
Project 2: Logic and Classical Planning
Introduction to AI

May 11, 2023

1 Introduction
In this project, you will use/write simple Python functions that generate logi-
cal sentences describing Pacman physics, aka pacphysics. Then you will use a
SAT solver, pycosat, to solve the logical inference tasks associated with planning
(generating action sequences to reach goal locations and eat all the dots), local-
ization (finding oneself in a map, given a local sensor model), mapping (building
the map from scratch), and SLAM (simultaneous localization and mapping).

2 Project Description
The code for this project contains the following files, available as a zip archive.

Files you’ll edit:
logicPlan.py Where you will put your code for the various logical

agents.
Files you might want to look at:

logic.py There are several useful utility functions for working
with propositional logic in here.

logicAgents.py The file that defines in logical planning form the two
specific problems that Pacman will encounter in this
project.

pycosat_test.py Quick test main function that checks that the py-
cosat module is installed correctly.

game.py The internal simulator code for the Pacman world.
The only thing you might want to look at in here is
the Grid class.

test_cases/ Directory containing the test cases for each question.
Supporting files you can ignore:

pacman.py The main file that runs Pacman games.
logic_util.py Utility functions for logic.py.

1



util.py Utility functions primarily for other projects.
logic_planTestClasses.py Project specific autograding test classes.
graphicsDisplay.py Graphics for Pacman.
graphicsUtils.py Support for Pacman graphics.
textDisplay.py ASCII graphics for Pacman.
ghostAgents.py Agents to control ghosts.
keyboardAgents.py Keyboard interfaces to control Pacman.
layout.py Code for reading layout files and storing their con-

tents.
autograder.py Project autograder.
testParser.py Parses autograder test and solution files.
testClasses.py General autograding test classes.

3 Deadlines and evalutation details
• Files to Edit and Submit: You will fill in portions of logicPlan.py during

the assignment. Once you have completed the assignment, you will upload
all .py files in a folder, zip it and upload the zip file to the appropriate
assignment section in the class teams. Please do not change/upload the
other (non .py) files in this distribution.

• Evaluation: Your code will be autograded for technical correctness. Please
do not change the names of any provided functions or classes within the
code, or you will wreak havoc on the autograder. However, the correctness
of your implementation – not the autograder’s judgements – will be the fi-
nal judge of your score. If necessary, we will review and grade assignments
individually to ensure that you receive due credit for your work.

• Academic Dishonesty: We will be checking your code against other sub-
missions in the class for logical redundancy. If you copy someone else’s
code and submit it with minor changes, we will know. These cheat detec-
tors are quite hard to fool, so please don’t try. We trust you all to submit
your own work only; please don’t let us down. If you do, we will pursue
the strongest consequences available to us.

• Getting Help: You are not alone! If you find yourself stuck on something,
contact the course staff for help. We want these projects to be rewarding
and instructional, not frustrating and demoralizing. But, we don’t know
when or how to help unless you ask.

4 Project components and tasks
The Expr Class

2



In the first part of this project, you will be working with the Expr class
defined in logic.py to build propositional logic sentences. An Expr object is
implemented as a tree with logical operators (∧,∨,¬,→,↔) at each node and
with literals (A,B,C) at the leaves. Here is an example sentence and its repre-
sentation:

(A ∧B) ↔ (¬C ∨D)

↔

∧

A B

∨

¬

C

D

To instantiate a symbol named ’A’, call the constructor like this:
A = Expr('A')

The ’Expr’ class allows you to use Python operators to build up these ex-
pressions. The following are the available Python operators and their meanings:

• ∼ A : ̸ A

• A&B : A ∧B

• A|B : A ∨B

• A >> B : A → B

• A%B : A ↔ B

So to build the expression A ∧B, you would type this:
A = Expr('A')
B = Expr('B')
a_and_b = A & B

Note that A to the left of the assignment operator in that example is just
a Python variable name, i.e. symbol1 = Expr('A') would have worked just as
well.

One last important thing to note is that you must use conjoin and disjoin
operators wherever possible. conjoin creates a chained ∧ (logical AND) expres-
sion, and disjoin creates a chained ∨ (logical OR) expression. Let’s say you
wanted to check whether conditions A, B, C, D, and E are all true. The naive
way to achieve this is writing condition = A & B & C & D & E, but this actually
translates to ((((A & B) & C) & D) & E), which creates a very nested logic tree
and becomes a nightmare to debug. Instead, conjoin makes a flat tree.

For the rest of the project, please use the following variable naming conven-
tions in the propositions:

3



Rules
• When we introduce variables, they must start with an upper-case character

(including Expr).

• Only these characters should appear in variable names: A-Z, a-z, 0-9, _,
̂, [, ].

• Logical connective characters (&, |) must not appear in variable names.
So, Expr('A & B') is illegal because it attempts to create a single constant
symbol named 'A & B'. We would use Expr('A') & Expr('B') to make
a logical expression.

Pacphysics symbols
• PropSymbolExpr(pacman_str, x, y, time=t): whether or not Pacman

is at (x, y) at time t, writes P[x,y]_t.

• PropSymbolExpr(wall_str, x, y): whether or not a wall is at (x, y),
writes WALL[x,y].

• PropSymbolExpr(action, time=t): whether or not pacman takes action
action at time t, where action is an element of DIRECTIONS, writes i.e.
North_t.

• In general, PropSymbolExpr(str, a1, a2, a3, a4, time=a5) creates
the expression str[a1,a2,a3,a4]_a5 where str is just a string.

There is additional, more detailed documentation for the Expr class in
logic.py.

A SAT (satisfiability) solver takes a logic expression which encodes the rules
of the world and returns a model (true and false assignments to logic symbols)
that satisfies that expression if such a model exists. To efficiently find a possible
model from an expression, we take advantage of the pycosat module, which is
a Python wrapper around the picoSAT library.

Unfortunately, this requires installing this module/library on each machine.
In the command line, run ”pip install pycosat”, or ”pip3 install pycosat” on
some setups, or ”conda install pycosat” for ”conda”.

On Windows, if you are getting an error message saying ”error: Microsoft
Visual C++ 14.0 or greater is required. Get it with ”Microsoft Build Tools”:
...”, you will have to install a C/C++ compiler following that link; or, use ”conda
install pycosat”, for which you will need to have Anaconda installed (recommend
uninstalling current Python before installing a new one) and run this from the
Anaconda prompt.

Testing ”pycosat” installation: After unzipping the project code and chang-
ing to the project code directory, run:

python pycosat_test.py

4



This should output:

[1, -2, -3, -4, 5]

Please let us know if you have issues with this setup. This is critical to
completing the project, and we don’t want you to spend your time fighting with
this installation process.

5 Questions

5.1 Logic Warm-up
This question will give you practice working with the Expr data type used in
the project to represent propositional logic sentences. You will implement the
following functions in logicPlan.py:

• sentence1(): Create one Expr instance that represents the proposition
that the following three sentences are true. Do not do any logical simplifi-
cation, just put them in a list in this order, and return the list conjoined.
Each element of your list should correspond to each of the three sentences.

A ∨B

¬A ↔ (¬B ∨ C)

¬A ∨ ¬B ∨ C

• sentence2(): Create one Expr instance that represents the proposition
that the following four sentences are true. Again, do not do any logical
simplification, just put them in a list in this order, and return the list
conjoined.

C ↔ (B ∨D)

A → (¬B ∧ ¬D)

¬(B ∧ ¬C) → A

¬D → C

5



• sentence3(): Using the PropSymbolExpr constructor, create the symbols
'PacmanAlive_0', 'PacmanAlive_1', 'PacmanBorn_0', and 'PacmanKilled_0'
(hint: recall that PropSymbolExpr(str, a1, a2, a3, a4, time=a5) cre-
ates the expression str[a1,a2,a3,a4]_a5 where str is a string; you
should make some strings for this problem to match these exactly). Then,
create one Expr instance which encodes the following three English sen-
tences as propositional logic in this order without any simplification:

1. Pacman is alive at time 1 if and only if he was alive at time 0 and
he was not killed at time 0 or he was not alive at time 0 and he was
born at time 0.

2. At time 0, Pacman cannot both be alive and be born.
3. Pacman is born at time 0.

• findModelUnderstandingCheck():

1. Look at how the findModel(sentence) method works: it uses to_cnf
to convert the input sentence into Conjunctive Normal Form (the
form required by the SAT solver), and passes it to the SAT solver to
find a satisfying assignment to the symbols in sentence, i.e., a model.
A model is a dictionary of the symbols in your expression and a cor-
responding assignment of True or False. Test your sentence1(),
sentence2(), and sentence3() with findModel by opening an in-
teractive session in Python and running from logicPlan import *
and findModel(sentence1()) and similar queries for the other two.
Do they match what you were expecting?

2. Based on the above, fill in findModelUnderstandingCheck so that it
returns what findModel(Expr('a')) would return if lower case vari-
ables were allowed. You should not use findModel or Expr beyond
what’s already given; simply directly recreate the output.

• entails(premise, conclusion): Return True if and only if the premise
entails the conclusion. Hint: findModel is helpful here; think about
what must be unsatisfiable in order for the entails to be True, and what
it means for something to be unsatisfiable.

• plTrueInverse(assignments, inverse_statement): Returns True if
and only if the (not inverse_statement) is True given assignments.

Before you continue, try instantiating a small sentence, e.g. A∧B → C, and
call to_cnf on it. Inspect the output and make sure you understand it. If you
encounter any problems, don’t hesitate to engage with your tutor/professor to
get more info.

To test and debug your code, run:

python autograder.py -q q1

6



5.2 Logic-workout
Implement the following three functions in logicPlan.py (remembering to use
conjoin and disjoin whenever possible):

• atLeastOne(literals): Return a single expression (Expr) in CNF that
is true only if at least one expression in the input list is true. Each input
expression will be a literal.

• atMostOne(literals): Return a single expression (Expr) in CNF that is
true only if at most one expression in the input list is true. Each input
expression will be a literal. Hint: Use itertools.combinations. If you
have n literals, and at most one is true, your resulting CNF expression
should be a conjunction of

(
n
2

)
clauses.

• exactlyOne(literals): Use atLeastOne and atMostOne to return a sin-
gle expression (Expr) in CNF that is true only if exactly one expression
in the input list is true. Each input expression will be a literal.

Each of these methods takes a list of Expr literals and returns a single
Expr expression that represents the appropriate logical relationship between
the expressions in the input list. An additional requirement is that the returned
Expr must be in CNF (conjunctive normal form). You may NOT use the
to_cnf function in your method implementations (or any of the helper functions
logic.eliminate_implications, logic.move_not_inwards, and
logic.distribute_and_over_or).

Don’t run to_cnf on your knowledge base when implementing your planning
agents in later questions. This is because to_cnf makes your logical expression
much longer sometimes, so you want to minimize this effect; findModel does this
as needed. In later questions, reuse your implementations for atLeastOne(.),
atMostOne(.), and exactlyOne(.) instead of re-engineering these functions
from scratch. This avoids accidentally making unreasonably slow non-CNF-
based implementations.

You may utilize the logic.pl_true function to test the output of your
expressions. pl_true takes an expression and a model and returns True if and
only if the expression is true given the model.

To test and debug your code run:

python autograder.py -q q2

5.3 Pacphysics-and-satisfiability
In this question, you will implement the basic pacphysics logical expressions, as
well as learn how to prove where pacman is and isn’t by building an appropriate
knowledge base (KB) of logical expressions.

Implement the following functions in logicPlan.py:

7



• pacmanSuccessorAxiomSingle – this generates an expression defining the
sufficient and necessary conditions for Pacman to be at (x, y) at t.
Read the construction of possible_causes provided. You need to fill out
the return statement, which will be an Expr. Make sure to use disjoin
and conjoin where appropriate. Looking at SLAMSuccessorAxiomSingle
may be helpful, although note that the rules there are more complicated
than in this function. The simpler side of the biconditional should be on
the left for autograder purposes.

• pacphysicsAxioms – here, you will generate a bunch of physics axioms.
For timestep t:

– Arguments:
∗ Required: t is time, all_coords and non_outer_wall_coords

are lists of (x, y) tuples.
∗ Possibly-None: You will be using these to call functions, not

much logic is required.
· walls_grid is only passed through to successorAxioms and

describes (known) walls.
· sensorModel(t: int, non_outer_wall_coords) -> Expr

returns a single Expr describing observation rules; you can
take a look at sensorAxioms and SLAMSensorAxioms to see
examples of this.

· successorAxioms(t: int, walls_grid, non_outer_wall_coords)
-> Expr describes transition rules, e.g. how previous loca-
tions and actions of Pacman affect the current location; we
have seen this in the functions in pacmanSuccessorAxiomSingle.

– Algorithm:
∗ For all (x, y) in all_coords, append the following implication

(if-then form): if a wall is at (x, y), then Pacman is not at (x, y)
at t.

∗ Pacman is at exactly one of the non_outer_wall_coords at
timestep t.

∗ Pacman takes exactly one of the four actions in DIRECTIONS at
timestep t.

∗ Sensors: append the result of sensorAxioms. All callers except
for checkLocationSatisfiability make use of this; how to
handle the case where we don’t want any sensor axioms added is
up to you.

∗ Transitions: append the result of successorAxioms. All callers
will use this.

∗ Add each of the sentences above to pacphysics_sentences. As
you can see in the return statement, these will be conjoined and
returned.

8



– Function passing syntax:
∗ Let def myFunction(x, y, t): return PropSymbolExpr('hello',
x, y, time=t) be a function we want to use.

∗ Let def myCaller(func: Callable): ... be the caller that
wants to use a function.

∗ We can pass the function in: myCaller(myFunction). Note that
myFunction is not called with () after it.

∗ We can use myFunction by having inside myCaller this: useful_return
= func(0, 1, q).

• checkLocationSatisfiability – given a transition (x0_y0, action0,
x1_y1), action1, and a problem, you will write a function that will return
a tuple of two models (model1, model2):

– In model1, Pacman is at (x1, y1) at time t = 1 given x0_y0, action0,
action1. This model proves that it’s possible that Pacman is there.
Notably, if model1 is False, we know Pacman is guaranteed to NOT
be there.

– In model2, Pacman is NOT at (x1, y1) at time t = 1 given x0_y0,
action0, action1. This model proves that it’s possible that Pac-
man is not there. Notably, if model2 is False, we know Pacman is
guaranteed to be there.

– action1 has no effect on determining whether Pacman is at the loca-
tion; it’s there just to match your solution to the autograder solution.

– To implement this problem, you will need to add the following ex-
pressions to your KB:

∗ Add to KB: pacphysics_axioms(...) with the appropriate
timesteps. There is no sensorModel because we know everything
about the world. Where needed, use allLegalSuccessorAxioms
for transitions since this is for regular Pacman transition rules.

∗ Add to KB: Pacman’s current location (x0, y0)

∗ Add to KB: Pacman takes action0
∗ Add to KB: Pacman takes action1

– Query the SAT solver with findModel for two models described ear-
lier. The queries should be different; for a reminder on how to make
queries, see entails.

Reminder: the variable for whether Pacman is at (x, y) at time t is PropSymbolExpr(pacman_str,
x, y, time=t), wall exists at (x, y) is PropSymbolExpr(wall_str, x, y), and
action is taken at t is PropSymbolExpr(action, time=t).

To test and debug your code, run:

python autograder.py -q q3

9



5.4 Path Planning with Logic
Pacman is trying to find the end of the maze (the goal position). Implement the
following method using propositional logic to plan Pacman’s sequence of actions
leading him to the goal:

Disclaimer: the methods from now on will be decently slow. This is because
a SAT solver is very general and simply crunches logic, unlike our previous
algorithms that employ a specific human-created algorithm to specific type of
problem. Of note, pycosat’s actual algorithms are in C, which is generally a
much much faster language to execute than Python, and it’s still this slow.

• positionLogicPlan(problem) – given an instance of logicPlan.PlanningProblem,
returns a sequence of action strings for the Pacman agent to execute.
You will not be implementing a search algorithm, but creating expressions
that represent pacphysics for all possible positions at each time step. This
means that at each time step, you should be adding general rules for all
possible locations on the grid, where the rules do not assume anything
about Pacman’s current position.
You will need to code up the following sentences for your knowledge base,
in the following pseudocode form:

• Add to KB: Initial knowledge: Pacman’s initial location at timestep 0

• for t in range(50) (because Autograder will not test on layouts requiring
≥ 50 timesteps)

1. Print time step; this is to see that the code is running and how far
it is.

2. Add to KB: Initial knowledge: Pacman can only be at exactlyOne
of the locations in non_wall_coords at timestep t. This is similar
to pacphysicsAxioms, but don’t use that method since we are using
non_wall_coors when generating the list of possible locations in the
first place (and walls_grid later).

3. Is there a satisfying assignment for the variables given the knowledge
base so far? Use findModel and pass in the Goal Assertion and KB.

– If there is, return a sequence of actions from start to goal using
extractActionSequence.

– Here, Goal Assertion is the expression asserting that Pacman is
at the goal at timestep t.

4. Add to KB: Pacman takes exactly one action per timestep.
5. Add to KB: Transition Model sentences: call pacmanSuccessorAxiomSingle(...)

for all possible pacman positions in non_wall_coords.

Test your code on smaller mazes using:

10



python pacman.py -l maze2x2 -p LogicAgent -a fn=plp
python pacman.py -l tinyMaze -p LogicAgent -a fn=plp

To test and debug your code run:

python autograder.py -q q4

Note that with the way we have Pacman’s grid laid out, the left-most bottom-
most space occupiable by Pacman (assuming there isn’t a wall there) is (1, 1)
and not (0, 0).

5.5 Eating All the Food
Pacman is trying to eat all of the food on the board. Implement the following
method using propositional logic to plan Pacman’s sequence of actions leading
him to the goal.

• foodLogicPlan(problem): Given an instance of logicPlan.PlanningProblem,
returns a sequence of action strings for the Pacman agent to execute.
This question has the same general format as question 4; you may copy
your code from there as a starting point. The notes and hints from ques-
tion 4 apply to this question as well. You are responsible for implementing
whichever successor state axioms are necessary that were not implemented
in previous questions.
What you will change from the previous question:

• Initialize Food[x, y]_t variables based on what we initially know using the
code PropSymbolExpr(food_str, x, y, time=t), where each variable is
true if and only if there is a food at (x, y) at time t.

• Change the goal assertion: your goal assertion sentence must be true if and
only if all of the food have been eaten. This happens when all Food[x, y]_t
are false.

• Add a food successor axiom: what is the relation between Food[x, y]_t+1
and Food[x, y]_t and Pacman[x, y]_t? The food successor axiom should
only involve these three variables, for any given (x, y) and t. Think about
what the transition model for the food variables looks like, and add these
sentences to your knowledge base at each timestep.

Test your code using the following (one line) command:

python pacman.py -l testSearch -p LogicAgent -a
fn=flp,prob=FoodPlanningProblem

We will not test your code on any layouts that require more than 50 time
steps.

11



Helper Functions for the rest of the Project
For the remaining questions, we will rely on the following helper functions, which
will be referenced by the pseudocode for localization, mapping, and SLAM.

Add pacphysics, action, and percept information to KB
• Add to KB: pacphysics_axioms(...), which you wrote in q3. Use

sensorAxioms and allLegalSuccessorAxioms for localization and map-
ping, and SLAMSensorAxioms and SLAMSuccessorAxioms for SLAM only.

• Add to KB: Pacman takes action prescribed by agent.actions[t].

• Get the percepts by calling agent.getPercepts() and pass the per-
cepts to fourBitPerceptRules(...) for localization and mapping, or
numAdjWallsPerceptRules(...) for SLAM. Add the resulting percept_rules
to KB.

Find possible pacman locations with updated KB
• possible_locations = []

• Iterate over non_outer_wall_coords.

– Can we prove whether Pacman is at (x, y)? Can we prove whether
Pacman is not at (x, y)? Use entails and the KB.

– If there exists a satisfying assignment where Pacman is at (x, y) at
time t, add (x, y) to possible_locations.

– Add to KB: (x, y) locations where Pacman is provably at, at time t.
– Add to KB: (x, y) locations where Pacman is provably not at, at time

t.
– Hint: check if the results of entails contradict each other (i.e.,

KB entails A and entails ¬A). If they do, print feedback to help
debugging.

Find provable wall locations with updated KB
• Iterate over non_outer_wall_coords.

– Can we prove whether a wall is at (x, y)? Can we prove whether a
wall is not at (x, y)? Use entails and the KB.

– Add to KB and update known_map: (x, y) locations where there is
provably a wall.

– Add to KB and update known_map: (x, y) locations where there is
provably not a wall.

12



– Hint: check if the results of entails contradict each other (i.e.,
KB entails A and entails ¬A). If they do, print feedback to help
debugging.

Observation: we add known Pacman locations and walls to KB so that we
don’t have to redo the work of finding this on later timesteps; this is technically
redundant information since we proved it using the KB in the first place.

5.6 Localization
Pacman starts with a known map, but unknown starting location. It has a
4-bit sensor that returns whether there is a wall in its NSEW directions. For
example, 1001 means there is a wall to pacman’s North and West directions,
and these 4-bits are represented using a list with 4 booleans. By keeping track
of these sensor readings and the action it took at each timestep, Pacman is
able to pinpoint its location. You will code up the sentences that help Pacman
determine the possible locations it can be at each timestep by implementing:

• localization(problem, agent): Given an instance of logicPlan.LocalizationProblem
and an instance of logicAgents.LocalizationLogicAgent, repeatedly
yields for timesteps t between 0 and agent.num_steps-1 a list of possible
locations (xi, yi) at t: [(x00 , y00), (x10 , y10), ...]. Note that you don’t need
to worry about how generators work as that line is already written for
you.

For Pacman to make use of sensor information during localization, you will
use two methods already implemented for you. sensorAxioms – i.e. Blocked[Direction]t ↔
[(P [xi, yj ]t ∧WALL[xi+ dx, yj + dy])∨ (P [x′

i, y
′
j ]t ∧WALL[x′

i+ dx, y′j + dy])...]
– and fourBitPerceptRules, which translate the percepts at time t into logic
sentences.

Please implement the function according to our pseudocode:

• Add to KB: where the walls are (walls_list) and aren’t (not in walls_list).

• for t in range(agent.num_timesteps):

– Add pacphysics, action, and percept information to KB
– Find possible pacman locations with updated KB
– Call agent.moveToNextState(action_t) on the current agent ac-

tion at timestep t.
– yield the possible locations.

Note on display: the yellow Pacman is where he is at the time that’s currently
being calculated, so possible locations and known walls and free spaces are from
the previous timestep.

To test and debug your code run:
python autograder.py -q q6

13



5.7 Mapping
Pacman now knows his starting location, but does not know where the walls
are (other than the fact that the border of outer coordinates are walls). Similar
to localization, it has a 4-bit sensor that returns whether there is a wall in its
NSEW directions. You will code up the sentences that help Pacman determine
the location of the walls by implementing:

• mapping(problem, agent): Given an instance of logicPlan.MappingProblem
and an instance of logicAgents.MappingLogicAgent, repeatedly yields
for timesteps t between 0 and agent.num_steps-1 knowledge about the
map [[1, 1, 1, 1], [1, -1, 0, 0], ... ] at t. Note that you don’t
need to worry about how generators work as that line is already written
for you.

• known_map:

– known_map is a 2D-array (list of lists) of size (problem.getWidth()+2,
problem.getHeight()+2), because we have walls around the prob-
lem.

– Each entry of known_map is 1 if (x, y) is guaranteed to be a wall at
timestep t, 0 if (x, y) is guaranteed to not be a wall, and -1 if (x, y)
is still ambiguous at timestep t.

– Ambiguity results when one cannot prove that (x, y) is a wall and
one cannot prove that (x, y) is not a wall.

Please implement the function according to our pseudocode:

• Get initial location (pac_x_0, pac_y_0) of Pacman, and add this to KB.
Also add whether there is a wall at that location.

• for t in range(agent.num_timesteps):

– Add pacphysics, action, and percept information to KB.
– Find provable wall locations with updated KB.
– Call agent.moveToNextState(action_t) on the current agent ac-

tion at timestep t.
– yield known_map

To test and debug your code run:

python autograder.py -q q7

14



5.8 SLAM
Sometimes Pacman is just really lost and in the dark at the same time. In
SLAM (Simultaneous Localization and Mapping), Pacman knows his initial co-
ordinates, but does not know where the walls are. In SLAM, Pacman may
inadvertently take illegal actions (for example, going North when there is a wall
blocking that action), which will add to the uncertainty of Pacman’s location
over time. Additionally, in our setup of SLAM, Pacman no longer has a 4 bit
sensor that tells us whether there is a wall in the four directions, but only has
a 3-bit sensor that reveals the number of walls he is adjacent to. This is sort of
like wifi signal-strength bars; 000 = not adjacent to any wall; 100 = adjacent to
exactly 1 wall; 110 = adjacent to exactly 2 walls; 111 = adjacent to exactly 3
walls. These 3 bits are represented by a list of 3 booleans. Thus, instead of using
sensorAxioms and fourBitPerceptRules, you will use SLAMSensorAxioms and
numAdjWallsPerceptRules. You will code up the sentences that help Pacman
determine (1) his possible locations at each timestep, and (2) the location of the
walls, by implementing:

• slam(problem, agent): Given an instance of logicPlan.SLAMProblem
and logicAgents.SLAMLogicAgent, repeatedly yields a tuple of two items:

– known_map at t (of the same format as in question 6 )
– List of possible Pacman locations at t (of the same format as in

question 5)

To pass the autograder, please implement the function according to our
pseudocode:

• Get initial location (pac_x_0, pac_y_0) of Pacman, and add this to KB.
Update known_map accordingly and add the appropriate expression to KB.

• for t in range(agent.num_timesteps):

– Add pacphysics, action, and percept information to KB. Use SLAMSensorAxioms,
SLAMSuccessorAxioms, and numAdjWallsPerceptRules.

– Find provable wall locations with updated KB.
– Find possible pacman locations with updated KB.
– Call agent.moveToNextState(action_t) on the current agent ac-

tion at timestep t.
– yield known_map, possible_locations

To test and debug your code run (note: this is slow, staff solution takes 3.5
minutes to run to completion on a good laptop processor):

python autograder.py -q q8

15


	Introduction
	Project Description
	Deadlines and evalutation details
	Project components and tasks
	Questions
	Logic Warm-up
	Logic-workout
	Pacphysics-and-satisfiability
	Path Planning with Logic
	Eating All the Food
	Localization
	Mapping
	SLAM


