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idea: recover the treatment of RWs
but the walkers now move together and interact

other topics:
- Macroscopic systems towards equilibrium
- Stochastic fluctuations
- Simulated annealing (A. Marrazzo, tomorrow; Python)



Random Walks
Dependence of                on      :

• normal behavior:                                                                              
for the brownian motion

• superdiffusive behavior:                      with              
in models where self-intersections are unfavored              

• subdiffusive behavior                           with               
in models where self-intersections are favored

〈R2(t)〉 t

〈R2(t)〉 ∼ t

〈R2(t)〉 ∼ t
2ν

ν > 1/2

ν < 1/2

〈R2(t)〉 ∼ t
2ν

 t (time)       N (number of steps);  t = N Δt
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⟨⟩ = avg. over walkers



RW and diffusion
• consider the normal behaviour: 〈R2(t)〉 ∼ t

The quantity: 
D(t) =

1

2dt
〈∆R(t)2〉

(where d  is the dimensionality of the system) 
should go asymptotically to a constant value for large t,
the autodiffusion coefficient:

we found for d=1:
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⟨⟩ = avg. over walkers

D = lim
t→∞

D(t)

D = lim
t→∞

1
2dt

⟨ΔR2(t)⟩ =
Nℓ2

2t
=

ℓ2

2Δt

⟨ΔR2
N⟩ = Nℓ2

t = NΔtConsidering the discretisation:



RW and diffusion in 1D
The probability that a RW of N steps (N large) ends at position x is given by:

PN (x) =

r
2

⇡N
exp

✓
� x2

2N

◆

Considering that t = N�t, defining D =
`2

2�t
, and measuring x in units of `, we get:

P (x, t) =

r
1

⇡Dt
exp

✓
� x2

4Dt

◆

which is the fundamental solution of the di↵usion equation, a part from a factor of 2 in the
normalization due to the spatial discretization. The continuum solution is:

P (x, t) =

r
1

4⇡Dt
exp

✓
� x2

4Dt

◆

i.e., a Gaussian distribution with �2 = 2Dt which describes a pulse gradually decreasing in
height and broadening in width in such a manner that its area is conserved.
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X, Y uniformly distributed in [�1,1];
take (X,Y ) only within the unitary circle;
) R2 = X2 + Y 2 is
uniformly distributed in [0,1]

x =
p

�2 lnR2
X

R
= X

p
�2 lnR2/R2
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Example of diffusion in solids

saddle-point plane
(a)

diha0

(b)

saddle-point plane

Direct exchange

Vacancy assisted 
diffusion

SUBSTITUTIONAL 
IMPURITIES

INTERSTITIAL 
IMPURITIES
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VACANCIES 
DIFFUSION



... but typically:
more than one single interstitial, 
more than one single impurity,

or more than one single vacancy....

A SIMPLE RW MODEL
IS NOT ENOUGH!
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Lattice Gas model

7.4. Lattice gas

Consider a finite lattice with some density � of Np particles. The particles can move on the lattice
by jumps to the nearest sites, but two particles can not occupy the same site. This is a simple
example of a restricted random walk (see above). The physical interpretation is e.g. vacancies
moving in a lattice.

To simulate this kind of system, we need a bit more of an advanced approach than before. First of
all, we need to simulate the motion of all the particles at the same time, not taking the average
over many independent single-particle motions as was done before.

To be able to meet the criterion that two particles should not occupy the same site, we can do
two things. One is to make an array which contains all possible lattice sites. The other is to, at
each move, find the distance to all other particles and check that no one occupies the site to be
moved to. In case the lattice is small enough to fit the available computer memory using the former
solution is much easier and faster.

In case a particle jumps on average after every time �t, then if we have Np particles we should

7.27 Monte Carlo simulations, Kai Nordlund 2002, 2004

interaction  !
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ΔE = {0 if no overlap
+∞ if overlap

⟹ e−βΔE = {1 new configuration accepted
0 new configuration NOT accepted

In terms of a Metropolis Monte Carlo approach:



2D Lattice Gas model
1⇥ Choose number of particles Np, number of steps Nsteps, side length L. Set �t and

lattice size a.
2⇥ Set all positions in the L � L grid to be empty

3 a⇥ Generate Np particle coordinates randomly on the grid, checking that no two particles
end up on the same points.

3 b⇥ Mark the points with the particles in the L � L grid as filled.

4⇥ Loop over MC steps of time �t

5⇥ Loop from 1 to Np

6⇥ Pick one particle i at random

7⇥ Find which positions it can jump to. If none, return to step 6⇥

8⇥ Let the particle jump to one of the allowed directions j by a displacement
xi = xi + �xj, yi = yi + �yj, enforce periodic boundaries on x and y

9⇥ Set dxi = dxi + �x, dyi = dyi + �x (where periodic boundaries do not play
a role!)

10⇥ End loop from 1 to Np

11⇥ Update time t = t + �t

12⇥ End loop over MC steps

13⇥ Output ⇤�R2⌅ = ⇤dx2
i + dy2

i ⌅ and calculate di�usion coe⇤cient.
7.30 Monte Carlo simulations, Kai Nordlund 2002, 2004

D(t) =
1

2dt
〈∆R(t)2〉

(our old !)

(*)

average over the particles 9



Lattice Gas model

• find which nearest neighbour sites are free 
and jump in one of them randomly chosen 
(if any) (this is actually mentioned in the 
previous slide and implemented in the code 
we are going to discuss)     OR

• choose randomly one nearest neighbour site 
and jump only if it is free

Different dynamics can be implemented, for instance:

NOTE - Here:
Different dynamics => different behaviour with concentration

(and somehow a different definition of the time unit)

(*)
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Lattice Gas model

The crucial di�erence here to the previous random walk algorithms is that the outer loop goes
over MC steps, the inner one over particles. When the walkers are independent of each other
(“non-interacting”) we can deal with one walker at a time, saving memory since storage of all
particles is not needed.

How to do this in practice is illustrated in the Fortran90 code below. It gives out the di�usion
constant D as the final answer, having reasonable values of 1 ns for the average jump time and 2
Å for the jump distance.

Note that this program fails for large numbers of particles using the Park-Miller “minimal
standard” random number generator. In that case, the di�usion coe⇤cient will keep growing
instead of stabilizing at large times. The code below used the Mersenne twister, the Fortran version
available from the course home page. (Yes, I did find this out the hard way, spending almost an
entire Sunday debugging my code before I realized the random number generator was the culprit!)

! To compile use e.g.
! for Linux/Absoft Fortran:
! f90 -O -o randomwalk_latticegas randomwalk_latticegas.f90 -lU77 -lfio
! For Alphas with Compaq Fortran:
! f90 -O -o randomwalk_latticegas randomwalk_latticegas.f90
!

7.31 Monte Carlo simulations, Kai Nordlund 2002, 2004

But here the walkers (the particles) are “interacting”
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on moodle2

latticegas.f90
entropy.f90
box.f90
simulated_annealing.f90

Programs: 

12



   ...
  logical,allocatable::lattice(:,:) ! (occ./non occ.=.true./.false.)
  integer,allocatable::x(:),y(:) ! instantaneous positions of Np labelled particles
  double precision, allocatable :: dx(:),dy(:) ! displ. from the starting point
  integer :: free(4),nfree          ! occupation of nearest neighbors
  integer :: dxtrial(4),dytrial(4)  ! trial move (instantaneous displacements)
  integer :: xnew(4),ynew(4)        ! 4 new possible positions  
   .....
  allocate(lattice(0:L-1,0:L-1))   
  allocate(x(Np),y(Np))  
  allocate(dx(Np),dy(Np)) 

   ...
  lattice = .false.         ! Mark all positions as empty 

   ...
 ! Enumerate directions: 1=right; 2=left; 3=up; 4=down 
  dxtrial(1)=+1; dytrial(1)= 0;   
  dxtrial(2)=-1; dytrial(2)= 0;   
  dxtrial(3)= 0; dytrial(3)=+1; 
  dxtrial(4)= 0; dytrial(4)=-1;

Implementation of the model on 2D SQ lattice 
(latticegas.f90)

13



! INIZIALIZE THE LATTICE : Generate Np particles on LxL lattice 
  do i=1,Np 

     do ! Loop until empty position found,  UNBOUNDED LOOP!
        call random_number(rnd)    !which has dimension(2)
        x(i)=int(rnd(1)*L)
        y(i)=int(rnd(2)*L)
        if (lattice(x(i),y(i))) then
           ! Position already filled, loop to find new trial 
           cycle   !REMEMBER: JUMP AT THE END OF THIS LOOP (NOT EXIT)
        else
           lattice(x(i),y(i))=.true. 
           !  Successful, place next particle  
           exit
        endif
     enddo
     dx(i)=0.0d0; dy(i)=0.0d0; 
  
  enddo

14

(NOTE: you could rewrite some instructions in a more compact way…) 



! MONTE CARLO LOOP

 do istep=0,Nsteps-1 ! Loop over MC steps
     do isubstep=1,Np ! Move each particle once every MC step (on av.)
        ! Pick one particle at random 
        call random_number(rnd1)
        i=int(rnd1*Np)+1  ! 1 =< i =<  Np;

! Find possible directions (j=1,...,4) for moving, store them                                    
in free() ... (NOTE: different possible recipes !!!)

     ! If no free positions, get a new particle ; otherwise choose     
     ! one possible direction (j) and update (x,y) with (xnew,ynew):
         ......
        !Empty the old  position  and  fill the new one:
        lattice(x(i),y(i))=.false. 
        lattice(xnew(j),ynew(j))=.true.

     enddo
     t=t+deltat  
 enddo

15



Another fundamental part:
calculation of distance from initial pos. for each particle

(do not use PBC for that!),
accumulation of data...

! Get total displacement using dx,dy
! dx,dy are individual displacements from the 
! starting point  => these d*sum are summed   
! over time and particles  
dxsum=0.0d0; dysum=0.0d0; 
dxsqsum=0.0d0; dysqsum=0.0d0; 
do i=1,Np
dxsum=dxsum+dx(i);  dysum=dysum+dy(i);
dxsqsum=dxsqsum+dx(i)*dx(i);           
dysqsum=dysqsum+dy(i)*dy(i); 
enddo
print *,’dxsum’,dxsum,’ dysum’,dysum 
print *,’dxsqsum’,dxsqsum,’ dysqsum’,dysqsum

16



print *,’At’,t,’ drsqave’,drsqave*a*a,’ D’,D,’ cm^2/s’

end program randomwalk_latticegas

((After this the Mersenne twister source code should follow.
In that code, you have to change the comment character from
‘‘*’’ to the Fortran90 ‘‘!’’.))

This will be animated during the lecture.

[[Lecturers own reminder on animation, reader can ignore:

cd opetus/mc/tests/randomwalk
f90 randomwalk_latticegas_output.f90 -lU77
a.out 100 2 20 12278 | grep "^ P" | dpc msleep 100 x -1 21 y -1 21 m 1 d 21 sd 440 440 erase 2 3 4 5 _

and then increase second argument.]]

And here is a series of results:

Np L Np/L^2 D (cm^2/s) nfail njumps
--- ---- ------ ------------- -------- --------
10 100 0.001 9.769973881166823E-008 0 10000000
10 100 0.001 1.127346430730184E-007 0 10000000
100 100 0.01 1.028685543050629E-007 0 10000000
100 100 0.01 9.469519884885580E-008 0 10000000

7.38 Monte Carlo simulations, Kai Nordlund 2002, 2004

10000 1000 0.01 9.899003879678247E-008 0 10000000
1000 100 0.1 9.111043889255736E-008 292 9999708
1000 100 0.1 9.427090885414200E-008 279 9999721
100000 1000 0.1 9.403952985695557E-008 3127 99996873
3000 100 0.3 8.284148565973272E-008 109626 29890374
3000 100 0.3 7.915751903784448E-008 110196 29889804
6000 100 0.6 5.895798261670045E-008 1152902 10847098
6000 100 0.6 5.913229928124830E-008 1154808 10845192
9000 100 0.9 1.771291645136659E-008 11574471 6425529
9000 100 0.9 1.786338311620434E-008 11571431 6428569
900000 100 0.9 1.824779088931029E-008 57886778 32113222
9900 100 0.99 1.831247452488705E-009 19013835 786165
9900 100 0.99 1.860272704661156E-009 19015892 784108

What does this mean? At small concentrations, the system behaves essentially as an unconstrained
random walk. For that one, we know that ⇤�R2⌅ should be equal to a2N , where N is the number
of steps, and a is the jump distance, and the result for the di�usion coe⇥cient should be

D =
⇤�R2⌅

4t
=

(2 Å)2N

4N�t
=

(2 Å)2

4⇥ 1 ns
= 10�7 cm2

s

which is exactly what we get, within the uncertainty. But for larger concentrations, the number
of failed jumps starts to grow, which reduces the di�usion coe⇥cient. It is interesting to note,
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1 MC step = 1 ns

unit step length = 2 Å

Here:  2d example

concentration

0

Concentration dependent diffusion coefficient
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3.2 Studio del valore medio di D a densità fissa

Figura 2: Dipendenza temporale di D(t) per N = 2000 ed L = 100. Si vede che dopo circa 100 unità
di tempo il sistema diventa stabile e D(t) assume un comportamento oscillatorio attorno al suo valore
medio (qui D = 0.22032815). Analoghe oscillazioni, sebbene di ampiezza variabile, si riscontrano per
tutti gli altri valori di N presi in considerazione.

Ho arbitrariamente fissato il valore t = 100 come punto in cui calcolare D per diversi valori della
larghezza del reticolo (L = 20, 30, 40, 50, 60). Per ciascun valore di L ho eseguito la simulazione 1000
volte. Il risultato di queste prove è un insieme di 1000 valori di D(t = 100) per ogni L, la cui
distribuzione è riportata nel seguente istogramma.

Figura 3: Distribuzione di D per t = 100 per L = 20, 40, 60.

5

size effect:  concentration ρ fixed, changing the lattice dimension (20,40,60))
(more later)

A usually, we can estimate the statistical error associated to the estimate of D 
(here: histogram done collecting data in the time evolution of D(t))

18

Sample averages (size effect)
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this is D(t) or Dt (instantaneous, averaged over particles); 
calculate it for t → ∞

(1.a) Study D(t) for a fixed value of ρ, for instance 0.2.  Although D is 
defined as the limit t → ∞, it is instructive to follow D(t) as a function of 
time: for this model, it fluctuates after a short equilibration time and no 
appreciable improvements in the statistics are achieved by increasing t.

Discussing Ex. 1
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time average after equilibration
to estimate D

D
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D(t) =
1

2dt
〈∆R(t)2〉

?



Temporal averages
< G >T =

1

T

T∑

t=1

Gt

Thermally equilibrated averages:

But in practice T is finite, and < G >T oscillates:

< G >T =

L

T

∑

I=A,B,C,...

< G >
(I)

∆ < G >T =

[

L

T

∑

I

(

< (G(I))2 > −(< G
(I)

>
2
)

]1/2
−→

T → ∞
∼

1
√

T

divide T into intervals A, B, C . . . of length L and sum:

Note: not always ∆ < G >T is a good indicator of the actual error!
(remind ”ergodicity”)

(varying T):

< G >= limT→∞ < G >T

(block averages):

(σn/
√

n)(σs/
√

s)
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D(t)
and 

<D>T 

time averaged:

<D>T  

in 5
different

runs

Np=200, 80x80 Np=50, 40x40 Np=13, 20x20

(I.1) ... Better statistics for D can be obtained by averaging D over as many 
particles as possible (i.e., for a given ρ)...  Here ρ=0.03

(we expect the limit of the simple 2D RW on a square lattice, with D=0.25)
21

<ΔR2(t)>
and 

expected 
behavior

⟨D⟩T = ∫
T

0
D(t)dt



σ2D  proportional to 1/Np

Ex. 1 (...) Verify that deviations of <D(t)>t from its mean value are proportional to the 
inverse square root of the total number of particles.
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Concentration dependent  
diffusion coefficient

however, that the di�usion coe⇥cient and number of failed jumps do not follow an obvious linear
dependence, so doing the MC simulation really is worthwhile.

Here is still a plot of D(�), where � is the particle concentration.

7.40 Monte Carlo simulations, Kai Nordlund 2002, 2004
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the lattice gas problem is suitable to be afforded
by embedding the “number crunching” part in Fortran90 

in a Python structure:
do it yourself! 

24
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7.5. Length of polymers in a good solvent

[Gould-Tobochnik 12.3]

As a final example of where random walks can be useful, we consider the length of polymers lying
in a good solvent. A polymer is a molecule which consists of a long chain of basic building blocks.
For instance, polyethylene can be represented as

· · ·–CH2–CH2–CH2–CH2–· · ·

When a polymer is placed in a good solution, where it basically can float around freely, it will after
some time adopt a twisted form which is neither straight nor completely curled up. Imagine a single
noodle (spaghetti strain) in warm water.

Experiments on polymers have shown that when the length of the “noodle” is measured, the
average mean square end-to-end length has been found to have the following dependence:

h�R2(N)i / N2⌫ with ⌫ ⇡ 0.592

7.41 Monte Carlo simulations, Kai Nordlund 2002, 2004

7.5. Length of polymers in a good solvent

[Gould-Tobochnik 12.3]

As a final example of where random walks can be useful, we consider the length of polymers lying
in a good solvent. A polymer is a molecule which consists of a long chain of basic building blocks.
For instance, polyethylene can be represented as

· · ·–CH2–CH2–CH2–CH2–· · ·

When a polymer is placed in a good solution, where it basically can float around freely, it will after
some time adopt a twisted form which is neither straight nor completely curled up. Imagine a single
noodle (spaghetti strain) in warm water.

Experiments on polymers have shown that when the length of the “noodle” is measured, the
average mean square end-to-end length has been found to have the following dependence:

h�R2(N)i / N2⌫ with ⌫ ⇡ 0.592

7.41 Monte Carlo simulations, Kai Nordlund 2002, 2004

7.5. Length of polymers in a good solvent

[Gould-Tobochnik 12.3]

As a final example of where random walks can be useful, we consider the length of polymers lying
in a good solvent. A polymer is a molecule which consists of a long chain of basic building blocks.
For instance, polyethylene can be represented as

· · ·–CH2–CH2–CH2–CH2–· · ·

When a polymer is placed in a good solution, where it basically can float around freely, it will after
some time adopt a twisted form which is neither straight nor completely curled up. Imagine a single
noodle (spaghetti strain) in warm water.

Experiments on polymers have shown that when the length of the “noodle” is measured, the
average mean square end-to-end length has been found to have the following dependence:

h�R2(N)i / N2⌫ with ⌫ ⇡ 0.592
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for a wide range of polymers, regardless of their other properties. Here N is the number of
monomers. The fact that such very general behaviour is observed indicates that there is some very
simple general reason for the behaviour.

This lead Rosenbluth and Rosenbluth [Ref. J. Chem. Phys 23 (1955) 356 according to G+T] to think that a very
simple random walk approximation could explain this behaviour. The main idea here is as follows.
Let us think of making a random walk whose path would give the shape of the particular polymer.

The figure below illustrates a polymer and a random walk which would approximate the shape of
this polymer.

7.42 Monte Carlo simulations, Kai Nordlund 2002, 2004

A simple random walk clearly can not explain the behaviour, since it gives an exponent of ⌫ = 0.5.
But it is also clear that the ordinary random walk does not describe the physical situation sensibly
either, because it can return to the same positions many times. But in a polymer the monomers
certainly can not occupy the same space – atoms can just not be squeezed on top of each other
without extreme kinetic energies or pressures. So let us modify the basic random walk as follows:
we add the simple requirement that the walker should never return to a position it has already
occupied. This kind of random walk is called the self-avoiding walk (SAW).

7.43 Monte Carlo simulations, Kai Nordlund 2002, 2004

A simple random walk clearly can not explain the behaviour, since it gives an exponent of ⌫ = 0.5.
But it is also clear that the ordinary random walk does not describe the physical situation sensibly
either, because it can return to the same positions many times. But in a polymer the monomers
certainly can not occupy the same space – atoms can just not be squeezed on top of each other
without extreme kinetic energies or pressures. So let us modify the basic random walk as follows:
we add the simple requirement that the walker should never return to a position it has already
occupied. This kind of random walk is called the self-avoiding walk (SAW).

7.43 Monte Carlo simulations, Kai Nordlund 2002, 2004

A simple random walk clearly can not explain the behaviour, since it gives an exponent of ⌫ = 0.5.
But it is also clear that the ordinary random walk does not describe the physical situation sensibly
either, because it can return to the same positions many times. But in a polymer the monomers
certainly can not occupy the same space – atoms can just not be squeezed on top of each other
without extreme kinetic energies or pressures. So let us modify the basic random walk as follows:
we add the simple requirement that the walker should never return to a position it has already
occupied. This kind of random walk is called the self-avoiding walk (SAW).

7.43 Monte Carlo simulations, Kai Nordlund 2002, 2004

A simple random walk clearly can not explain the behaviour, since it gives an exponent of ⌫ = 0.5.
But it is also clear that the ordinary random walk does not describe the physical situation sensibly
either, because it can return to the same positions many times. But in a polymer the monomers
certainly can not occupy the same space – atoms can just not be squeezed on top of each other
without extreme kinetic energies or pressures. So let us modify the basic random walk as follows:
we add the simple requirement that the walker should never return to a position it has already
occupied. This kind of random walk is called the self-avoiding walk (SAW).

7.43 Monte Carlo simulations, Kai Nordlund 2002, 2004

A simple random walk clearly can not explain the behaviour, since it gives an exponent of ⌫ = 0.5.
But it is also clear that the ordinary random walk does not describe the physical situation sensibly
either, because it can return to the same positions many times. But in a polymer the monomers
certainly can not occupy the same space – atoms can just not be squeezed on top of each other
without extreme kinetic energies or pressures. So let us modify the basic random walk as follows:
we add the simple requirement that the walker should never return to a position it has already
occupied. This kind of random walk is called the self-avoiding walk (SAW).

7.43 Monte Carlo simulations, Kai Nordlund 2002, 2004

A simple random walk clearly can not explain the behaviour, since it gives an exponent of ⌫ = 0.5.
But it is also clear that the ordinary random walk does not describe the physical situation sensibly
either, because it can return to the same positions many times. But in a polymer the monomers
certainly can not occupy the same space – atoms can just not be squeezed on top of each other
without extreme kinetic energies or pressures. So let us modify the basic random walk as follows:
we add the simple requirement that the walker should never return to a position it has already
occupied. This kind of random walk is called the self-avoiding walk (SAW).
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Another example of restricted random walks:
self-avoiding walks (SAW)
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7.5.1. Coding self-avoiding random walks

Coding the SAW e�ciently is not quite trivial. It could seem easy. Just do random walks one at a
time as usual for non-interacting walkers, store all the positions visited to an 2D or 3D array, and if
a new step enters a previously visited site, disregard it.

But herein lies the problem. We can not just disregard the last step, and look for a new direction.
This would skew the statistics; we have to disregard the whole walk. If we want to make a walk of
any sensible length (say, N > 30), the probability of the walker entering a previously visited site
becomes enormously large. Hence we end up disregarding almost all walks.

In my tests, in 3D walks for N = 20 only roughly 2 % of the walks were successful, for N = 30
only 0.1%, and for N = 40 only 0.04%. So the e�ciency is terrible even for small N , and quickly
becomes truly horrendous for increasing N .

Hence it is very important to have some way to make the simulation of the SAW’s more e�cient.
We will here present the simplest one, the optimization scheme of Rosenbluth and Rosenbluth.

The idea is that once a walk attempts to do a step N that is impossible, we do not disregard the

7.45 Monte Carlo simulations, Kai Nordlund 2002, 2004

SAW
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whole walk, but only this step. We then pick some other, possible step. A weight factor W (N) is
used to ensure that the statistics remains correct.

The way the weighting is done can be written as follows. Consider a situation where we have just
done step N � 1, and look at step N . Three outcomes are possible:

1
� No step is possible. Set W (N) = 0 and restart

2
� All steps other than the step right backward are possible, set W(N)=W(N-1)

3
� Only m steps are possible with 1  m < 3 (2D) or 1  m < 5 (3D). In this case we

choose randomly one of the possible steps, and set W (N) = m
3 W (N � 1) (2D) or

W (N) = m
5 W (N � 1)(3D).

The correct value of the final average h�R2(N)i is obtained by weighting R2
i (N) for each step

N in a given walk i with the weight Wi(N) obtained in the same walk. To get the average, we
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SAW
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have to divide by the sum of Wi(N) instead of N , i.e.

h�R2(N)i =

NwalksX

i=1

Wi(N)R2
i (N)

NwalksX

i=1

Wi(N)

W (0) is initialized to 1.0.

This is tremendously much more e�cient than the direct approach because it is actually quite rare
to end up in a situation where no step at all is possible. Hence the number of failures is vastly
smaller than before: in my tests I obtained only 8 failures for 3D walks of length 30 simulating
10000 walks.

Note that in handling step 1 there are actually two choices. One is disregarding the whole walk, the
other just disregarding the steps after the N we have managed to reach. If the goal is to deal with
walks (polymers) always reaching the full length, one should do the former. But which one to do

7.47 Monte Carlo simulations, Kai Nordlund 2002, 2004
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SAW



Statistical averages and 
stochastic fluctuations
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Macroscopic systems 
towards equilibrium

A box is divided into two parts communicating through a 
small hole. One particle randomly can pass through the hole 
per unit time, from the left to the right or viceversa.

Nleft(t): number of particles present at time t in  the left side
Given Nleft(0), what is Nleft(t) ? 

simple example of non-interacting classical particles in a box
(gas diffusion)

Figura 5: Quattro fotogrammi che mostrano l’espansione libera del gas. Il primo fotogramma rappresenta
il gas tutto contenuto nella parte sinistra del recipiente, appena dopo che lo sportellino è stato aperto. Il
quarto fotogramma mostra il gas alla fine del processo quando è stata raggiunta una densità uniforme in
entrambe le parti del recipiente.

due zone del contenitore. Le pareti del recipiente schermano il gas da qualunque influenza esterna.
Il gas inizialmente è concentrato tutto in una delle due parti. Una volta aperto lo sportellino, esso
si espande gradualmente nell’altra parte fino a che non è stata raggiunta una distribuzione uniforme
del gas nell’intero contenitore.

Il processo ottenuto per inversione temporale, cioè invertendo l’ordine dei fotogrammi, non si
realizza in natura. Può questo fatto essere spiegato dalla teoria atomica? Più in generale, possiamo
comprendere i fenomeni irreversibili, e il conseguente aumento di entropia dell’universo, in termini
di movimento degli atomi? Questo è il problema dell’irreversibilità: la spiegazione delle leggi ma-
croscopiche irreversibili in termini delle leggi microscopiche reversibili che governano il movimento
degli atomi.
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Macroscopic systems 
towards equilibrium

Another version: particles blue/red in both sides 
(interdiffusion of two gases): 
per unit time, one from each side is picked at random and put in the 
other side: Nleftblue(t)+Nleftred(t)=constant; Nleftred(t)=? 

Urne, palline e diffusione

In molti problemi di tipo probabilistico si incontrano urne contenenti palline di diversi

colori. Tale semplice situazione infatti può servire a realizzare semplici modelli di

situazioni fisiche estremamente complesse. Come esempio consideriamo il caso della

diffusione di un gas (Il modello di diffusione basato sul processo di estrazione e scambio

da due urne è dovuto al fisico austriaco Paul Ehrenfest (1880-1933)).

Si considerino due urne, indichiamole con A e B, ognuna contenete n palline. Al tempo

t = 0 nell’urna A abbiamo solo palline nere, mentre nell’urna B abbiamo solo palline

bianche (possiamo immaginare che le diverse palline rappresentino molecole di gas di

tipo diverso separate all’istante iniziale da una membrana). Al tempo t = 1 (inteso

arbitrariamente come numero di iterazioni) una pallina è estratta a caso da ogni urna e

posta nell’altra (in pratica corrisponde alla rottura della membrana iniziale). Il

procedimento viene ripetuto ai tempi successivi t = 2, 3, . . .. Ad ogni istante in ogni urna

avremo sempre n palline. Il problema può essere affrontato analiticamente ma conduce

a calcoli estremamente lunghi e laboriosi. In questo caso conviene utilizzare una

simulazione di tipo Monte Carlo.

Corso eccellenza studenti 4
o
anno scuole superiori, Ferrara, 22 giugno 2006 – p. 26/31
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Fluctuations are always present, due to the nature 
of the system, also when evolving towards equilibrium.

Figura 5: Quattro fotogrammi che mostrano l’espansione libera del gas. Il primo fotogramma rappresenta
il gas tutto contenuto nella parte sinistra del recipiente, appena dopo che lo sportellino è stato aperto. Il
quarto fotogramma mostra il gas alla fine del processo quando è stata raggiunta una densità uniforme in
entrambe le parti del recipiente.

due zone del contenitore. Le pareti del recipiente schermano il gas da qualunque influenza esterna.
Il gas inizialmente è concentrato tutto in una delle due parti. Una volta aperto lo sportellino, esso
si espande gradualmente nell’altra parte fino a che non è stata raggiunta una distribuzione uniforme
del gas nell’intero contenitore.

Il processo ottenuto per inversione temporale, cioè invertendo l’ordine dei fotogrammi, non si
realizza in natura. Può questo fatto essere spiegato dalla teoria atomica? Più in generale, possiamo
comprendere i fenomeni irreversibili, e il conseguente aumento di entropia dell’universo, in termini
di movimento degli atomi? Questo è il problema dell’irreversibilità: la spiegazione delle leggi ma-
croscopiche irreversibili in termini delle leggi microscopiche reversibili che governano il movimento
degli atomi.
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Approach to equilibrium 
with fluctuations

Stochastic fluctuations

A simple example: non-interacting classical particles in a box (gas diffusion)
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initial N(left)=1000

How to reduce fluctuations?
- more particles
- average over many simulation runs
- ...
What can we do with fluctuations?

Stochastic fluctuations
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Intrinsic energy fluctuations in 
the canonical ensemble - I

CHAPTER 17. MONTE CARLO SIMULATION OF THE CANONICAL ENSEMBLE 630

p∗c(L = 10), the pressure at which the two peaks of N(v) are of equal height. What is the value of
the free energy barrier ∆F? If sufficient computer resources are available, compute ∆F for larger
L (published results are for L = 10, 12, 14, 16, and 20) and determine if ∆F depends on L. Can
you reach any conclusions about the nature of the transition?

Appendix 17A: Fluctuations in the Canonical Ensemble

We first obtain the relation of the constant volume heat capacity CV to the energy fluctuations in
the canonical ensemble. We adopt the notation U = 〈E〉 and write CV as

CV =
∂U

∂T
= − 1

kT 2

∂U

∂β
. (17.72)

From (17.3) we have

U = − ∂
∂β lnZ (17.73)

and

∂U

∂β
= − 1

Z2
∂Z
∂β

∑
s Es e−βEs − 1

Z

∑
s E2

s e−βEs (17.74)

= 〈E〉2 − 〈E2〉. (17.75)

The relation (17.12) follows from (17.72) and (17.75). Note that the heat capacity is at constant
volume because the partial derivatives were performed with the energy levels Es kept constant. The
corresponding quantity for a magnetic system is the heat capacity at constant external magnetic
field.

The relation of the magnetic susceptibility χ to the fluctuations of the magnetization M can
be obtained in a similar way. We assume that the energy can be written as

Es = E0,s − HMs, (17.76)

where E0,s is the energy in the absence of a magnetic field, H is the external applied field, and Ms

is the magnetization in the s state. The mean magnetization is given by

〈M〉 =
1
Z

∑
Ms e−βEs . (17.77)

Because ∂Es/∂H = −Ms, we have

∂Z

∂H
=

∑

s

βMs e−βEs . (17.78)

Hence we obtain

〈M〉 =
1
β

∂

∂H
lnZ. (17.79)

Remind: and 〈E〉 = −
∂

∂β
lnZ

∂〈E〉

∂β
= −

1

Z2

∂Z

∂β

∑

s

Ese
−βEs −

1

Z

∑

s

E2

se−βEs = 〈E〉2 − 〈E2〉 = 〈(δE)2〉

Cv =
〈(δE)2〉

kBT 2

〈E〉 =
1

Z

∑

s

Ese
−βEs Z =

∑

s

e
−βEs, therefore:

Result:

Cv =
∂〈E〉

∂T
= . . . = −

1

kT 2

∂〈E〉

∂β

-

Consider the thermal capacity:

The thermal capacity (or specific heat if considered for each 
particle) is related to the intrinsic stochastic energy fluctuations

�E ⌘ E � hEi

f(E) =
2p
⇡

1

(kBT )3/2
p
E exp

✓
� E

kBT

◆

hAi =
MX

s=1

AsPs =
1

Z

MX

s=1

Ase
��Es

P (Es) =
⌦(Es)

Z
e��Es

Ps =
1

Z
e��Es

=
1

2
�2

=
1

8�2

@⇢

@t
= r

8
><

>:

X, Y uniformly distributed in [�1,1];
take (X,Y ) only within the unitary circle;
) R2 = X2 + Y 2 is
uniformly distributed in [0,1]

x =
p

�2 lnR2
X

R
= X

p
�2 lnR2/R2

1

where
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Intrinsic energy fluctuations in 
the canonical ensemble - II

Cv =
〈(δE)2〉

kBT 2

√

〈(δE)2〉
〈E〉

=

√
kBT 2Cv

〈E〉
∝

√
N

N
∼

1√
N

(correct; in the thermodynamic limit: E → const., macro ∼ micro)

Since:

if N is the number of particles, we have:

i.e., the relative energy fluctuations reduce when N is large
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Figura 5: Quattro fotogrammi che mostrano l’espansione libera del gas. Il primo fotogramma rappresenta
il gas tutto contenuto nella parte sinistra del recipiente, appena dopo che lo sportellino è stato aperto. Il
quarto fotogramma mostra il gas alla fine del processo quando è stata raggiunta una densità uniforme in
entrambe le parti del recipiente.

due zone del contenitore. Le pareti del recipiente schermano il gas da qualunque influenza esterna.
Il gas inizialmente è concentrato tutto in una delle due parti. Una volta aperto lo sportellino, esso
si espande gradualmente nell’altra parte fino a che non è stata raggiunta una distribuzione uniforme
del gas nell’intero contenitore.

Il processo ottenuto per inversione temporale, cioè invertendo l’ordine dei fotogrammi, non si
realizza in natura. Può questo fatto essere spiegato dalla teoria atomica? Più in generale, possiamo
comprendere i fenomeni irreversibili, e il conseguente aumento di entropia dell’universo, in termini
di movimento degli atomi? Questo è il problema dell’irreversibilità: la spiegazione delle leggi ma-
croscopiche irreversibili in termini delle leggi microscopiche reversibili che governano il movimento
degli atomi.
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Approach to equilibrium

macrostate: specified by the number of particles n on the left side;
microstate: specified by the specific list of the n particles on the left side
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l’entropia microscopica di boltzmann 91

sono

P(x ! y) =

8
<

:

1
N

se y differisce da x solo per una componente

0 altrimenti

ed è facile mostrare che la misura µeq(x) = 2�N è invariante e che il
processo è reversibile3 rispetto a µeq, cioè 3 Una catena di Markov è reversibile se

P ({Xt+1 = x} \ {Xt = y})

= P ({Xt+1 = y} \ {Xt = x})
µeq(x)P(x ! y) = µeq(y)P(y ! x)

§142 Variabile macroscopica Questo modello simula un sistema
meccanico con descrizione dello stato microscopica e con misura
invariante micro-canonica. Una descrizione macroscopica consiste nella
specificazione del numero delle particelle nella scatola B0:

Y = Yt(X) =
N

Â
a=1

Xa(t).

È facile mostrare che la distribuzione stazionaria indotta per Y è:4 4 Ricordiamo la distribuzione binomiale

P(n; p, q) =

✓
N
n

◆
pnqN�n

peq(n) = P(Y = n) = 2�N
✓

N
n

◆
= 2�N N!

n!(N � n)!
(5.5)

⇡
1p

p(N/2)
exp

"
�

(n � (N/2))2

N/2

#
(5.6)

dove nell’ultimo passaggio si è usata l’approssimazione di Stirling5 5 Ricordiamo la Formula di Stirling per
il fattoriale:

n! ⇠

p

2pn nne�n .

Usando questa formula, si ottiene
la seguente approssimazione per la
distribuzione binomiale

p(n) ⇡
1

2
p

pNpq
exp

"
�

(n � Np)2

2Npq

#

per n, N � 1.

§143 Legge dei grandi numeri e fluttuazioni Si può dimostrare che
per Y vale la legge dei grandi numeri, vale a dire, per ogni e > 0, si
ha

P
✓����

Y
N

�
1
2

���� > e

◆
 cost. e�NI(e) (5.7)

dove I(e) non dipende da N ed è una funzione limitata di e per ogni
e > 0. Le fluttuazioni sono pure normali, come risulta immediata-
mente dalla (5.6), cioè

p

N
✓

Y
N

�
1
2

◆

è approssimativamente la distribuzione normale N (0, 1
2 ) per N � 1.

§144 Dinamica macroscopica Anche la dinamica macroscopica
può essere studiata esattamente. Yt è una catena di Markov con
probabilità di transizione

8
><

>:

P(n ! n � 1) =
n
N

P(n ! n + 1) = 1 �
n
N

Macroscopic dynamics can also be studied exactly.
n_left(t) is a Markov chain with transition probability:

 

(notes on Stat Mech by Nino Zanghi’ - web source)



Equilibrium and entropy

number of microstates =
N !

n!(N − n)!
=

(

N

n

)

=

(

N

N − n

)

n # of microstates log(# of micr.)

0 1 0
1 10 2,3
2 45 3,81
3 120 4,79
4 210 5,35
5 252 5,53
6 210 5,35
7 120 4,79
8 45 3,81
9 10 2,3
10 1 0

The number of microstates for the “particle in a box” model with N=10. 
The macrostate is specified by the number of particles on the left side, n. 
The total number of microstates for N=10 is 210=1024

number of microstates =
N !

n!(N − n)!
=

(

N

n

)

=

(

N

N − n

)

the most “random”!
Equilibrium = 
Maximum number of 
possible microstates =
Maximum entropy 
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Entropy: Coincidence method  
(S.K. Ma, J. Stat. Phys. 26, 221 (1981))

(optional)

Equilibrium = Maximum entropy = Maximum number of possible microstates

Too much effort to enumerate all of them!

Alternative procedure (good for computing):
A system evolving in time will duplicate a microstate, before or later...
The longer it takes for duplication, the fewer are  the microstates in the 
corresponding macrostate.  Hence, the lower is the entropy.
Idea: measure the ratio of the number of pairs of duplicated microstates to 
the total number of possible pairs; entropy is the log of the inverse ratio.

E.g.: suppose as in the previous slide N=10, and the macrostate n=1; 
consider 20 different microstates labelled with the “name” of the particle:

8  7  5  10  7  2  4  6  2  10  3  4  3  9  6  5  2  9  2  4
Possible pairs: 20*(20-1)/2=190. Here: 6 pairs for particle “2”; 1 pair with 
particle “10” etc etc... Sum all of them: get 15. 
Ratio = 15/190    ,    Entropy:   S∝log(190/15)~2.5

39
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S = �kB
X

s

Ps lnPs

S = kB log⌦

�E ⌘ E � hEi
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⇡
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X, Y uniformly distributed in [�1,1];
take (X,Y ) only within the unitary circle;
) R2 = X2 + Y 2 is
uniformly distributed in [0,1]

x =
p

�2 lnR2
X

R
= X

p
�2 lnR2/R2

1

in the canonical ensemble

in the microcanonical ensemble, 
where all the microstates 
corresponding to a macrostate have 
the same energy 
(Ω is the number of microstates)

Remind the definition of entropy:
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Metropolis method in the 
canonical ensemble and the 

simulated annealing
a general purpose global optimization algorithm 

(Kirkpatrick S, Gelatt CD Jr,  Vecchi MP
Science 220(4598), 671-80, 1983)

(argument treated by A. Marrazzo on May 9, 2023)
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Metropolis and 
simulated annealing - I

•Stochastic search for global minimum. Monte 
Carlo optimization.

•The concept is based on the manner in which 
liquids freeze or metals recrystallize. Sufficiently 
high starting temperature and slow cooling are 
important to avoid freezing out in metastable 
states.  A “cost function” is treated as the energy.
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Metropolis and 
simulated annealing - II
•Thermodynamic system at temperature T, energy E. 

•Perturb configuration (generate a new one).
•Compute change in energy dE. If dE is negative the new 

configuration is accepted. If dE is positive it is accepted 
with a probability given by the Boltzmann factor :     
exp(-dE/kT). 

•The process is repeated many times for good sampling 
of configuration space.

•then the temperature is slightly lowered and the entire 
procedure repeated, and so on, until a frozen state is 
achieved.

{usual 
Metropolis 
procedure 

in the 
canonical 
ensemble
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Metropolis and 
simulated annealing - II
•Thermodynamic system at temperature T, energy E. 

•Perturb configuration (generate a new one).
•Compute change in energy dE. If dE is negative the new 

configuration is accepted. If dE is positive it is accepted 
with a probability given by the Boltzmann factor :     
exp(-dE/kT). 

•The process is repeated many times for good sampling 
of configuration space.

•then the temperature is slightly lowered and the entire 
procedure repeated, and so on, until a frozen state is 
achieved.

{usual 
Metropolis 
procedure 

in the 
canonical 
ensemble
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a move 
generation 
strategy

a freezing 
schedule

a stopping 
criterion

necessary:



Example
minimization of 

f(x)=(x+0.2)*x+cos(14.5*x-0.3)
considered as an energy function and

using a fictitious temperature 

in simulated_annealing.f90:
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Rastrigin function: 
• non-convex function used as a performance test problem for optimization algorithms;
• typical example of non-linear multimodal function;
• first proposed by Rastrigin as a 2-dimensional function; later generalized by Rudolph.
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DO WHILE (temp > 1E-5) ! anneal cycle

  DO istep = 1, nsteps
    CALL RANDOM_NUMBER(rand) ! generate 2 random numbers; dimension(2) :: rand
    x_new = x + scale*SQRT(temp)*(rand(1) - 0.5) ! stochastic move
    fx_new = func(x_new) ! new object function value
    IF (EXP(-(fx_new - fx)/temp) > rand(2)) THEN ! success, save
      fx = fx_new
      x = x_new
    END IF 
    IF (fx < fx_min) THEN
      fx_min = fx
      x_min = x
      PRINT '(3ES13.5)', temp, x_min, fx_min
    END IF
  END DO

  temp = temp * tfactor ! decrease temperature
END DO

Function to be minimized:  f(x) ;   Starting point:   x, fx=f(x)

initial (high) temperature:    temp
Annealing schedule: annealing temperature reduction factor: tfactor (<1)

number of steps per block: nsteps 
‘ad hoc’ parameter for trial move: scale
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final T:    2.50315E-01 
final x:   -1.95067E-01 
final f(x):-1.00088E+00

initial T:  10 (KB units) 
initial x:      1.000000
initial f(x):   1.137208 


