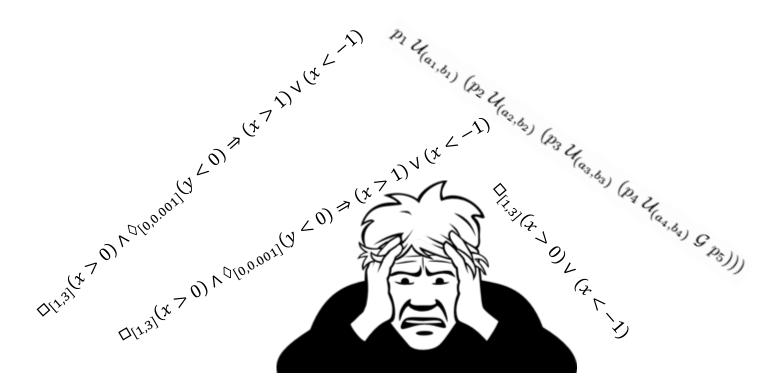
Cyber-Physical Systems

Laura Nenzi

Università degli Studi di Trieste Il Semestre 2022

Lecture 11: Automata and Temporal Logic

[Many Slides due to J. Deshmukh, USC, LA, USA]



 $\Box_{[1,3]}(x > 0) \Rightarrow \Diamond_{[1,3]}((y > 0) \land \Diamond_{[0,0.001]}(y < 0) \Rightarrow (x > 1) \lor (x < -1)$

Specifications/Requirements

Specifications for most programs: functional

▶ Program starts in some state q, and terminates in some other state r, specification defines a relation between all pairs (q,r) given $q,r \in Q$

- Specifications for reactive systems:
 - Program never terminates!
 - Starting from some initial state (say q), all infinite behaviors of the program should satisfy certain property

Small detour

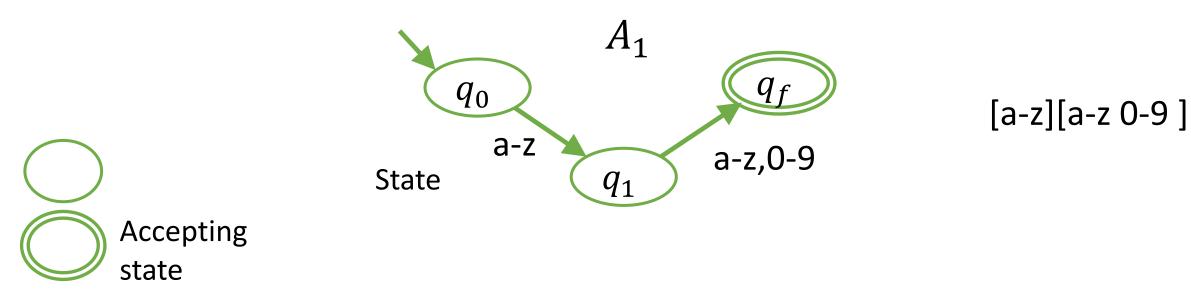
Detour to automata and formal languages

- Most programmers have used regular expressions
- Regular Expressions (RE) are sequences of characters that specify (acceptable) pattern of *finite* length
 - Example:
 - [a-z][a-z 0-9] : strings starting with a lowercase letter (a-z) followed by one lowercase letter or number
 - [a-z][0-9]*[a-z] : strings starting with a lowercase letter, followed by *finitely* many numbers followed by a lowercase letter

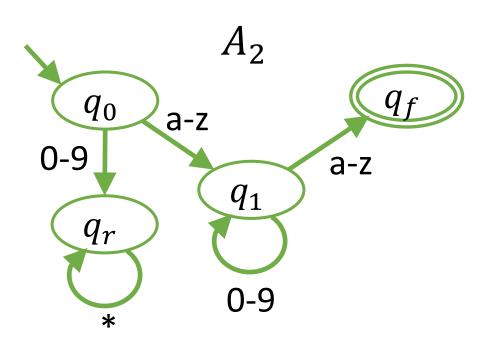
Finite State Automata (FSA)

Famous equivalence between FSA and regular expressions:

- For every regular expression R_i, there is a corresponding FSA A_i that accepts the set of strings generated by R_i.
- For every FSA A_i there is a corresponding regular expression that generates the set of strings accepted by A_i.

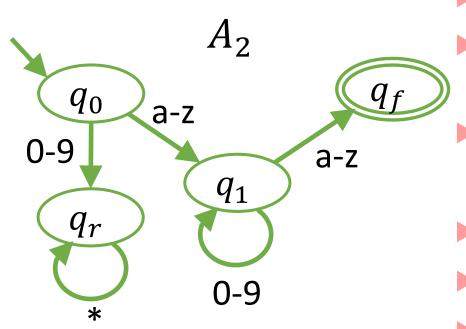


Language of a finite state automaton



- What strings are accepted by A₂?
 ab, zy, s2r, q123s, u3123123v, etc.
- What strings are not accepted by A₂?
 ▶ 2b, 334a, etc.

How does a Finite State Automaton work?



[a-z][0-9]*[a-z]

Starts at the initial state q_0

- In q_0 , if it receives a letter in a-z, goes to q_1 else, it goes to q_r
- In q_1 , if it receives a number in 0-9, it stays in q_1

else, it goes to q_f (as it received a-z)

- In q_r , no matter what it gets, it stays in q_r
- q_f is an accepting state where computation halts
- Any string that takes the automaton from q_0 to q_f is *accepted* by the automaton

Language of a finite state automaton

- > The set of all strings accepted by A_2 is called its *language*
- The language of a finite state automaton consists of strings, each of which can be arbitrarily long, but finite

LTL

Temporal Logic

- Temporal Logic (literally logic of time) allows us to specify infinite sequences of states using logical formulae
- Amir Pnueli in 1977 used a form of temporal logic called Linear Temporal Logic (LTL) for requirements of reactive systems: later selected for the 1996 Turing Award
- Clarke, Emerson, Sifakis in 2007 received the Turing Award for the model checking algorithm, originally designed for checking Computation Tree Logic (CTL) properties of distributed programs

What is a logic in context of today's lecture?

- Syntax: A set of operators that allow us to construct formulas from specific ground terms
- Semantics: A set of rules that assign meanings to well-formed formulas obtained by using above syntactic rules
- Simplest form is Propositional Logic

Propositional Logic

Simplest form of logic with a set of:

atomic propositions:

$$AP = \{p, q, r, \dots\}$$

- ▶ Boolean connectives: $\land,\lor, \neg, \Rightarrow, \equiv$
- Syntax recursively gives how new formulae are constructed from smaller formulae

Syntax of Propositional Logic						
φ	::=	true	the true formula			
		$p\mid$	p is a prop in AP			
		$\neg \varphi$	Negation			
		$\varphi \land \varphi \mid$	Conjunction			
		$\varphi \lor \varphi \mid$	Disjunction			
		$\varphi \Rightarrow \varphi \mid$	Implication			
		$\varphi \equiv \varphi \mid$	Equivalence			

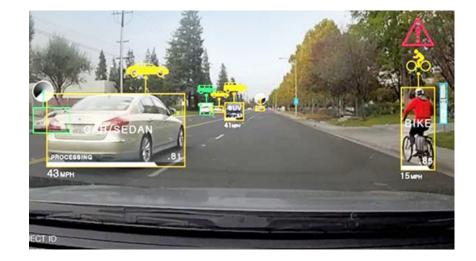
Semantics

- Semantics (i.e. meaning) of a formula can be defined recursively
- Semantics of an atomic proposition defined by a *valuation* function v
- Valuation function assigns each proposition a value 1 (true) or 0 (false), always assigns the *true* formula the value 1, and for other formulae is defined recursively

Semantics of Prop. Logic				
v(true)	1			
$\nu(p)$	$1 \text{ if } \nu(p) = 1$			
$\nu(\neg \varphi)$	1 if $\nu(\phi) = 0$ 0 if $\nu(\phi) = 1$			
$\nu(\varphi_1 \wedge \varphi_2)$	1 if $\nu(\varphi_1) = 1$ and $\nu(\varphi_2) = 1$, 0 otherwise			
$\varphi_1 \lor \varphi_2$	$\nu(\neg(\neg\varphi_1 \land \neg\varphi_2))$			
$\varphi_1 \Rightarrow \varphi_2$	$\nu(\neg \varphi_1 \lor \varphi_2)$			
$\varphi_1 \equiv \varphi_2$	$\nu \big((\varphi_1 \Rightarrow \varphi_2) \land (\varphi_2 \Rightarrow \varphi_1) \big)$			

Examples

- p : There is an upright bicycle in the middle of the road
- r: the bicycle has a rider
- p ⇒ r: If there is an upright bicycle in the middle of the road, the bicycle has a rider
- q : There is car in the field of vision
- o_i : Car *i* is in the intersection
- $\blacktriangleright (o_1 \land \neg o_2) \lor (\neg o_1 \land o_2)$



Interpreting a formula of prop. logic

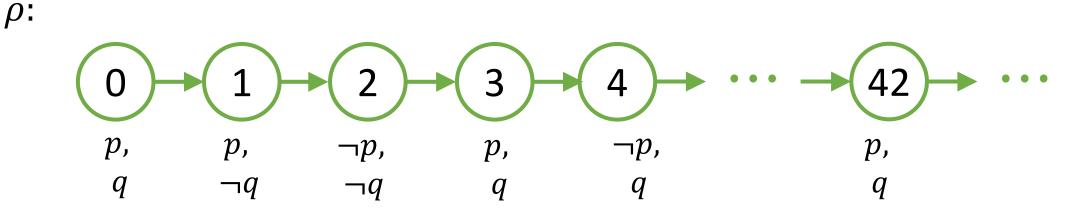
ν:
$$p_1 \mapsto 1, p_2 \mapsto 0, p_3 \mapsto 0$$
. What is $\nu((p_1 \land p_2) \Rightarrow p_3)$?
 $\nu((p_1 \land p_2) \Rightarrow p_3) = 1$

ν:
$$p_1 \mapsto 1, p_2 \mapsto 0, p_3 \mapsto 0$$
. What is $v((p_1 \Rightarrow p_3) \land (p_2 \Rightarrow p_3))$
 $v((p_1 \Rightarrow p_3) \land (p_2 \Rightarrow p_3)) = 0$

► Is this true?
$$\nu((p_1 \land p_2) \Rightarrow p_3 \equiv (p_1 \Rightarrow p_3) \land (p_2 \Rightarrow p_3)) = 1$$
?
(For all valuations)?

Temporal Logic = Prop. Logic + Temporal Operators

- Propositional Logic is interpreted over valuations to atoms
- Temporal Logic is interpreted over traces/sequences/strings
- Trace is an infinite sequence of valuations



Can also write as: (0,1,1), (1,1,0), (2,0,0), (3,1,1), (4,0,1),..., (42,1,1), ...

Linear Temporal Logic

- LTL is a logic interpreted over infinite traces
- Temporal logic with a view that time evolves in a linear fashion
 Other logics where time is branching!
- Assumes that a trace is a discrete-time trace, with equal time intervals
- Actual interval between time-points does not matter : similar to rounds in synchronous reactive components
- LTL can be used to express safety and liveness properties!

LTL Syntax

- LTL formulas are built from propositions and other smaller LTL formulas using:
 - Boolean connectives
 - Temporal Operators
- Only shown ∧ and ¬, but can define ∨, ⇒, ≡ for convenience

Syntax of LTL				
::=	p		p is a prop in AP	
	$\neg \varphi$		Negation	
	$\varphi \wedge \varphi$		Conjunction	
	$\mathbf{X} arphi$		Ne X t Step	
	$\mathbf{F}arphi$		Some F uture Step	
	$\mathbf{G}arphi$		G lobally in all steps	
	$\varphi \mathbf{U} \varphi$		In all steps U ntil in some step	

 φ

LTL Semantics

- Semantics of LTL is defined by a valuation function that assigns to each proposition at each time-point in the trace a truth value (0 or 1)
- We use the symbol ⊨ (read models) to show that a trace-point satisfies a formula
- ▶ ρ , $n \models \varphi$: Read as trace ρ at time n satisfies formula φ
- If we omit *n*, then the meaning is time 0. I.e. $\rho \models \varphi$ is the same as ρ , $0 \models \varphi$
- Semantics is defined recursively over the formula
- Base case: Propositional formulas, Recursion over structure of formula

Recursive semantics of LTL: I

- $\rho, n \vDash p$ if $\nu_n(p) = 1$,
 ▶ i.e. if p is true at time n
- $\blacktriangleright \rho, n \vDash \neg \varphi \text{ if } \rho, n \nvDash \varphi,$

 \blacktriangleright i.e. if φ is \pmb{not} true for the trace starting time n

•
$$\rho, n \vDash \varphi_1 \land \varphi_2$$
 if $\rho, n \vDash \varphi_1$ and $\rho, n \vDash \varphi_2$

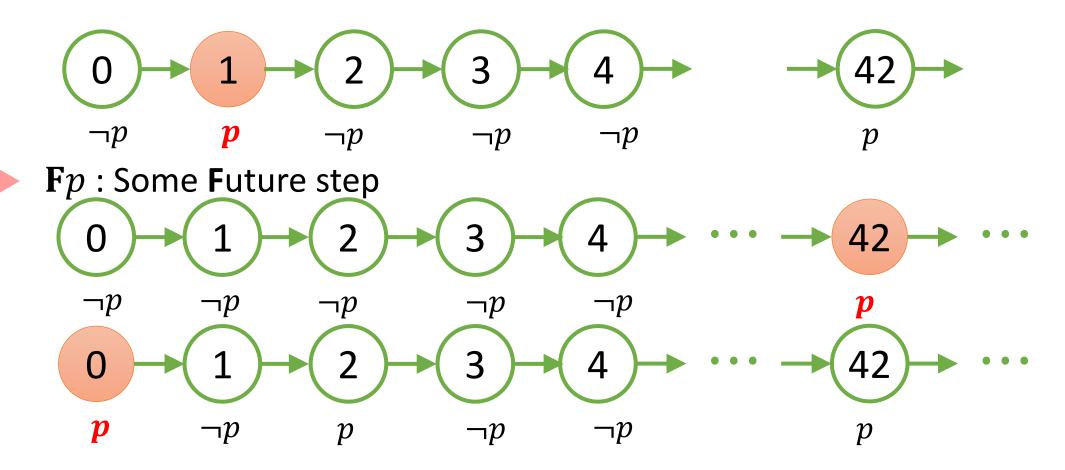
▶ i.e. if φ_1 and φ_2 **both hold** starting time n

Recursive semantics of LTL: II

- $\triangleright \rho, n \vDash \mathbf{X} \varphi \text{ if } \rho, n + 1 \vDash \varphi$
 - \blacktriangleright i.e. if φ holds starting at the next time point
- ▶ $\rho, n \vDash \mathbf{F} \varphi$ if $\exists m \ge n$ such that $\rho, m \vDash \varphi$
 - \blacktriangleright i.e. φ is true starting now, or there is some future time-point m from where φ is true
- ▶ ρ , $n \models \mathbf{G} \varphi$ if $\forall m \ge n : \rho$, $m \models \varphi$
 - \blacktriangleright i.e. φ is true starting now, and for all future time-points m, φ is true starting at m
- *ρ*, *n* ⊨ *φ*₁ **U***φ*₂ if ∃*m* ≥ *n* s.t. *ρ*, *m* ⊨ *φ*₂ and ∀*l* s.t. *m* ≤ *l* < *n*, *ρ*, *l* ⊨ *φ*₁
 i.e. *φ*₂ eventually holds, and for all positions till *φ*₂ holds, *φ*₁ holds

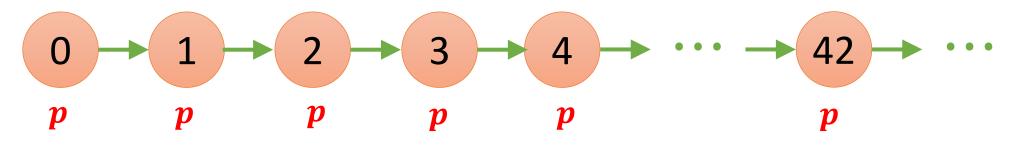
Visualizing the temporal operators

▶ Xp : NeXt Step

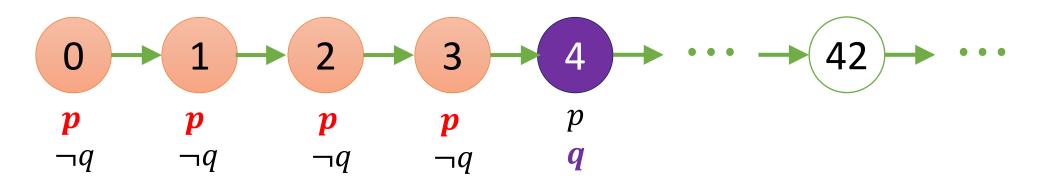


Visualizing the temporal operators

G*p*: **G**lobally *p* holds



 $\blacktriangleright p \mathbf{U} q: p$ holds Until q holds



You can nest operators!

- What does XF p mean?
 - Trace satisfies XFp (at time 0) if at time 1, Fp holds. I.e. p holds at some point strictly in the future

$$0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow \dots \rightarrow 42 \rightarrow \dots$$
$$\neg p \qquad \neg p \qquad \neg p \qquad \neg p \qquad p \qquad p$$

What does GF p mean?

 \blacktriangleright Trace satisfies **GF**p (at time 0) if at n, there is always a p in the future

More operator fun

What does **FG***p* mean?

More, more operator fun

What does the following formula mean: $p_1 \wedge \mathbf{X}(p_2 \wedge \mathbf{X}(p_3 \wedge \mathbf{X}(p_4 \wedge \mathbf{X}p_5)))$?

Linear Temporal Logic (LTL) specification

It is a logic interpreted over infinite discrete-time traces

E.g. It is always true that the highest temperature will be below 75 degree and the lowest temperature will be above 60 degree

G($p \land q$) p = T < 75, q = T > 60

Linear Temporal Logic (LTL) specification

It is a logic interpreted over infinite discrete-time traces

E.g. For the next 3 days the highest temperature will be below 75 degree and the lowest temperature will be above 60 degree

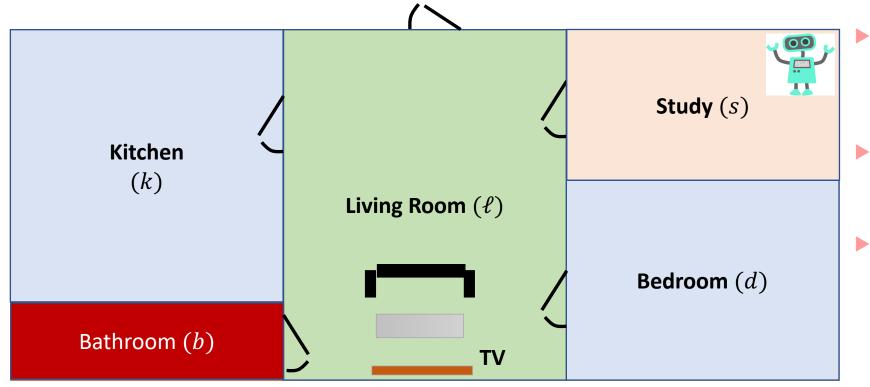
X $(p \land q) \land X X (p \land q) \land X X X (p \land q)$ with p = T < 75, q = T > 60

Operator duality and identities

- $\blacktriangleright \mathbf{F}\varphi \equiv \neg \mathbf{G}\neg \varphi$
- $\blacktriangleright \mathbf{GF}\varphi \equiv \neg \mathbf{FG}\neg \varphi$
- $\models \mathbf{F}(\varphi \lor \psi) \equiv \mathbf{F}\varphi \lor \mathbf{F}\psi$
- $\blacktriangleright \mathbf{G}(\varphi \land \psi) \equiv \mathbf{G}\varphi \land \mathbf{G}\psi$
- $\blacktriangleright \mathbf{F}\mathbf{F}\varphi \equiv \mathbf{F}\varphi$
- $\blacktriangleright \mathbf{G}\mathbf{G}\varphi \equiv \mathbf{G}\varphi$
- $\blacktriangleright \mathbf{F}\mathbf{G}\mathbf{F}\varphi \equiv \mathbf{G}\mathbf{F}\varphi$
- $\blacktriangleright \mathbf{GFG}\varphi \equiv \mathbf{FG}\varphi$

Example specifications in LTL

Suppose you are designing a robot that has to do a number of missions



Whenever the robot visits the kitchen, it should visit the bedroom after.

$$\mathbf{G}(k_r \Rightarrow \mathbf{F} \, d_r)$$

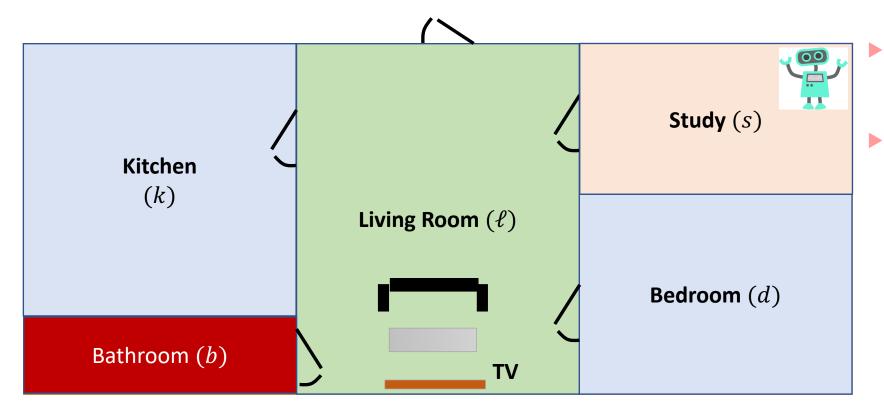
Robot should never go to the bathroom.

 $\mathbf{G} \neg b_r$

The robot should keep working until its battery becomes low *working* **U** *low_battery*

Example specifications in LTL

Suppose you are designing a robot that has to do a number of missions



The robot should repeatedly visit the living room GF ℓ

Whenever the TV is on and the living room has no person in it, then within three steps, the robot should turn off the TV

o(r): room occupied by a person

 $\mathbf{G}\left((\neg o(\ell) \land TV_{on}) \Rightarrow \mathbf{F}^{\leq 3}(TV_{off})\right)$

 $\mathbf{F}^{\leq 3}\varphi \equiv \varphi \lor \mathbf{X}\varphi \lor \mathbf{X}\mathbf{X}\varphi \lor \mathbf{X}\mathbf{X}\mathbf{X}\varphi$

Types of Specifications/Requirements

- Hard Requirements: Violation leads to endangering safety-criticality or mission-criticality
 - Safety Requirements: system never does something bad
 - Liveness Requirements: from any point of time, system eventually does something good
 - Soft Requirements: Violations lead to inefficiency, but are not critical
 - (Absolute) Performance Requirements: system performance is not worst than a certain level
 - (Average) Performance Requirements: average system performance is at a certain level

Other kind of requirements

- Security Requirements: system should protect against modifications in its behavior by an adversarial actor
 - Failure to satisfy security requirements may lead to a hard requirement violation
- Privacy Requirements: the data revealed by the system to the external world should not leak sensitive information
- These requirements will become increasingly important for autonomous CPS, especially as IoT technologies and smart transportation initiatives are deployed!

(Hard) Requirements

- High assurance/safety-critical, or mission-critical systems should use hard requirements.
- Verification check whether the implementation meets the requirements
- A system design meets its requirements if all system executions satisfy all the requirements.
- There should ideally be clear separation between requirements (what needs to be implemented) and the design (how should it be implemented).
- Unfortunately, this simple philosophy is often not followed by designers.

(Hard) Requirements

- Safety and liveness requirements require fundamentally different classes of model checking algorithms
- safety requirement: "system never does something bad"

"if something bad happens on an infinite run, then it happens already on some finite prefix"

Counterexamples no reachable ERROR state

liveness requirement: "system eventually does something good "

"no matter what happens along a finite run, something good could still happen later"

Infinite-length counterexamples, loo

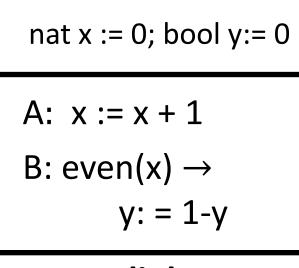
Requirements example

- It cannot happen that both processes are in their critical sections simultaneously
- Whenever process P1 wants to enter the critical section, then process P2 gets to enter at most once before process P1 gets to enter.
- Whenever process P1 wants to enter the critical section, provided process P2 never stays in the critical section forever, P1 gets to enter eventually.
- The elevator will arrive within 30 seconds of being called
- Patient's blood glucose never drops below 80 mg/dL

Requirements example (Safety vs Liveness)

- It cannot happen that both processes are in their critical sections simultaneously S
- Whenever process P1 wants to enter the critical section, then process P2 gets to enter at most once before process P1 gets to enter. S
- Whenever process P1 wants to enter the critical section, provided process P2 never stays in the critical section forever, P1 gets to enter eventually. L
- The elevator will arrive within 30 seconds of being called S (observe the finite prefix of all computation steps until 30 seconds have passed, and decide the property, therefore safety)
 - Patient's blood glucose never drops below 80 mg/dL. S

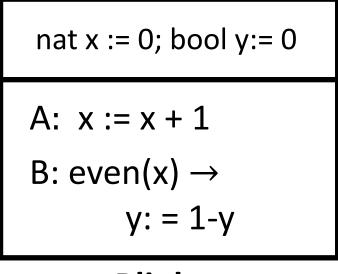
LTL is a language for expressing system requirements



Blinker

- So far we have seen how we can express behaviors of individual system traces using LTL
- A system M starting from some initial state q_0 satisfies a LTL requirement φ if **all system behaviors** starting in q_0 satisfy the requirement φ
- Denoted as $M, q_0 \vDash \varphi$
- E.g. a system is safe w.r.t. a safety requirement φ if all behaviors satisfy φ
- ► Does (**Blinker**, $(x \mapsto 0, y \mapsto 0)$) \models **G** $(x \ge 0)$?

Processes & Fairness



Blinker

- Liveness property: **F** (x \geq 10)
 - Is this property guaranteed to hold?
 - No, task A may be executed less than 10 times.
- Liveness Property: F y (eventually y is true)
 - Is this property guaranteed to hold?
 - No, task B may never be selected for execution!
- But, this seems like a very unrealistic or broken scheduler!
- For infinite executions involving multiple tasks, it is important for the execution to be *fair* to each task

Weak vs. Strong fairness

nat x := 0; bool y:= 0
A: $x := x + 1$ B: even(x) \rightarrow y: = 1-y

Blinker

- A *fairness assumption* is a property that encodes the meaning of what it means for an infinite execution to be fair with respect to a task.
- Weak fairness: If a task is persistently enabled, then it is repeatedly executed.
 - I.e. if after some point the task guard is always true, then the task is infinitely often executed.
- Strong fairness: If a task is repeatedly enabled, then it is repeatedly executed.
 - I.e. if the task guard is infinitely often true, then the task is infinitely often executed.

Expressing fairness assumptions in LTL: I

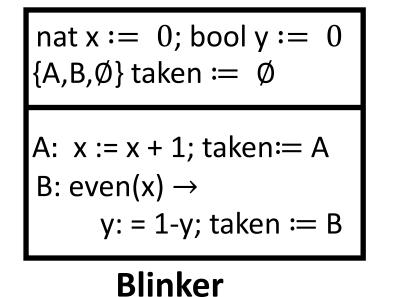
nat x := 0; bool y := 0 {A,B,Ø} taken := Ø

A: x := x + 1; taken≔ A B: even(x) → y: = 1-y; taken ≔ B

Blinker

- Fairness assumptions can be expressed in LTL!
 - Add a new variable *taken* that takes value 'A', 'B'
 - Weak fairness:wf(A) := (**FG** guard_i) \Rightarrow (**GF**(taken = T_i))
 - Task A: $guard_A$ is true, so this simplifies to: wf(A) := **GF**(taken=A)
 - Task B: wf(B) \coloneqq FG (even(x)) \Rightarrow GF (taken=B)
- Does (wf(A)∧ wf(B)) ⇒ F (x ≥ 10)?
 Yes!
- Does (wf(A)∧ wf(B)) ⇒ F y?
 No!

Expressing fairness assumptions in LTL: II



Strong fairness: (**GF** guard_i) \Rightarrow (**GF**(taken = T_i))

Task A: $guard_A$ is true, so this simplifies to: $sf(A) \coloneqq GF(taken=A)$

Task B: sf(B) ≔ GF (even(x)) ⇒ GF (taken=B)
 Does (sf(A)∧ sf(B)) ⇒ F (x ≥ 10)?

Yes!

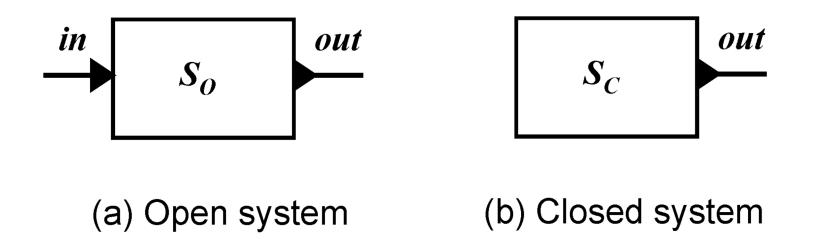
```
Does (sf(A) \land sf(B)) \Rightarrow \mathbf{F} y?
```

Yes!

If a process satisfies a liveness requirement under strong fairness, it satisfies it under weak fairness: strong fairness is a **stronger formula** than weak fairness

Open vs. Closed Systems

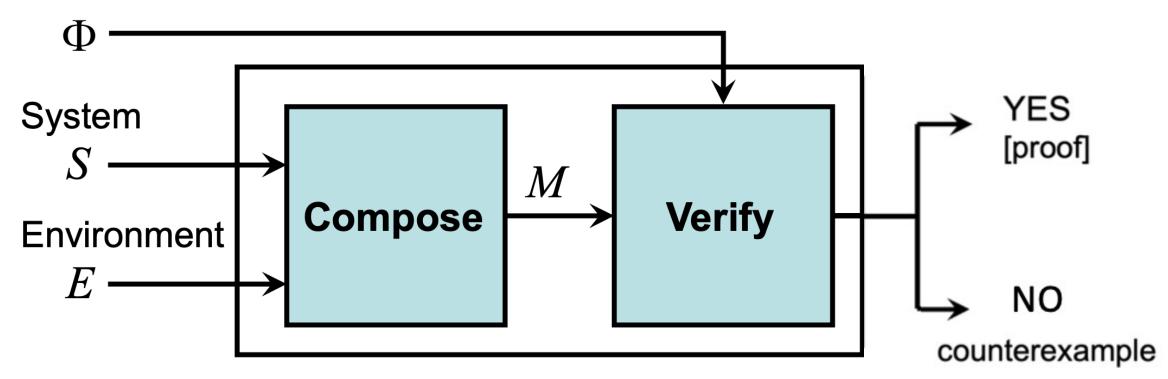
A closed system is one with no inputs



For verification, we obtain a closed system by composing the system and environment models

Formal Verification

Property



Monitors

- A safety monitor classifies system behaviors into good and bad
- Safety verification can be done using inductive invariants or analyzing reachable state space of the system
 - A bug is an execution that drives the monitor into an error state

- Can we use a monitor to classify infinite behaviors into good or bad?
- Yes, using theoretical model of Büchi automata proposed by J. Richard Büchi in 1960

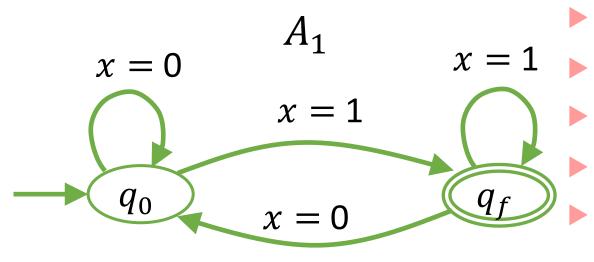
Büchi Automata

Monitors

- A safety monitor classifies system behaviors into good and bad
- Safety verification can be done using inductive invariants or analyzing reachable state space of the system
 - A bug is an execution that drives the monitor into an error state
- Can we use a monitor to classify infinite behaviors into good or bad?
- Yes, using theoretical model of Büchi automata proposed by J. Richard Büchi in 1960

Büchi automaton Example 1

Extension of finite state automata to accept infinite strings



States $Q: \{q_0, q_f\}$

Input variable x with domain Σ: {0,1}

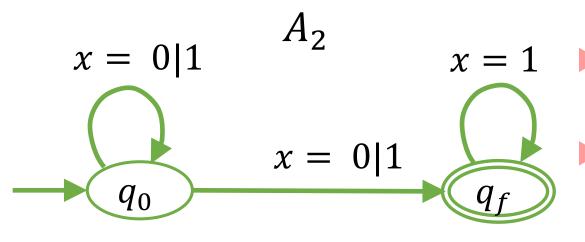
Final state: $\{q_f\}$

Transitions: (as shown)

Given trace ρ (infinite sequence of symbols from Σ), ρ is accepted by A_1 , if q_f appears inf. often

What is the language of A₁?
LTL formula **GF**(x = 1)

Büchi automaton Example 2



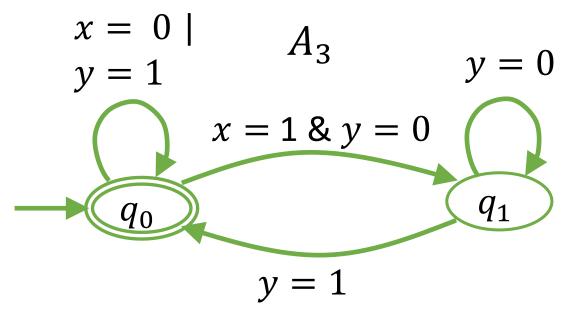
•
$$Q: \{q_0, q_f\}, \Sigma: \{0, 1\}, F: \{q_f\}$$

Transitions: (as shown)

Fun fact: there is no deterministic Büchi automaton that accepts this language

- Note that this is a nondeterministic
 Büchi automaton
 - A_2 accepts ρ if **there exists a path** along which a state in F appears infinitely often
- What is the language of A_2 ?
 - **LTL** formula $\mathbf{FG}(x = 1)$

Büchi automaton Example 3



- $\blacktriangleright Q: \{q_0, q_1\}, \Sigma: \{0, 1\}, F: \{q_f\}$
- Transitions: (as shown)

- What is the language of A_3 ?
 - ► LTL formula: $G((x = 1) \Rightarrow F(y = 1))$
 - I.e. always when (x = 1), in some future step, (y = 1)
 - In other words, (x = 1) must be followed by (y = 1)

Using Büchi monitors

- For the original result: Every LTL formula φ can be converted to a Büchi monitor/automaton A_{φ}
- Size of A_{φ} is generally exponential in the size of φ ; blow-up unavoidable in general
- Construct composition of the original process P and the Büchi monitor A_{φ}
- If there are cycles in the composite process that do not visit the states specified by the liveness property, then we have found a violation.
- Reachable cycles in process composition correspond to counterexamples to liveness properties
- Implemented in many verification tools (e.g. the SPIN model checker developed at NASA JPL)

Reachability, MC, Monitoring and SMC

- Reachability analysis is the process of computing the set of reachable states for a system
- Model checking (MC) is an algorithmic method for determining if a system satisfies a formal specification expressed in temporal logic

 $M \models \phi \Leftrightarrow \forall \mathbf{x} \in trace (M) \beta(\varphi, \mathbf{x}, 0) = 1$ Type equation here.

- Monitoring: computing β for a single trace $\mathbf{x} \in trace M$
- Statistical Model Checking (SMC): "doing statistics" on β (φ , x, 0) for a finite-subset of *trace* (M)