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Abstract

In many pattern matching applications the text has some properties attached to its various parts. Pattern Matching with Properties
(Property Matching, for short), involves a string matching between the pattern and the text, and the requirement that the text part
satisfies some property. Some immediate examples come from molecular biology where it has long been a practice to consider
special areas in the genome by their structures.

It is straightforward to do sequential matching in a text with properties. However, indexing in a text with properties
becomes difficult if we desire the time to be output dependent. We present an algorithm for indexing a text with properties in
O(n log |Σ | + n log log n) time for preprocessing and O(|P| log |Σ | + toccπ ) per query, where n is the length of the text, P is the
sought pattern, Σ is the alphabet, and toccπ is the number of occurrences of the pattern that satisfy some property π .

As a practical use of Property Matching we show how to solve Weighted Matching problems using techniques from Property
Matching. Weighted sequences have recently been introduced as a tool to handle a set of sequences that are not identical but have
many local similarities. The weighted sequence is a “statistical image” of this set, where we are given the probability of every
symbol’s occurrence at every text location. Weighted matching problems are pattern matching problems where the given text is
weighted.

We present a reduction from Weighted Matching to Property Matching that allows off-the-shelf solutions to numerous weighted
matching problems including indexing, swapped matching, parameterized matching, approximate matching, and many more.
Assuming that one seeks the occurrence of pattern P with probability ε in weighted text T of length n, we reduce the problem to a
property matching problem of pattern P in text T ′ of length O(n( 1

ε )2 log 1
ε ).
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1. Introduction

The classical string matching problem of seeking all occurrences of a length m pattern string P in a length n text
string T is one of the historically important problems in computer science. The last few decades, however, witnessed
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a tremendous development in the field of pattern matching due to the amazing proliferation of digital libraries and the
Internet. The new applications gave rise to a plethora of interesting generalizations, approximations, and new models
for pattern matching problems.

One of the technical problems that pattern matching has had to deal with is that of matching a pattern in a text with
properties. The idea is that the pattern matching itself is insufficient, but the particular text substring that is matched
also needs to satisfy a desired property. Some examples come from molecular biology, where it has long been a practice
to consider special genome areas by their structure. Examples are repetitive genomic structures [25] such as tandem
repeats, LINEs (Long Interspersed Nuclear Sequences) and SINEs (Short Interspersed Nuclear Sequences) [24]. Many
problems in biology can be expressed as property matching problems, e.g., finding occurrences of a given pattern in a
genome, provided it appears in a SINE, or LINE.

It is straightforward (as we show later) to solve sequential pattern matching with properties since the intersection
of the properties and matching can be done in linear time. However, the problem becomes more complex when
it is required to index a text with properties. The classical pattern matching problem [13,27] is that of finding all
occurrences of pattern P = p1 p2 · · · pm in text T = t1t2 · · · tn , where T and P are strings over alphabet Σ . In the
indexing problem we are given a large text that we want to preprocess in a manner that allows fast solution of the
following queries: “Given a (relatively short) pattern P find all occurrences of P in T in time proportional to |P| and
the number of occurrences”.

The indexing problem and its many variants have been central in pattern matching [37,21,19,32,15]. It is also
central to information retrieval [31]. However, when it comes to indexing a text with properties, we are now presented
with a dilemma. If we use the conventional indexing techniques and then do the intersection with the properties, our
worst case time may be very large in case where the pattern appears many times, and there may not be any final
matches in case all the indexed matches do not satisfy the property.

In this paper we give a precise definition of pattern matching with properties and provide a data-structure that
preprocesses the text in O(n log |Σ |+n log log n) time and supports queries in O(|P| log |Σ |+ toccπ ) time per query,
where n is the text length, P is the sought pattern, |Σ | is the alphabet, and toccπ is the number of occurrences of P
that satisfy some property π . These are almost the same bounds that exist in the literature for ordinary indexing [37,
29,34,26].

We now turn to an apparently unrelated problem. Among the challenges that the pattern matching field is currently
grappling with are those of motif discovery, and local alignment. Recently, the concept of weighted sequences was
introduced as a suggested method of satisfying the above needs. A weighted sequence is essentially what is also called
in the biology literature Position Weight Matrix (PWM for short) [33]. The weighted sequence of length m is a |Σ |×m
matrix that reports the frequency of each symbol in finite alphabet Σ (nucleotide, in the genomic setting) for every
possible location.

Originally, PWM sequences were used for relatively short sequences, e.g. binding sites, sequences resulting
from multiple alignments, etc. Iliopoulos et al. [22] considered building very large Position Weight Matrices that
correspond, for example, to complete chromosome sequences that have been obtained using a whole-genome shotgun
strategy [35]. By keeping all the information the whole-genome shotgun produces, it should be possible to identify
information that was previously undetected after being faded during the consensus step. This concept is true for other
applications where local similarities are thus encoded. It is therefore necessary to develop adequate algorithms on
weighted sequences, that can be an aid to the application researchers for solving various problems they are liable to
encounter.

It turns out that handling weighted sequences is algorithmically challenging [23,14,22] even for simple tasks such
as exact matching. It is certainly challenging to be able to answer more ambitious questions, such as scaled weighted
matching, swapped weighted matching, parameterized weighted matching [28,36,30,10,16,2,12,7,8] as well as to
index a weighted sequence.

Scaled Matching refers to the problem of finding all locations in the text where the pattern, proportionally enlarged
according to an arbitrary scale, appears. Scaled matching is an important problem that was originally inspired by
problems in Vision, yet has significance in motif extraction as well. For non-weighted matching, much work was done
both in one-dimensional scaling [3,5] and two-dimensional scaling [11,6,4]. The general framework presented in this
paper provides the first known algorithm for scaled matching in weighted sequences. Moreover, the algorithm’s time
is equivalent to the time of the scaled algorithm for non-weighted sequences.
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Swapped Matching was motivated by a common error in typing. A more complex version of the swapped matching
problem occurs in nature. The phenomenon of swaps occurs in gene mutations and duplications. The problem is
defined as follows. Let a text string T of n symbols and a pattern string P of m symbols from alphabet Σ be given. A
swapped version T ′ of T is a length n string derived from T by a series of local swaps, (i.e. t ′`← t`+1 and t ′`+1 ← t`)
where each element can participate in no more than one swap.

The Pattern Matching with Swaps problem is that of finding all locations i for which there exists a swapped version
T ′ of T where there is an exact matching of P in location i of T ′. Extensive work has been done on efficient algorithms
for swapped matching [28,36,30,10,16,2,12,7,8]. It is of interest to develop efficient algorithm for swapped matching
in weighted sequences, especially in light of its importance in biology. Our general framework enables using the
swapped algorithms for non-weighted sequences without a degradation in time.

Parameterized Matching was primarily motivated by software maintenance, where programs are to be considered
“identical” even if variable names are different. Strings in this model are comprised of symbols from two disjoint
sets Σ and Π containing fixed symbols and variable/parameter symbols respectively. In this paradigm, we seek
parameterized occurrences i.e., occurrences up to renaming of the variable symbols, of a string in another. It turns out
that the parameterized matching problem arises in other applications such as in image processing and computational
biology, see [1].

Formally, parameterized pattern matching is defined as follows. A p-string is a string over Σ ∪Π . Two p-strings s1
and s2 of same length are said to p-match if there exists a bijection f : Π1 ↔ Π2, where Π1 and Π2 are the symbols
from Π in s1 and s2 respectively, such that the following holds: s1 (s2, respectively) equals s2 (s1, respectively) when
any occurrence x ∈ Π1 (Π2, respectively) is replaced by f (x) ( f −1(x), respectively).

Finally, our framework enables indexing weighted sequences. The classical pattern matching problem is that of
finding all occurrences of pattern P = p1 p2 · · · pm in text T = t1t2 · · · tn , where T and P are strings over alphabet
Σ . Many optimal O(n) time algorithms exit for that problem (e.g. [13,27]).

Two interesting variants were considered. The dictionary matching problem and the indexing problem. In the
dictionary matching problem, a large set of patterns D, called the dictionary is given. The algorithm preprocesses
D in a manner that allows fast answers to queries of the form:

Given input text T , find all locations of T where an occurrence of some pattern of D starts.

The indexing problem is, in some sense, the converse of the dictionary matching problem. Here we are given a
large text that we want to preprocess in a manner that allows fast solution of the following queries:

Given a (relatively short) pattern P find all occurrences of P in T in time proportional to |P| and the number of
occurrences.

The indexing problem and its many variants has been central in pattern matching (e.g. [37,21,19,32,15]) since
most current methods for handling weighted matching use techniques that are not conducive to indexing (such as
convolutions), it is surprising that our framework enables indexing weighted sequences with the same time bounds as
in the non-weighted case.

We develop a general framework that allows solving all the problems mentioned above. In particular this presents
the first known algorithms for problems such as scaled matching, swapped matching and parameterized matching
in weighted sequences. Since most current methods for handling weighted matching use techniques that are not
conductive to indexing (e.g., convolutions), it is surprising that our framework also enables indexing weighted
sequences with the same query time as in the non-weighted case.

These results are all enabled by a reduction of weighted matching to property matching. This reduction creates an
ordinary text of length O(n( 1

ε
)2 log 1

ε
) for the weighted matching problem of length n text and desired probability ε.

Since the outcome of the reduction is an ordinary text with a property, then all pattern matching problems that can be
solved in ordinary text and pattern can have their weighted versions solved with the time degradation of the reduction.

The indexing problem for weighted text becomes a problem of indexing an ordinary (longer) text with properties.
We can now use the indexing text with properties result to solve weighted indexing as well.

The contributions of this paper are twofold. We first present the first solution for the property indexing problem
and then we provide a reduction of the weighted matching problem to property matching problem allowing efficient
solutions to many hitherto unsolved problems in weighted matching.
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2. Property matching — definitions

For a string T = t1 · · · tn , we denote by Ti ··· j the substring ti · · · t j . The suffix Ti ···n is denoted by T i , and the suffix
tree of T is denoted by ST (T ). The leaf corresponding to T i in ST (T ) is denoted by leaf (T i ). The label of an edge
e in ST (T ) is denoted by label(e).

For a node u in the suffix tree of a string T , we denote by STu the subtree of the suffix tree rooted by u. The label
of u is the concatenation of the labels of the edges on the path from the root of the suffix tree to u, in the order they
are encountered, and is denoted by label(u).

We are now ready to define a property for a string.

Definition 1. A property π of a string T = t1 · · · tn is a set of intervals π = {(s1, f1), . . . , (st , ft )} where for each
1 ≤ i ≤ t it holds that: (1) si , fi ∈ {1, . . . , n}, and (2) si ≤ fi . The size of property π , denoted by |π |, is the number
of intervals in the property (or in other words — t).

It is essential to realize how a property is given to us as input. A property is given in explicit form if we are given
all of the pairs in the property. Due to lack of space, we omit the discussion about the input form of the properties
from here, and simply assume that the properties are all in standard form as defined below.

Definition 2. A property π for a string of length n is said to be in standard form if: (1) it is in explicit form, (2) for
any 1 ≤ i ≤ n, there is at most one (sk, fk) ∈ π such that sk = i , and (3) s1 < s2 < · · · < s|π |.

3. General pattern matching with properties

In this section we will define and formulate the notion of general pattern matching with properties. This is mainly
engulfed by the following definition.

Definition 3. Given a text T = t1 · · · tn with property π , a pattern P = p1 · · · pm , and a definition of a matching α,
called α-matching, we say that P α-matches Ti ··· j under property π if P α-matches Ti ··· j , and there exists (sk, fk) ∈ π

such that sk ≤ i and j ≤ fk .

This definition explains why we previously required that in a standard form only one interval in a property begins
at specific location, as we will only be interested in the longest interval at a given location.

The following definition will assist us in solving property matching problems.

Definition 4. For a property π of a string T = t1 · · · tn , the end location of 1 ≤ i ≤ n, denoted by end(i), is defined
to be the maximal fk such that (sk, fk) ∈ π and sk ≤ i ≤ fk . If no such fk exists, we say that end(i) = NIL.

Note that end(i) can easily be calculated for all locations i in T in time O(n) (recall that π is given in standard
form). Now, given a text T = t1 · · · tn and a pattern P = p1 · · · pm , if there exists an algorithm for an α-matching
problem that runs in time O(gα(n, m)), then given a text T with property π , and pattern P , we can find all Ti ··· j that
α-match P under π in time O(gα(n, m)+ n) = O(gα(n, m)) (we assume the entire text was at least scanned in order
to solve the matching problem). This is done as follows. First, we find end(i) for each location i in the text. Then, we
find all the Ti ··· j that α-match P , and for each such Ti ··· j we check whether end(i) ≥ j . If so, clearly Ti ··· j α-matches
P under π , and if not, clearly Ti ··· j does not α-match P under π .

However, the above reduction does not suffice for the property indexing problem (defined below). Before explaining
why, we first provide a formal definition of the property indexing problem.

Definition 5 (Property Indexing Problem (PIP)). Given a text string T = t1 · · · tn with property π , preprocess T such
that on-line queries of the form “find all locations where a pattern string P occurs in T under π” can be answered in
time proportional to the size of the pattern (rather than the text) and the output.

The problem with the PIP is that known indexing data-structures do not suffice. For example, given a suffix tree
for T , we can find all of the occurrences of P in T in time O(|P| log |Σ | + tocc) where tocc is the number of the
occurrences. However, tocc is not the number of occurrences of P in T under π ; it includes also the occurrences of P
in T that are not occurrences under π . We could solve this problem by also preprocessing end(i) for all locations i in
T as we did before. However, this would require scanning all of the occurrences of P in T (taking O(tocc) time), and
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we would like to answer indexing queries in time dependent on toccπ , where toccπ is the number of occurrences of P
in T under π , which might be much smaller than tocc. Also, keep in mind that we want a solution that takes minimal
preprocessing time, and requires only linear space. This is the problem addressed by our new data-structure.

In the next sections we will define our data-structure, show how it is constructed in time O(n log |Σ |+n log log n),
and finally, show how an indexing query can be answered in time O(m log |Σ | + toccπ ).

4. The property suffix tree

We now define the data-structure used for solving the PIP. The data-structure we present is based on the suffix
tree — thus, we name it the Property Suffix Tree, or PST for short. The construction is for a text T = t1 · · · tn with
property π . The idea is based on a lemma that we provide following the next definition.

Definition 6. For a string T with property π and a node u in the suffix tree of T , we denote by Sπ
u the maximal set

of locations {i1, . . . , i`} ⊆ {1, . . . , n} such that for every i j ∈ Sπ
u we have that: (1) leaf (T i j ) is in STu , and (2) if

end(i j ) 6= NIL then end(i j )− i j > |label(u)|.

Lemma 1. Let T be a string with property π , and let u and v be two nodes in the suffix tree of T such that v is u’s
parent, then Sπ

u ⊆ Sπ
v .

Proof. The proof follows from Definition 6. For any location i j ∈ Sπ
u we know leaf (T i j ) is in STu , thus it

is also in STv . We also know that end(i j ) − i j > |label(u)|. Being that |label(u)| > |label(v)|, we have that
end(i j )− i j > |label(u)| > |label(v)|. Due to the maximality of Sπ

v , it must be that i j ∈ Sπ
v . �

Corollary 1. For a string T with property π , the path from the root of ST (T ) to leaf (T i ) can be split into the
following two paths: (1) the path consisting of all nodes u such that i ∈ Sπ

u , and (2) the path consisting of all nodes u
such that i /∈ Sπ

u .

Definition 7. Consider the i th suffix of T and the two paths from Corollary 1. Let v be the deepest node on the first
path. The location of i in the PST of T is defined as follows. If end(i) − i = |label(v)| − 1 or end(i) is NIL then
loc(i) = v. Otherwise, loc(i) is the edge connecting the two paths.

The idea behind the PST is to move each suffix T i in ST (T ) up to loc(i). We will later show why this solves the
PIP. We now define the PST using an overview construction. First, we construct ST (T ) using, for example, [37]. Then,
for every suffix T i find loc(i), and maintain a list of locations for each edge e consisting of all i such that e = loc(i)
and for each node u consisting of all i such that u = loc(i). We denote these lists by suf (e) and suf (u) respectively.
Next, we mark each node u in ST (T ) such that either suf (u) is not an empty list, or u is connected to some edge e
where suf (e) is not an empty list, or u is an ancestor of a marked node. Now, we delete all of the nodes that are not
marked, and compress non-branching paths in the remaining tree to one edge (like we do in suffix trees). Of course,
during the compression of a path into an edge, we must concatenate all of the suf (u) and suf (e) for all nodes u and
edges e on the path, except for the last node. The concatenation of all of those lists forms the list of locations loc(e′)
for the new edge e′ that will replace the non-branching path. Finally, we will be interested in ordering suf (e) for the
remaining edges in order to allow efficient querying. This will be explained later.

Note that except for the stage in which we construct suf (e) and suf (u) for the edges e and nodes u in ST (T ) and the
ordering of the lists of locations, the rest of the algorithm can be easily implemented to take O(n log |Σ |) by building
a suffix tree and using a constant number of depth-first searches (DFS). Also note that the size of the data-structure is
clearly linear in the size of T . Thus, it remains to show how to construct suf (e) and suf (u) for the edges e and nodes
u in ST (T ), and how to order them while allowing us to answer queries efficiently. This is explained in the next two
subsections.

4.1. Constructing lists of locations

We now show how to construct suf (e) and suf (u) for every edge e and every node u in ST (T ). In the following
subsection we show how to order suf (e) in a way that will allow efficient querying.

In order to find loc(i) for every suffix T i , we use the weighted ancestor queries that were presented in [18], and
improved upon in [9]. The weighted ancestor problem is defined as follows:
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Definition 8. Let T be a rooted tree where each node u has an associated value value(u) from an ordered universe U
such that if v is the parent of u then value(v) < value(u). The weighted ancestor problem is given a query of the form
W A(u, i) where u is a node in T and i ∈ U , return the node v that is the lowest ancestor of u such that value(v) < i .

Clearly, if we set the value of a node u to be |label(u)|, then given a leaf leaf (T i ), the answer to the query
W A(lea f (T i ), end(i) − i) will either give us a node that is loc(i), or a node that is connected to the edge that is
loc(i). In the later case, we can easily find loc(i) in O(log |Σ |) time. In [9] the weighted ancestor problem was solved
for suffix trees taking O(n) preprocessing time, and O(log log n) query time. Thus, we can find loc(i) for all T i ’s
in O(n(log log n + log |Σ |)) time. However, the suffixes on the edges are not ordered in a way that would allow
efficient indexing queries. We cannot simply order the suffixes by descending loc(i) − i because this would require
sorting, and would take too much time (we would need to sort the locations on every edge in the tree according to the
appropriate values). To solve this problem, we show in Section 4.2 how to preprocess a set of n′ elements in O(n′)
time such that given a value whose rank1 in the set is k, we can find all of the elements less than or equal to that value
in O(k) time. In Section 4.3 we will show how this helps us answer indexing queries efficiently. Thus, we will run
this algorithm on every edge in the tree, taking a total of linear time. Finally, the time required for constructing the
PST is O(n log |Σ | + n log log n). Note that for constant size alphabets we are dominated by the n log log n factor.

4.2. Ordering the suffixes on an edge

As we previously mentioned, we require a scheme such that given a set of n′ elements we can preprocess those
elements in O(n′) time such that given a value whose rank in the set is k, we can find all of the elements less than or
equal to that value in O(k) time. To solve this algorithm we use the fact that finding the median of a set of numbers can
be done in linear time (e.g., by [17]). The preprocessing is as follows. First find the median of the set, and separate the
set to the set of values smaller than the median, and the set of the values that greater than the median (for simplicity,
we assume all values are distinct). For the set of items with value greater than the median, we put them in an array of
size n′, in the second part of the array. We recursively do the same for the elements less than the median, each time
putting the items greater than the median in the rightmost part of the unfilled array, until we reach a set of size one, and

we put the remaining element in the first location in the array. Note that the time required is O(
∑log n′

i=0
n′

2i ) = O(n′).
Now, given a query value t with rank k, we proceed as follows. We begin by comparing t with the first location. If t

is smaller, than we output an empty set. If t is larger, we output the first element as part of the output and continue on
to scan the next two elements in the array. If they are both less than or equal to t , we output them both, and continue
on to the next four elements. We continue on such that at the i th iteration, if all of the 2i−1 elements are less than or
equal to t , we output them all, and continue to the next 2i items. This continues until we reach some item whose value
is greater than t . Say this happens at iteration number i ′. In such a case, we continue to scan all of the 2i ′−1 items of
the iteration, outputting only those items with value less than or equal to t , and then we are done.

Clearly, we output all elements that are less than or equal to t , as once we find an element that is greater than
t in the i ′ iteration, we know that all the rest of the elements in the array (located after the 2i ′−1 elements of the
current iteration) have value greater than t (this follows directly from the way we arranged the array, dividing it
around the median). Moreover, the running time is O(k) as if we stop at iteration i ′, this means we output at least∑i ′−1

i=1 2i−1
= Ω(2i ′), and the running time is at most

∑i ′
i=1 2i−1

= O(2i ′). Finally, note that the same type of
technique can be used if we are interested in finding all the elements that have value larger or equal to t . We will
actually be interested in this version of the problem for ordering the suffixes on the edges.

4.3. Answering indexing queries

In this section we describe how to answer indexing queries in O(m log |Σ | + toccπ ). But first, for a node u in the
PST we denote by PSTu the subtree of the PST rooted by u. The indexing query is answered as follows. We first
begin by searching the PST like we search a suffix tree, until we reach a node or an edge. If we reach a node u, we
run a DFS on PSTu , outputting suf (w) and suf (e′) for every node w and every edge e′ in PSTu . If when searching
we reach an edge e = (u, v) where we match the first ` characters of label(e), then we first output suf (w) and suf (e′)

1 The rank of a value in a set is the number of elements in the set less than or equal to the value.
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for every node w and every edge e′ in PSTv using a DFS, and we also output every location i in suf (e) such that
end(i)− i > |label(u)| + `. In order to accomplish the second part, we use the scheme from Section 4.2. it remains to
show that the additional amount of time spent (i.e. except for the search part that takes O(m log |Σ |)) is linear in the
size of the output. This follows from the following lemma.

Lemma 2. Let PST(T ) be the PST of a string T under property π . Then in the subtree of any node in PST(T ), the
size of the subtree is linear in the number of locations in the union of suf (w) and suf (e′) for every node w and every
edge e′ in the subtree.

Proof. Let u be a node in PST(T ). For any leaf ` in the subtree rooted at u there is either a location in suf (`) or
a location in suf (e) where e is the only edge touching `. This is because otherwise ` would not be in the PST (by
definition). Thus, the number of locations in question is at least the number of leaves in the subtree. Now, being that
all of the internal nodes in PST(T ) are branching nodes (they have at least two children), then the size of the subtree
rooted by u is at most twice the number of leaves in the subtree. Therefore, the number of nodes is at most twice a
lower bound on the number of locations — as needed. �

Theorem 1. The PIP can be solved in O(n log |Σ | + nlog log n) preprocessing time, using linear space, where the
query time is O(m log |Σ | + toccπ ).

In the following sections we consider weighted matching problems and show a general framework for solving
weighted matching problems using property matching.

5. Weighted matching — definitions

Definition 9. A weighted sequence T = t1 · · · tn over alphabet Σ is a sequence of sets ti , i = 1, . . . , n. Every ti is a
set of pairs (s j , πi (s j )), where s j ∈ Σ and πi (s j ) is the probability of having symbol s j at location i. Formally,

ti =

{
(s j , πi (s j )) | s j 6= sl for j 6= l, and

∑
j

πi (s j ) = 1

}
.

Definition 10. Given a pattern P = p1 · · · pm over alphabet Σ , we say that the solid pattern P (or simply pattern P)
occurs at location i of a weighted text T with probability of at least ε if

∏m
j=1 πi+ j−1(p j ) ≥ ε, where ε is a given

parameter which we call the threshold probability.

Notice that all characters having probability of appearance less than ε are not of interest to us, since any pattern
using such a character will also have probability of appearance less than ε, which is below the threshold probability.
Therefore, we are only interested in characters having probability of appearance of at least ε. We call such characters
heavy characters.

Recently, there has been a philosophical debate about the weighted matching model. Clearly, there is an underlying
assumption of independence of events, and the model is the Bernoulli Model, which fits some applications better than
others. It is thought by some (e.g., [20]) that DNA is not modelled well by the Bernoulli model. Nevertheless, our
concern in this paper is with the algorithmic and combinatorial issues, rather than the application. We do think it is
of interest to extend our results to k-order Markov models, and we are working on such extensions, but this is not the
aim of the current paper.

Definition 11. Given 0 < ε ≤ 1, we classify each location i , 1 ≤ i ≤ n, in the text into the following three categories:
(1) Solid positions where there is one (and only one) character at location i with probability of appearance exactly 1,
(2) Leading positions where there is at least one character at location i with probability of appearance greater than
1− ε (and less than 1), and (3) Branching positions where all characters at location i have probability of appearance
at most 1− ε.

Notice that if ε ≤ 1
2 , then at every solid and leading position there is only one heavy character since only one

character can have probability of appearance greater than 1 − ε ≥ 1
2 , whereas in a branching position there maybe

several heavy characters. However, if ε > 1
2 there are no heavy characters in a branching position since all characters

have probability of appearance of at most 1− ε < ε.
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In the following section we define the notions of Maximal Factors and Extended Maximal Factors and show how
they are used in the reduction from weighted matching to property matching.

6. Maximal factors and extended maximal factors

A weighted pattern matching problem is a pattern matching problem where the text is weighted. The idea behind
our framework is to create a regular text from the weighted text in a way that we can run regular pattern matching
algorithms on the regular text while ensuring that the occurrences appear with probability of at least ε. In order to do
so, we first define the notion of maximal factor.

Definition 12. Let T = t1 · · · tn be a weighted text and let X = x1 · · · xl be a string. We denote πi (X) =

πi (x1) × · · · × πi+l−1(xl). Given 0 < ε ≤ 1, we say that a string, X , is a maximal factor of T starting at location i
if the following conditions hold: (1) πi (X) ≥ ε, (2) if i > 1, then πi−1(s j ) × πi (X) < ε for all s j ∈ Σ , and (3) if
i + l ≤ n, then πi (X)× πi+l(s j ) < ε for all s j ∈ Σ .

In other words, a maximal factor starting at location i is a string that when aligned to location i has probability of
appearance at least ε. However, if we extend the string by even one character to the right and align it to location i or
if we extend the string by even one character to the left and align it to location i − 1, then the probability appearance
of the string drops below ε.

A straightforward approach for transforming the weighted text T to a regular text would be to simply find all the
maximal factors of the text and concatenate them to a new regular text T ′ (of course we will need some kind of a
delimiter character to separate between the factors). The advantage of this approach is that every pattern that appears
in T ′ appears also in T with probability of at least ε, since a maximal factor has probability of appearance at least ε

and so have all of its substrings. Unfortunately, this approach does not suffice. It can be shown (due to lack of space
details are omitted) that the total length of all maximal factors of a weighted text T = t1 · · · tn could be Ω(n2), which
is rather large. Therefore, we define the notion of extended maximal factor, and show a better upper bound on the total
length of all extended maximal factors. In order to define the extended maximal factor we use the Leading to Solid
Transformation.

Definition 13. The Leading to Solid Transformation of a weighted sequence T = t1 · · · tn denoted LST(T), is a
weighted sequence T ′ = t ′1 · · · t

′
n such that:

t ′i =

ti if i is a solid or a branching position
{(σ, 1)} if i is a leading position and σ is a heavy character
φ if i is a leading position and there are no heavy characters

In essence, LST(T ) is the same as T , where all leading positions become solid. The only exception is when all
characters in a leading position are not heavy, thus, we ignore that location (set to by φ) and treat each part of LST(T )

divided by φ separately. For the rest of this paper, we assume LST(T ) has no φ’s.
Notice that this transformation is uniquely defined, since either ε ≤ 1

2 in which case there is one (and only one)
character with probability > 1− ε, thus, it is also the only heavy character at that location or ε > 1

2 in which case at
every location there is at most one heavy character.

Another important observation is that the size of LST(T ) is linear in the size of T and can easily be built in linear
time. The LST transformation leads us to the following definition.

Definition 14. Given 0 < ε ≤ 1 and a weighted text T , we say that a string X is an extended maximal factor of T
starting at location i if X is a maximal factor of LST(T ) starting at location i .

We now prove a few properties on maximal factors and extended maximal factors, that will help us in bounding
the total length of all extended maximal factors of a weighted text.

Lemma 3. Given 0 < ε ≤ 1 and a weighted text T , there are at most b 1
ε
c heavy characters at a branching position.

Proof. A heavy character has probability of appearance of at least ε. Therefore, at each location, at most b 1
ε
c

characters have probability of appearance of at least ε, otherwise the sum of all probabilities would be >1. �
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Definition 15. Given 0 < ε ≤ 1 and a weighted text T , we say that a maximal factor X = x1 · · · xl passes by location
i of T , if X starts at location i ′ such that i ′ ∈ [i − l + 1, i].

Lemma 4. Given 0 < ε ≤ 1 and a weighted text T , a maximal factor of T passes by at most O( 1
ε

log 1
ε
) branching

positions.

Proof. Denote by lb the maximal number of branching positions passed by a maximal factor. By definition,
(1− ε)lb ≥ ε, since the maximal probability of a character in a branching position is 1− ε.
Therefore, lb ≤ b

log ε
log(1−ε)

c. Using the fact that log( 1
1−ε

) = Θ(ε) (see Lemma 5), we get that lb ≤ b
log ε

log(1−ε)
c ≤

log ε
log(1−ε)

=
− log ε
− log(1−ε)

=
log 1

ε

log( 1
1−ε

)
=

log 1
ε

Θ(ε)
= O( 1

ε
log 1

ε
). �

Lemma 5. log( 1
1−ε

) = Θ(ε).

Proof. We first denote 1
ε

by k. Now, we can formulate the claim in the following manner: log( 1
1− 1

k
) = log( 1

k−1
k

) =

log(k)− log(k − 1) = Θ( 1
k ).

It is a well known fact that limk→∞
∑k

i=1
1
i = ln(k)+γ , where γ is Euler’s constant. In other words, for every ε0 > 0

there exists some k0 such that for every k ≥ k0, | ln(k)+ γ −
∑k

i=1
1
i | <

1
2ε0.

⇒ | ln(k)− ln(k − 1)− 1
k | = |(ln(k)+ γ )− (ln(k − 1)+ γ )− 1

k |

= |(ln(k)+ γ )− (ln(k − 1)+ γ )− (
∑k

i=1
1
i −

∑k−1
i=1

1
i )|

= |(ln(k)+ γ −
∑k

i=1
1
i )− (ln(k − 1)+ γ −

∑k−1
i=1

1
i )|

≤ |(ln(k)+ γ −
∑k

i=1
1
i )| + |(ln(k − 1)+ γ −

∑k−1
i=1

1
i )| <

1
2ε0 +

1
2ε0 = ε0

⇒ limk→∞(ln(k)− ln(k − 1)) = 1
k

⇒ ln(k)− ln(k − 1) = Θ( 1
k ).

Therefore, log(k)− log(k − 1) = log2(e) · (ln(k)− ln(k − 1)) = Θ( 1
k ). �

Definition 16. Given 0 < ε ≤ 1 and a weighted text T , we say that location i is a starting location of T , if i contains
at least one heavy character and either i = 1 or i > 1 and i − 1 is not a solid position.

Observe that a maximal factor of T always starts at a starting location, otherwise it could be extended to the left
with solid positions without decreasing the probability of appearance, which contradicts the maximality of the factor.

The following lemma bounds the number of maximal factors starting from a starting location in a weighted text T ,
such that T has no leading positions. The fact that T has no leading positions implies that this is true for LST(T ) of
any weighted text T , and thus actually bounds the number of extended maximal factors starting from any location in
T .

Lemma 6. Given 0 < ε ≤ 1 and a weighted text T such that T has no leading positions, there are at most b 1
ε
c

maximal factors starting at a starting location.

Proof. The number of maximal factors starting at location i does not depend on solid positions since they do not split
a maximal factor. Therefore, we discard solid positions and assume all locations are branching.
Denote by P = {ε1, ε2, . . . , εt } the set of probabilities of all the strings that appear in T with positive probabilities,
such that ε1 > ε2 > · · · > εt . We will first prove the lemma for every threshold probability ε ∈ P , then we will prove
it for every threshold probability ε /∈ P .

Let i be some location in T, we will prove that for every threshold probability ε j ∈ P the number of maximal
factors starting at location i is at most b 1

ε j
c, by induction on j .

For j = 1: Since ε1 is the largest probability of any string, it is clear that it is the probability of a string of length
exactly one. Therefore, by Lemma 3, there are at most b 1

ε1
c heavy characters at location i , which in our case are also

the maximal factors starting at location i with probability of appearance at lest ε1 (and since ε1 is maximal — the
probability is exactly ε1).

For j > 1: Assuming the claim is true for all threshold probabilities ε1, . . . , ε j−1, we will prove it for ε j . Denote
by s1, . . . , sr the heavy characters at location i and let α1, · · · , αr be matching probabilities of appearance of each
character.
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Fig. 1. Locations i0, . . . , ilb are all branching positions. Since a maximal factor can pass by at most lb positions, only the starting locations
i0 + 1, i1 + 1, . . . , ilb + 1 are relevant.

Notice that
∑r

v=1 αv ≤ 1 and since s1, . . . , sr are heavy characters, αv ≥ ε j for v = 1, . . . , r . Denote by M Fε j (i)
the number of maximal factors starting at location i with probability of appearance at least ε j , and denote M Fε j (i, sv)

to be the number of maximal factors starting at location i with probability of appearance at least ε j after choosing
character sv at location i . Clearly

∑r
v=1 M Fε j (i, sv) = M Fε j (i).

Notice that M Fε j (i, sv) = M Fε j /αv (i + 1) since after we choose character sv we can extend the maximal factor
up to probability of appearance at most ε j

αv
(otherwise we will get total probability of appearance at location i greater

than αv ·
ε j
αv
= ε j ).

Let εv
j be the smallest probability in P such that εv

j ≥
ε j
αv

, then by the induction hypothesis, since εv
j > ε j and since

εv
j ∈ P , we get that M Fε j (i) =

∑r
v=1 M Fε j (i, sv) =

∑r
v=1 M Fε j /αv (i + 1) =

∑r
v=1 M Fεv

j
(i + 1) ≤

∑r
v=1b

1
εv

j
c ≤∑r

v=1b
αv

ε j
c ≤

∑r
v=1b

1
ε j
c · αv = b

1
ε j
c ·

∑r
v=1 αv ≤ b

1
ε j
c.

This concludes the proof for every ε ∈ P . For a threshold probability ε′ /∈ P , there are 3 possible cases:
Case 1. ε′ < εt : In this case, any factor has probability of appearance greater than ε′. Therefore, there are at most
b

1
εt
c ≤ b

1
ε′
c maximal factors starting at each location.

Case 2. ε′ > ε1: In this case, no factor has probability of appearance greater than or equal to ε′. Therefore, the number
of maximal factors starting at each location is exactly 0 ≤ b 1

ε′
c.

Case 3. ε j > ε′ > ε j+1 for some 1 ≤ j < t: In this case, since no factor has probability of appearance at least ε′ and
less than ε j , the number of maximal factors starting at location i with probability of appearance at least ε′ is exactly
the number of maximal factors starting at location i with probability of appearance at least ε j which in turn is at most
b

1
ε j
c ≤ b

1
ε′
c. �

Lemma 7. Given 0 < ε ≤ 1 and a weighted text T such that T has no leading positions, the number of maximal
factors passing by each location i in the text is at most O(( 1

ε
)2 log 1

ε
).

Proof. Let us look at some location i in the text. Notice that since T has no leading positions, a starting location can
only be at the beginning of a sequence of solid positions, and not in the middle of such a sequence (by definition of a
starting location).
By Lemma 4 there are at most lb branching positions passed by each maximal factor, where lb = O( 1

ε
log 1

ε
). In other

words between location i and every starting location that contains a maximal factor passing by location i there are
at most lb branching positions. Therefore, there are at most lb + 1 starting locations that can have a maximal factor
containing location i (see Fig. 1).

By Lemma 6, at most b 1
ε
c maximal factors start at a starting location. Therefore, the total number of maximal

factors passing by location i is at most (lb + 1) · b 1
ε
c = O( 1

ε
log 1

ε
) · b 1

ε
c = O(( 1

ε
)2 log 1

ε
). �

The following theorem bounds the total length of all extended maximal factors.

Theorem 2. Given 0 < ε ≤ 1 and a weighted text T , the total length of all extended maximal factors of T is at most
O(n( 1

ε
)2 log 1

ε
).

Proof. This follows immediately from Lemma 7. �

We now show that this analysis is tight up to a logarithmic factor.

Lemma 8. Given 0 < ε ≤ 1 and a weighted text T , the total length of all extended maximal factors of T is Ω(n( 1
ε
)2).

Proof. Consider the following example of a weighted text, where ε is the threshold probability:
Let T = α11 , α12 , . . . , α1g , β11 , β12 , . . . , β1h , α21 , α22 , . . . , α2g , β21 , β22 , . . . , β2h , . . . be the weighted text of length
n, such that: αi j = [(sa, 1/2), (sb, 1/2)] where sa, sb ∈ Σ , βi j = [(sc, 1 − ε), (sd , ε)] where sc, sd ∈ Σ ,
g = blog 1

ε
− 1c, and h = b 1

log(1/(1−ε))
c.
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Notice that all locations are branching positions. Therefore: (a) all extended maximal factors are also maximal
factors, (b) all locations are starting locations, (c) from each starting location there is at least one extended maximal
factor that passes by at least g locations of the type αi j and h locations of the type βi j since (1/2)g

× (1− ε)h

≥ (1/2)log 1
ε
−1
× (1− ε)

1
log(1/(1−ε)) = 2ε × (1− ε)

−1
log(1−ε) = 2ε × 2−1

= ε, and (d) there are Ω( 1
ε
) maximal

factors starting at a starting location having length of Ω( 1
ε
) since by claim (c) each maximal factor passes by at

least g = blog 1
ε
− 1c locations of the type αi j giving us 2g

= Ω( 1
ε
) maximal factors and since we pass by at least

h = b 1
log(1/(1−ε))

c = b
1

Θ(ε)
c = Θ( 1

ε
) (by Lemma 5) locations of the type βi j , each factor is of length Ω( 1

ε
).

Now, since there are Ω( 1
ε
) maximal factors of length Ω( 1

ε
) starting at each location (claim (d)) and since each

location is a starting location (claim (b)) we get that the total length of all (extended) maximal factors of T is
Ω(n( 1

ε
)2). �

In the next section we show how to efficiently find all extended maximal factors of a weighted sequence.

7. Finding all extended maximal factors in a weighted sequence

Let T = t1 · · · tn be a weighted sequence such that {s1
i , s2

i , . . . , ski
i } is the set of characters appearing at location i

with positive probability, and {α1
i , α2

i , . . . , α
ki
i } is the matching set of probabilities of the s j

i ’s.
We present a simple brute-force algorithm that given a weighted text T and a threshold probability ε, outputs all

extended maximal factors in T . The algorithm first calculates T ′ ← LST(T ) in linear time (as mentioned above).
Then, starting from each starting location i in T ′, we begin by extending all possible substrings from location i that
appear with probability of at least ε. Each time we check if some string that we have extended so far can be extended
even more to the right. Once we cannot extend a string, it is outputted (of course, using delimiters between consecutive
outputs of substrings).

Noting that finding LST(T ) from T can be done in linear time, it is easy to see that the running time of this algorithm
is linear in the size of the output, i.e. linear in the total length of all extended maximal factors. By combining this result
with Theorem 1, the corollary follows.

Corollary 2. Given a constant threshold 0 < ε ≤ 1 and a weighted text T , the total length of all extended maximal
factors of T is linear in the length of T , and can be found in linear time.

In the following section we show how to solve weighted matching problems by reducing weighted matching
problems to property matching problems.

8. Solving weighted matching problems

Weighted matching problems are regular pattern matching problems where the text is weighted, and we say that a
pattern appears in the text if the probability of appearance of the pattern is above some threshold probability ε. We
now show how to reduce this problem to the Property Matching Problem.

Given a weighted string T , we find the string of the extended maximal factors of T as was described in Section 7.
Denote this string by T̂ . T̂ is a regular string, but each location has an associated probability that comes from the
original location of that letter in T (the delimiters are said to have probability 0). Thus, we can define a property as
the set of all intervals (sk, fk) where the product of the probabilities from location sk to location fk is at least ε, and
the product of the probabilities from location sk − 1 to location fk and from location sk to location fk + 1 is less than
ε. Clearly, if a pattern matches T̂ at some location under the defined property, then the pattern weight matches T at
some location. Note that this location can be found simply by saving for each location in T̂ the original location in T
that it came from (that will be the match location).

This reduction immediately gives us the following.

Corollary 3. Weighted matching problems can be solved in the same running times as property matching except for
an O(( 1

ε
)2 log 1

ε
) degradation, where ε is the threshold probability.

Finally, we can also solve the indexing problem for weighted strings using the reduction above in
O(n( 1

ε
)2 log 1

ε
log |Σ | + n( 1

ε
)2 log 1

ε
(log log 1

ε
+ log log n)) preprocessing time, and O(|P| log |Σ | + toccπ ) query

time, where toccπ is the number of occurrences of P in T with probability at least ε.
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9. Concluding remarks

We remark that our framework for solving weighted matching problems yields solutions to hitherto unsolved
problems in weighted matching, such as scaled matching, swapped matching, parameterized matching and indexing,
as well as efficient solutions to others such as exact matching and approximate matching.

Furthermore, we note that in practice, when dealing with weighted matching problems, ε is usually considered
as a constant. Thus, solving problems such as exact matching, scaled matching, swapped matching, parameterized
matching, approximate matching and many more on weighted sequences can be done, using our framework, in the
same running times as those of the best known algorithms for the non-weighted versions, while weighted indexing can
be done in O(n(log |Σ | + log log n)) preprocessing time and O(|P| log |Σ | + toccπ ) query time for a text of length
n, where toccπ is the number of occurrences of pattern P in T with probability of at least ε.
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