272SM: Introduction to Artificial Intelligence Homework Assignment: Multi-agent Decision Making

Friday 12th May, 2023 - Thursday 25th May, 2023

Instructions

Report your answers to the following exercises and submit them at any time before the exam (latest 25th May 2023). Submitting homework solutions is highly recommended; Correct solutions will be counted as bonus points towards the final grade.

Exercise 1: Gridworld navigation

For the 4x3 world shown in Figure 1, calculate which squares can be reached from (1,1) by the action sequence [Right, Right, Right, Up, Up] and with what probabilities.

Figure 1: Gridworld

		Right	Right	Right	Up	Up
(1, 1)	1	.1	.02			
(1, 2)		.1	.09			
(1, 3)						
(2, 1)		.8				
(2, 3)						
(3, 1)						
(3, 2)						
(3, 3)						
(4, 1)						
(4, 2)						
(4, 3)						

Table 1: An example table

Exercise 2: Threshold Policy Optimization

For the environment shown in Figure 1, find all the threshold values for R(s) such that the optimal policy changes when the threshold is crossed. You will need a way to calculate the *optimal policy* and its value for fixed R(s).

Hint: Prove that the value of any fixed policy varies linearly with R(s).