.5

3 6 9
mean_y_rep

st
d_

re
si

d

44/90



Cockroaches’ example: (simple) Poisson regression model

Plot of the uncertainty intervals for the predicted number of
complaints for different numbers of bait stations

with(stan_dat, ppc_intervals(
y = complaints,
yrep = y_rep,
x = traps

) + labs(x = "Number of traps",
y = "Number of complaints"))
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Cockroaches’ example: (simple) Poisson regression model
The model doesn’t seem to fully capture the data, especially the tails
of the observed data
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Cockroaches’ example: Improve the model

The posterior predictive checks (PPCs) highlight some deficiency of
our modelling choice. What to do if a PPC fails? There is not a
unique answer. However, some tips may be the following ones:

Extend the model: augment the predictors, include eventual
hierarchies

Change the sampling distribution

Change the priors

Transform your data, for instance using logarithmic scale

Of course, modeling the relationship between complaints and bait
stations by means of Poisson regression model is the simplest choice
Thus, we can expand the model aiming to meet the requirements of
our client
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Cockroaches’ example: Exploratory analysis

Manager’s intuition: they expect there are other reasons that one
building might have more cockroaches complaints than another

A possible candidate for expanding our model is the
live-in-superintendent variable (super): the live-in-superintendent is
responsible for keeping a building in good condition

The following plot suggests that our guess is sensible, as it is apparent
that the number of complaints vary as function of the number of traps
and the presence or not of the live-in-superintendent in the building

ggplot(pest_data, aes(x = traps, y = complaints,
color = factor(live_in_super,

label = c(FALSE, TRUE)))) +
scale_color_discrete(name = "Live-in super") +
geom_jitter() +
theme(legend.position = "bottom")
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Cockroaches’ example: Exploratory analysis
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Cockroaches’ example: Improve the model

Recall that our model’s mean parameter is a rate of complaints per 1
month

However, we are modelling a process that occurs over an area as well
as over time

Since the square footage of each building is in our availability, we can
insert such information in the model

The Poisson regression model allows the inclusion of an
offset/exposure variable, allowing to interpret the model’s parameter
as a rate of events per unit exposure (in this case the rate of
complaints per square foot per 1 month)
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Cockroaches’ example: Exploratory analysis

A very simple check motivates the inclusion of such term in the model
by noticing that there is a relationship between the square footage of
the building and the number of complaints received

ggplot(pest_data, aes(x = log(total_sq_foot/1e4),
y = log1p(complaints))) +

geom_point() +
geom_smooth(method = "lm", se = FALSE)

Note:
We scaled total_sq_foot by 10000 for simplicity

We are using log1p(.x) which returns the base-10 logarithm of the
value (1+.x) (So log1p(0)=0)
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Cockroaches’ example: Exploratory analysis
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Cockroaches’ example: (multiple) Poisson regression model

From the preliminary analysis above, it appears sensible adding to the
simplest model the live-in superintendent (thereafter super) as
explanatory variable and the total square footage of the building
(divided by 10000 and thereafter sqfoot) as an offset

The model we will implement

complaintsi ∼ Poisson(sqfootiλi), i = 1, . . . , 120
λi = exp (ηi)
ηi = α + β1 trapsi + β2 superi)
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Cockroaches’ example: (multiple) Poisson regression model

The latter model corresponds to

complaintsi ∼ Poisson(λi), i = 1, . . . , 120
λi = exp (ηi)
ηi = α + β1 trapsi + β2 superi + log (sqfooti)

Or using the building and the time indices, equivalently

complaintsb,t ∼ Poisson(λb,t), b = 1, . . . , 10, t = 1, . . . , 12
λb,t = exp (ηb,t)
ηb,t = α + β1 trapsb,t + β2 superb + log (sqfootb)
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Cockroaches’ example: It’s your turn

Starting from simple_Poisson_regression.stan create a new stan file
Save it as multiple_Poisson_regression.stan

Insert in the data block super and sqfoot. For the latter:
If you consider sqfoot then you need consider the transformed data
block for taking its logarithm by creating the variable log_sqfoot

Otherwise, fell free to specify directly the transformed variable in the
data block as log_sqfoot

Modify suitably the parameters block considering now α, β1, β2

For the model block:
Consider the same priors for α and β1, while consider β2 ∼ N (−0.5, 1)

Modify suitably the likelihood to take into account the new linear
predictor formulation, including also the offset variable

Modify suitably the generated quantities block
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Cockroaches’ example: (multiple) Poisson regression model

Then, add to the list of data the new variables (according to the
choice above you can include directly the logarithm of the offset
variable or the original variable)

# To complete; the final structure you will obtain could be
str(stan_dat)

## List of 5
## $ N : int 120
## $ complaints: num [1:120] 1 3 0 1 0 0 4 3 2 2 ...
## $ traps : num [1:120] 8 8 9 10 11 11 10 10 9 9 ...
## $ super : num [1:120] 0 0 0 0 0 0 0 0 0 0 ...
## $ sqfoot : num [1:120] 4.12 4.12 4.12 4.12 4.12 ...
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Cockroaches’ example: (multiple) Poisson regression model

Then, you can compile the model

comp_model_P2 <- stan_model('multiple_poisson_regression.stan')

Sample draws from the posterior distribution

fit_P2 <- sampling(comp_model_P2, data = stan_dat, refresh=0)

See the posterior summary of the regression parameters

print(fit_P2, pars = c('alpha','beta1','beta2'))
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Cockroaches’ example: (multiple) Poisson regression model

## Inference for Stan model: multiple_poisson_regression.
## 4 chains, each with iter=2000; warmup=1000; thin=1;
## post-warmup draws per chain=1000, total post-warmup draws=4000.
##
## mean se_mean sd 2.5% 25% 50% 75%
## alpha 1.19 0.01 0.21 0.78 1.05 1.19 1.33
## beta1 -0.21 0.00 0.03 -0.27 -0.23 -0.21 -0.19
## beta2 -0.28 0.00 0.12 -0.53 -0.36 -0.28 -0.19
## 97.5% n_eff Rhat
## alpha 1.62 726 1.01
## beta1 -0.16 755 1.00
## beta2 -0.05 978 1.01
##
## Samples were drawn using NUTS(diag_e) at Fri May 05 17:56:07 2023.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
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Cockroaches’ example: (multiple) Poisson regression model

As above, you can visualise the Markov chain Monte Carlo (MCMC)
draws from the posterior distribution of the parameters by suitably
extracting such draws and using the graphical tools of the bayesplot
package (mcmc_trace, mcmc_acf, mcmc_hist, mcmc_scatter)

However, our main interest is in evaluating if the inclusion of the new
explanatory variable super as well as the offset are responsible for a
better fit. Thus, we will explore the PPCs introduced above

We start extracting the generated quantity and comparing the
distributions of the posterior predictive simulations with the
distribution of y

y_rep2 <- as.matrix(fit_P2, pars = "y_rep")
ppc_dens_overlay(stan_dat$complaints, y_rep2[1 : 200, ])
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Cockroaches’ example: (multiple) Poisson regression model

It seems we are not able to capture the smaller counts well
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Cockroaches’ example: (multiple) Poisson regression model

Plot of the observed proportion of zeros and histogram of the
proportion of zeros in each of the simulated datasets

ppc_stat(pest_data$complaints, y_rep2,
stat = "prop_zero", binwidth = 0.005)
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Cockroaches’ example: (multiple) Poisson regression model
Again we are not able to capture this feature of the data: we are still
underestimating the proportion of zeroes in the data
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Cockroaches’ example: (multiple) Poisson regression model

Plot of the standardised residuals of the observed vs predicted number
of complaints

mean_y_rep2 <- colMeans(y_rep2)
std_resid2 <- (stan_dat$complaints - mean_y_rep2) /

sqrt(mean_y_rep2)
ggplot() +

geom_point(mapping = aes(x = mean_y_rep2, y = std_resid2)) +
geom_hline(yintercept = c(-2,2))
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Cockroaches’ example: (multiple) Poisson regression model
Again the residuals are mostly positive (underestimate of the number
of complaints)

−2.5

0.0

2.5

5.0

7.5

2.5 5.0 7.5 10.0 12.5
mean_y_rep2

st
d_

re
si

d2

64/90



Cockroaches’ example: (multiple) Poisson regression model

Plot of the uncertainty intervals for the predicted number of
complaints for different numbers of bait stations

with(stan_dat, ppc_intervals(
y = complaints,
yrep = y_rep2,
x = traps

) +
labs(x = "Number of traps", y = "Number of complaints"))
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Cockroaches’ example: (multiple) Poisson regression model

We’ve increased the tails a bit more at the larger numbers of traps
but we still have some large observed numbers of complaints that the
model would consider extremely unlikely events
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Cockroaches’ example: Improve the model

However, some questions arise naturally:

Is the Poisson distribution assumption sensible?

Is there overdispersion?

We could consider a different probability distribution for our
modelling task: any thoughts?
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Cockroaches’ example: Improve the model
We saw from the PPCs that the model:

Doesn’t fit the data as we would like

Underpredict low and high number of complaints

Overpredict the medium number of complaints

This is an indication of overdispersion, where the variance is larger
than the mean, and this can be due to the omission of relevant
explanatory variables

The Poisson model doesn’t fit overdispersed count data well because
the same parameter control both the expected counts and the
variance of these counts

The natural alternative to the Poisson model assumption for counts
data is the Negative Binomial model
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Section 3

Cockroaches’ example: Negative Binomial regression
model
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Cockroaches’ example: Negative Binomial regression model

A very quick introduction to the Negative Binomial distribution

It is a discrete probability distribution modelling the number of
failures until the ϕ-th success (ϕ > 0) in a sequence of Bernoulli trials
with probability of success p ∈ (0, 1). So Y ∼ Neg − Binomial(ϕ, p)
has pmf

P(Y = y) =
(

y + ϕ − 1
y

)
pϕ(1 − p)y , y = 0, 1, 2, . . .

E(Y ) = ϕ(1 − p)/p Var(Y ) = ϕ(1 − p)/p2
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Cockroaches’ example: Negative Binomial regression model

From the latter the alternative parametrisation in terms of mean
(λ = E[Y ]) can be derived, which is particularly useful in Negative -
Binomial regression, after extending the possibility that ϕ takes
positive real values. Since p = ϕ

ϕ+λ we have

Var(Y ) = λ

p = λ(ϕ + λ)
ϕ

= λ + λ2

ϕ
> λ

P(Y = y) = Γ(y + ϕ)
y !Γ(ϕ)

(
ϕ

ϕ + λ

)ϕ(
λ

ϕ + λ

)y

y = 0, 1, 2, . . .

ϕ is called precision parameters (sometimes 1/ϕ is called similarly)
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Cockroaches’ example: Negative Binomial regression model

See the Stan documentation: https://mc-
stan.org/docs/2_20/functions-reference/neg-binom-2-log.html

The pmf of the Negative Binomial we will use is
neg_binomial_2_log (reals η, reals ϕ)

It is parametrised in terms of its log-mean, η, and the precision, ϕ,
such that

E[Y ] = λ = exp(η) Var[Y ] = λ + λ2/ϕ = exp(η) + exp(η)2/ϕ.

As ϕ gets larger, the term λ2/ϕ approaches zero and so the variance
of Negative Binomial approaches λ, so the Negative Binomial gets
closer and closer to the Poisson
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Cockroaches’ example: Negative Binomial regression model

Our model will be

complaintsi ∼ Neg-Binomial(λi , ϕ), i = 1, . . . , 120
λi = exp (ηi)
ηi = α + β1 trapsi + β2 superi + log (sqfooti)

Or equivalently,

complaintsb,t ∼ Neg-Binomial(λb,t , ϕ) b = 1, . . . , 10, t = 1, . . . , 12
λb,t = exp (ηb,t)
ηb,t = α + β1 trapsb,t + β2 superb + log (sqfootb)
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Cockroaches’ example: It’s your turn

Open the file multiple_NB_regression_void.stan (containing only
functions block) and leveraging multiple_poisson_regression.stan,
implement:

The data block (no changes)

Modify suitably the parameters block by adding ϕ−1 as parameter
and get ϕ in the transformed parameters block

For the model block:
Consider the same priors for α, β1 and β2 while consider
ϕ−1 ∼ T N (0, 1, 0, +∞) (also called half - normal distribution)

Modify suitably the likelihood accounting the new distribution

Modify suitably the generated quantities block accounting for the
user-defined function

Save the file as multiple_NB_regression.stan
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Cockroaches’ example: It’s your turn
In the functions block we use a customised function for generating
from the Negative Binomial distribution, which leverages on the fact
that the Negative - Binomial distribution arise from the
Poisson-Gamma mixture model, that is

y |λ ∼ Poisson(λ)
λ ∼ Gamma(α = ϕ, β = p/1 − p)

y ∼ Neg − Binomial(ϕ, p)

functions {
int neg_binomial_2_log_safe_rng(real eta, real phi) {

real gamma_rate = gamma_rng(phi, phi / exp(eta));
if (gamma_rate >= exp(20.79))

return -9;
return poisson_rng(gamma_rate);

}
}
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Cockroaches’ example: Negative Binomial regression model

Compile the model

comp_model_NB <- stan_model('multiple_NB_regression.stan')

Sampling

fit_NB <- sampling(comp_model_NB, data = stan_dat, refresh=0)

Print a posterior summary of the regression parameters

print(fit_NB, pars = c('alpha','beta1','beta2'))
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Cockroaches’ example: Negative Binomial regression model

## Inference for Stan model: multiple_NB_regression.
## 4 chains, each with iter=2000; warmup=1000; thin=1;
## post-warmup draws per chain=1000, total post-warmup draws=4000.
##
## mean se_mean sd 2.5% 25% 50% 75%
## alpha 1.31 0.01 0.43 0.48 1.02 1.30 1.59
## beta1 -0.22 0.00 0.06 -0.34 -0.26 -0.22 -0.19
## beta2 -0.29 0.01 0.22 -0.73 -0.44 -0.28 -0.14
## 97.5% n_eff Rhat
## alpha 2.16 1207 1
## beta1 -0.11 1259 1
## beta2 0.15 1746 1
##
## Samples were drawn using NUTS(diag_e) at Fri May 05 17:56:57 2023.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
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Cockroaches’ example: Negative Binomial regression model

As above, we will evaluate our model fit by means of PPCs

Thus, after extracting the generated quantity we can compare the
distibution of the data with the distribution of the posterior predictive
simulations

y_rep3 <- as.matrix(fit_NB, pars = "y_rep")
ppc_dens_overlay(stan_dat$complaints, y_rep3[1 : 200,])

78/90



Cockroaches’ example: Negative Binomial regression model
It appears that our model now captures both the number of small
counts better as well as the tails
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Cockroaches’ example: Negative Binomial regression model

Plot of the observed proportion of zeros and histogram of the
proportion of zeros in each of the simulated datasets

ppc_stat(stan_dat$complaints, y_rep3,
stat = "prop_zero", binwidth = 0.005)
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Cockroaches’ example: Negative Binomial regression model
It appears that the Negative Binomial model is responsible for a
better job capturing the number of zeroes
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T = prop_zero
T(yrep)

T(y)
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Cockroaches’ example: Negative Binomial regression model

Plot of the standardised residuals of the observed vs predicted number
of complaints

inv_phi <- as.matrix(fit_NB, pars = "inv_phi")
mean_inv_phi <- mean(inv_phi)
mean_y_rep3 <- colMeans(y_rep3)
std_resid3 <- (stan_dat$complaints - mean_y_rep3) /

sqrt(mean_y_rep3 + mean_y_rep3 ˆ 2 * mean_inv_phi)
ggplot() +

geom_point(mapping = aes(x = mean_y_rep3, y = std_resid3)) +
geom_hline(yintercept = c(-2,2))

Note the change w.r.t. the Poisson-type of standarzized residuals
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Cockroaches’ example: Negative Binomial regression model

It appears better, but we still have some large standardised residuals
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Cockroaches’ example: Negative Binomial regression model

Plot uncertainty intervals for the predicted number of complaints for
different numbers of bait stations

with(stan_dat, ppc_intervals(
y = complaints,
yrep = y_rep3,
x = traps

) +
labs(x = "Number of traps", y = "Number of complaints"))
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Cockroaches’ example: Negative Binomial regression model
It appears that the model achieves a large improvements in capturing
the data, especially the tails
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Cockroaches’ example: Negative Binomial regression model

However, data are clustered by building and currently we are missing
such an information

A posterior predictive check can help us understanding if it would be
a good idea to add the building information into the model

with(pest_data, ppc_stat_grouped(
y = complaints,
yrep = y_rep3,
group = building_id,
stat = 'mean',
binwidth = 0.2

))
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Cockroaches’ example: Negative Binomial regression model
We’re getting plausible predictions for most building means

However, some are estimated better than other and some have larger
uncertainties than we might expect
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Cockroaches’ example: Exploratory analysis
Time series plot of the traps and the complaints for each building

ggplot(pest_data, aes(x = date, y = complaints,
color = live_in_super == TRUE)) +

geom_line(aes(linetype = "Number of complaints")) +
geom_point(color = "black") +
facet_wrap(~ building_id, scales = "free",

ncol = 5, labeller = label_both) +
geom_line(aes(y = traps, linetype = "Number of traps"),

color = "black", size = 0.25) +
scale_x_date(name = "Month", date_labels = "%b") +
scale_y_continuous(name = "",

limits = range(pest_data$complaints)) +
scale_linetype_discrete(name = "") +
scale_color_discrete(name = "Live-in super") +
theme(legend.position="bottom", legend.box = "horizontal",

legend.title = element_text(size = 7),
legend.text = element_text(size = 7),
strip.text.x = element_text(size = 7),
axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))
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Cockroaches’ example: Exploratory analysis

building_id: 47 building_id: 62 building_id: 70 building_id: 93 building_id: 98
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Cockroaches’ example: Next Lab
We will take into account the variation across buildings by means of
hierarchical modelling. We will start implementing a varying intercept
Negative Binomial hierarchical model

complaintsb,t ∼ Neg − Binomial(λb,t , ϕ) b = 1, . . . , 10, t = 1, . . . , 12
λb,t = exp (ηb,t)
ηb,t = µb + β1 trapsb,t + log(sqfootb)
µb ∼ N (α + β2 superb + β3 ageb + β4 atab + β5 marb, σµ)

age for age_of_building, ata for average_tenant_age and mar is
monthly_average_rent

Then, we will also consider some varying intercept and slope models

Final step: compare all the models we built this and the next lab
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