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1. Introduction

e Tuned-mass dampers (TMDs) or vibration absorbers:
— First suggested by Hermann Frahm in 1909 (US Patent #989958).

— Relatively small mass-spring-dashpot systems calibrated to be In
resonance with a particular mode of vibration.

— Usually installed on roofs of buildings.

 TMDs effective in reducing wind-induced vibrations in high-rise
buildings and floor vibrations induced by occupant activity.

* More recently, TMDs considered for seismic protection of buildings.
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1. Introduction

« Advantages of TMDs:

— Capable of significantly reducing dynamic response of linear
structures.

— Construction is simple: assembly of a mass, a spring, and a viscous
damper at a given point on the structure.

— No need for external power source or sophisticated hardware.
» Disadvantages of TMDs:

— Require a relatively large mass.

— Require large space for installation.

— Usually undergo large relative displacements and require large
clearances.

— Need to be mounted on a smooth surface to minimize friction and
facilitate free motion.

» Basic theory of TMDs presented.
« Potential seismic applications of TMDs explored.
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1. Introduction

o 373-ton TMD in Citycorp Center, New York City
— First lateral natural frequency = 0.16 Hz.
— 1% damping ratio in first mode.
— TMD installed on 63" floor.
— TMD produces effective damping ratio of 4%.
— Wind induced accelerations reduced by 50%.

— Linear nitrogen charged springs, hydrostatic bearings, control actuators,
power supply and electronic control.
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1. Introduction

e 2-300-ton TMDs in John Hancock Tower, Boston

— In-phase motions control lateral response.
— Out-of-phase motions control torsional response.
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Introduction

John Hancock

Citicorp Center

Boston, MA New York, NY
Typical floor size (ft) 343x105 160x 160
Floor area (sq ft) 36,015 25,600
Building height (ft) 800 2
IBuilding modal weight (tons) 47,000 20,000 I
buwlding period lst mode (sec) .0U 6.20
] 1en wind storm {vears) 100 30
Mass block weight (tons) 2x300 373 I
Mass block s1ze (1t) I8X18X3 X30X3
Mass block material (type) lead /steel concrete
TMD/AMD stroke (ft) +6.75* +4.50*
Max spring force (kips) 135 170
Max actuator force (kips) 50 50
Max hydraulic supply (gms) 145 190
Max operating pressure (psi) 300 900
Operating trigger - acceleration (g) 002 .003
Max power | (HP) 120 160
Equivalent damping (%) 4.0%

4.0%

>

Including overtravel

S i2°
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1. Introduction

e 660-ton Pendulum TMD to reduce wind
vibrations in 101 Taipel Building, Taiwan.




1. Introduction

e 5-ton Pendulum TMD to reduce wind vibrations of
Marina Bay SkyPark in Singapore.




1. Introduction

o Seismic upgrade of LAX Airport Theme
Building with 600-ton TMD and viscous
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http://www.youtube.com/watch?v=uJbu8U8TNxI

2. Theory of Undamped Tuned-mass
Dampers Under Harmonic Loading
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Figure 8.1 Main Structure and TMD
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2. Theory of Undamped Tuned-mass
Dampers Under Harmonic Loading
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Applring Newton's second law on each mass j;‘ields the two equati-::-ns of motion for

x, (1)

this two-de gree-o f-freedom- system:

Mii+(KE+ ki) —kxy = Pgain:;;r 9
A
Mmiy + k(x;—xq) = 0 I'“
Since the system 1s undamped, the forced wibration response takes a simple form:
xi(t) = a,sinot |
(8.3)

X5(1) = assineit

where a; and @, are constants representing the amplhitude of mibration of the mamn and

the secondary mass respectively. Substituting Equation (8.3) inte Equation (8.2) yelds:

(—Ma;o + (K +k)a, — kay)sinot = Pysinot -
o [-.8'4.:'
(—maso + kl(a,—ay))sinet = 0 13



2. Theory of Undamped Tuned-mass
Dampers Under Harmonic Loading

M m
j K k Q
(O]

P

Since Equation (8.4} must be satisfied at all imes:

af(-Mo +K+k)—ka, = P,

1 8.5)
—kay+a(—mw +k) = 0
For simplification, we introduce the following vanables:
Pa . . .
Xt = T static displacement of the primary structure
) K . e
). = — :natural frequency of the primary structure (8.6)
_._]l-"_f- - w 4
» kK
, = — :natural frequency of the TMD
7
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2. Theory of Undamped Tuned-mass
Dampers Under Harmonic Loading

P,sin i ¢
M m
K *
N OO0

Drniding by K the first expression of Equation (8.3) welds:

i f:uh' k

a l+———ﬁ —dy— = X
1 K D*— ‘K
i _JH'|
W |
1 = doy 1——.| |
R D
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2. Theory of Undamped Tuned-mass
Dampers Under Harmonic Loading

M m
j K k %
(O]

Z

Solving for the amplitudes a; and a; we get:

i — "
LN
-2
ay S < o
X —2 —2
hY)
o) koo s
‘ l-——ll+=-=-= |
W, K o) K (8.8)
i i . A
9 1
X, = 2
o € oo i
l—— || 1+ T 3%
L a LY ﬂﬁ"'-l
From the first of these expressions, it becomes clear that when the natural frequency
i m - . - p— - -
M, = A/ m of the attached TMD 1s chosen to be equal to the frequency @ cof the

disturbing force, the main mass M does not mibrate atall (a; = 0.



2. Theory of Undamped Tuned-mass
Dampers Under Harmonic Loading

Examine now the second equality of Equation (8.8) when @, = @ . The first term of
the denomunator 1s then zero, and thus equation reduces to:

K P S

Iy = —EIH = —TI:I IBE;':I

With the main mass standing still and the TMD having 2 motion —(Py/fr)sinmr, the
force in the TMD waries as —Pysinmf, which 1s actually equal and opposite to the external

force, as illustrated in Figure 5.2

P,sin o

P, sinm
M

-

PV

o L L

Figure 8.2 Free Body Diagram of Main Mass for Optimum Tuning Conditibns of
TMD



2. Theory of Undamped Tuned-mass
Dampers Under Harmonic Loading

———— -
; o

K &
[ON@)

e

x, (1)

Now consider the case in which the TMD 1s in resonance with the pomary structure,

with @, = €2,, which can also be expressed as:
k_K
— (8.10)
|k m Y
orfl—==— = u
E M

where |1 1s defined as the ratio of the mass of the TMD to the mass of the primary

stracnare.
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2. Theory of Undamped Tuned-mass
Dampers Under Harmonic Loading

.TI )
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For thus special case, Equation (6.8) becomes:

f —J"'-
o
Xq(1) " Mg/ e
= o~ 7 - Sl
_"['4_. f — 2 _‘:';'\.
o 6] 0]
l-—— ||l +pu——|—u |
LY f_'_lj. ?..__: . |:'_'_|:|.E__.l Il:'B .1 1:'
x201) 1 . —
= — - sinet
-r‘: ! — :'\.
N ‘ -2 [|1+u-2 ] - LL
1 i ¥
i 0 ;__.- ', 0 i J
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2. Theory of Undamped Tuned-mass
Dampers Under Harmonic Loading

x, () x, (1)
P,sinwm ¢

M m
j K k
[OH@)

P

The two dencmun-atcus of Equation (8.11) are identical and are quadratic, with two
roots i (@ c}ﬂ} Thus, for two values of the excitation frequency ® , both denominators
become zero, and consequently x; and x; become infimitely large. Gbn::ms]}; these two
frequencies are the natural frequencies of the two-degrees-of-freedom system. These

natural frequem:ies are determaned bj‘: settiﬂg the denominators Equal to zero:

— — =i

R

OR OR .
‘ — | -l =] (2+nw)+1 =0 (8.12)
R R : :
with the solutions:
s 4 ’ . | 7

oy LL Y | L o
— | =l1+58/+ [u+ (8.13)

L Eﬂn, LY 2___- "'||| 4 ]
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2. Theory of Undamped Tuned-mass
Dampers Under Harmonic Loading

0 0.1 0.2 0.3 0.4 0.5

w=m/ M

Figure 8.3 Combined Natural Frequencies for TMDs Tuned to the Main
Structure: ®, =  , 1 = 0.2 (after Den Hartog 1985) 21



2. Theory of Undamped Tuned-mass
Dampers Under Harmonic Loading
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: . : w, = L2
o | | | 1
1 1
2k 2 | 1
, o | 1
- - | |
- 0O =, O I I -
- = | 1
_Tk _" | |
- - 1 1
1 1
_4 b —4 " | |
1 1
: | 1
e —Gk i |
| 1
_ 2 _ Lis 1 . 2
EL[I 0.5 3[II [IT_"'1 1 15 2 2.5

@ /€,

Figure 8.4 Amplitude Spectrum for TMDs Tuned to the Primary Strucn?ée:
w, = 0,, (after Den Hartog 1985)



3. Theory of Undamped Tuned-mass
Dampers Under Harmonic Base Motion

- ¥ i
i) AU % (1)
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)
:—.l‘
x (1)
A bsolute
"‘-—-———-—_.__‘__‘_._—-———-—-"""-——--..1#.-——-"'
Reference

Primary Structure ThMD

Figure 8.5 Primary Structure with TMD Subjected to a Base Excitation

X A1) = xgsmt
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3. Theory of Undamped Tuned-mass
Dampers Under Harmonic Base I\/Iotlon

—

k
(OO

- - e

1{.}

Apl:-l'r:ing Newton's second law on each mass now wields the two equﬂtir::ns of

motnon for this two-de orees-o f-freedom- system:

M, + (K +kyxy —kxy = Mo xpsinet _
i (8.15)
mi, + k(x;—x1) = mo xpsinof _
_ ) ) _ _ ) . . xi(t) = aysinef
Recalling the form of the solution given 1n Equaton (8.3), we get: | .~
L = L - X5(f) = aysmaoi
(—Mayo + (K +k)a; — ka;)sinot = Mo xpsinof
' ' i (8.16)

'I

_ —2 . =
(—ma,o +k(a,—a;))sinor = mo xysinos
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3. Theory of Undamped Tuned-mass
Dampers Under Harmonic Base Motion

|—{\I\N7 M m
. K ¥
i“} ) L
Since Equation (8.16) must be satistied at all ime:
af(-Mo +K+k)—ka, = Mo x,
i (8.17)
- - Y - A

- =

—ka; +ax(—-mo +k) = mo xg

Using the same vanables defined in Equation (3.6), Equation (8.17) becomes:

{ — 7 —2
ko koo
(14 1+ﬁ_f__-:' _HEEZ _J:"C'
\ o 0’
(8.18)
i "N —_ j k d
0 - Py .
—dy +a, 1-— — = =X Xst = T static displacement of the primary structure
€ ;’J Eﬂl,;; 2 K .
Q, = vk natural frequency of the primary structure
s

c-:ri = — :natural frequency of the TZ‘VID25
i




3. Theory of Undamped Tuned-mass
Dampers Under Harmonic Base Motion

1{.}

|—N\l\}7 M "
i— K *@7
xvtr} 7 (/-)/ (-2 r
Solnng for the amphtudes a; and a3
ST
_2. {lj i oA
w | = 1__’!'+_-'|'»E-'.|
[1. I"h. ﬂl'_'i' \ ::lj;;.-"l C':"?.. : A
Xy A Y — 21
@ || ko s
‘ 1-— -1+———1_‘——,
W C':l';*' I"\-\. K— ﬂj-r g .IFL
(8.19)
o o ko
— +—| 1+ T 3
(17 n Og Q,
X — 7 — 7
0 ‘l_m‘l_'_ﬁ:_:r kK
i T -
M 5/ K 0/ K 20




3. Theory of Undamped Tuned-mass
Dampers Under Harmonic Base Motion

% 01) X )

}g{f} — >

M m
K k
(1)

ome)

= -~

From Equation (8.19), two tuning conditions can be obtamned. The first tuning

condition 15 obtamned when the displacement of the main mass M relative to the base is

equal to zero. For tlus condition, the main mass moves ngidly with the base motion,

experiencing an absolute acceleration equals Xg(7), but with no force induced in the main
spraung K. This tuning condition exists when a; 1s equal to zero, which from

Equation (8.19) corresponds to:

— 0
1 ol | .
- 1l —— -_ —_l =0 (8.20)
Z A L'-,\_R.-' : .
ﬂn LY E‘.‘::Ia"l 'r.-l:la

Equation (8.20) can be simphfied to reveal the following tuning condition on the

natural frequency of the TMD:-

© = ——— ,, (8.21)




3. Theory of Undamped Tuned-mass
Dampers Under Harmonic Base Motion

70
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The second tuning condition 1s obtained when the absolute displacement of the main

mass M s e::lual to zero. For tlus conditton, the main mass remaimns immobile,

expeniencing an absolute acceleration equal to zero dunng the movement of the base, but a
force —Kx,(7) 1s induced in the main sprmg This tuning condition exists when a; 1s
g _

equal to —xp. which, from Equanon (5.19), corresponds to:

k koo

K ﬂir’

2 —2
L)

.
ey

—_— i I L b
2 r ") A
D i R ]
_@ 18
3
L
- (s

5

a

D

3 1 +
n

l\.il
f

L 'r__.
LLoN G "F"' \

a’

Equation (8.22)

|
i

natural frer:luem:jr of the TMD-

s 2

—

L0
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‘ M,

;{-H-

K

(8.22)

can be simpl_iﬁed to reveal the f-::r]lmving mmng condition on the

(8.23)
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4. Theory of Damped Tuned-mass
Dampers Under Harmonic Loading

X, (1] X, (1)
=
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Figure 8.6 Primary Structure and Damped TMD
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4. Theory of Damped Tuned-mass
Dampers Under Harmonic Loading

RGN % (1)

—
P,sinm ¢

— T
4N\KN7 M —f\i\]\}— m
HONO St

\V

e

ﬂppl‘_ring Mewton’s second law to the main mass M gives.:

M|+ Kxi+k(x;—x3)+e(dy—%5) = Pﬂainaf (8.24)

and to the secondar}' mass Tiﬁldﬁi

Mmiy + k(x;—xy)+c(i,—x;) = 0 (8.25)

Again, we are interested 10 a solution of the forced vibrations only and do not consider
the transient free wibratnon. Both xy and x; are harmomc motions at a frequency o and
can be represented by complex numbers:

x,(1) = Clezmr |
_ (8.26)
IJ{T} = C:E’Emr

where €y and 3 are now unknown complex numbers with each an amplitude and a

phase and i = +/—1.We are now interested 1n finding the amplitude of the main Bass ap .



4. Theory of Damped Tuned-mass
Dampers Under Harmonic Loading

X () X (1)

P, g

:4NV\I7 M L NN "
\
J o [T

&

Substituting Equation (8.26) into Equations (8.24) and (5.25) yelds:

Mo+ KCy + k(Cy— Cy) + ime(Cy— Ca) = P,
)C_lﬁ_ 1 N (8.27)
—mw Cy+k(C,—Cy)+ime(Cr—Cy) = 0
Rearranging Equation (8.27):
Mo +K+k+ine)Ci—(k+iwe)Cy = Pg |
_ . B (8.28)
—(k+ioe)Cy+(—mo +k+ioc)Cy = 0

Solving these two equations for Cy:

e — 'I—.. n 'I— |
c, = P, ( mom )+ iomce 1 (8.29)

—3 —3 —2 — - 2
[(— Mo +K)(—mo +k)—-mo k]+ioc[-Mo + K—maon ]




4. Theory of Damped Tuned-mass
Dampers Under Harmonic Loading

x, (1) X, (1)
P EEEE— >

~ —ELIZ—
\‘W M —N;\N— "
J [OH®)

Since Cy 1s complex, 1t can also be written as:

Cy = Py(A,+iBy) (8.30)
where 4y and B are real. The amplitude of C; can then be wrtten as:
/ ) g
a,=|Cy| = Pynf4] + B} (8.31)
But Equation (5.29) 1s not 1in the form of Equation (8.30) but rather in the form:
- A+iB .
“ C, = Pyt (8.32)
' C+1D S
with: co-p (k—ma’) +ioc
—2 1 0[(—;"»162-0—[()(—:?162+k)—mazk] +f€)c[—;1{62+K—maz]
A =k-mo
B = ac .
- 4 . (8.33)
= (—-Mao +K)-mo +k—-ma'k
32

C
D = owc(-Mo +K-—ma’)



4. Theory of Damped Tuned-mass
Dampers Under Harmonic Loadmg

A1 x, (1)
P —b >

N |5
\4{\]\!‘_.[\'7 M —{\{\N— m
N (OO :

Now Equﬂtlc:n (8.32) can be rewntten n the form of Equanen (8.30):

“ A+zﬂnc iD) _ p(AC+BD)+i(BC—4D) 534
a; can then be evaluated:
ay ||'|f’[;1C+BD_:| (BC — Aﬂ :
Py W\ ¢?+D* NP+ D?
_ A’C+BD + B C T+ 4D
N (C*+D?
(8.35)
_ (;1 + B’ j{C‘+D";
| (D)
_ I{*i' +B ) 33

u({ +D}



4. Theory of Damped Tuned-mass
Dampers Under Harmonic Loading

Substututing the walues of the constants expressed m Equation (8.33) into

Equation (8.33) vields an expression for the amplitude of the response of the main mass

M-

| — —7 9
a; ! f—mo )+ o ¢ :
= = II — — ( 2 o — —  (836)
0 N(-—Mo +K)(-mo +k)-mo'k] +oc¢(-Mo +K—mo’)
We can rewnite Equation (8.36) by defining the following vanables:
m TMD Mass -
= — = : = mass ratio
M main mass
2k
@, = — = natural frequency of TMD
™
7 K - .
), = — = natural frequency of primary structure
- (8.37)
@, :
= =% = natural frequency ratio
Q,
) - :
g = — = forcing frequency ratio
Q,
¢, = 2o,m = critical viscous damping constant of TMD

34



4. Theory of Damped Tuned-mass

Dampers Under Harmonic Loadi
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e

After some further algebraic manmipulations, Equation (8.36) can be rewrtten as:

iy

Xst

Al
i

‘e \2 2 22
\2—g] +(g -
co

e Vo2 2.2 2 2 2 2 2 _2
\2=g) (g -1+pg) +[Wg —(g -1)g —f)]
[

0.6 0.7 0.8 0o 1 11 12 1.3

(8.38)
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4. Theory of Damped Tuned-mass

Dampers Under Harmonic

|_oading
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First the locanons of the tweo pomts P and ¢ are found We can rewrnite

Equation (8.538) as:

with:

A
B

C

D = {uf“'g"—{g;—l_nﬁg;—f‘}};

I'--C =
4l <) +B
ay | \e/

. | o2
oA l'||{'-'l|._.| + D
III I:‘.-I:'_.

(2g)°
(g —f)

(2g fg"—1+pg)

(25a) + s

_ |

N’(zfg]‘tg’ ~14+pgh) + Wi - (g - D -1

(8.39)

. =
0.7 0.8 0.9 1 1.1 12 1.3 r‘g 4{]-3
@i, W d
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4. Theory of Damped Tuned-mass
Dampers Under Harmonic Loading
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If A/C = B/D, Equation (8.39) becomes independent of damping. This condition 1s

\V A

=

given 1::'_1':
QS S L (S 4 S (8.41)
g -1+pnug” weg —(g —-1Mg —-fr

To remove the square sign on each side of Equation (8.41), a £ must be introduced 1n

front of one side of the equation. With the mmus sign, the solution becomes towal since
5
we find g~ = 0, meaning that the static response 1s independent of damping

The other alternatrve 1s the plus s.ign which leads to:

o olafepf? of
— i + .
78 T LL 24+
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=0 (8.42)



4. Theory of Damped Tuned-mass
Dampers Under Harmonic Loading

X, UJ x: (1)

—
P, sinm ¢
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A NN
k
[OH©)
-
.
Equation (5.42) 1s a quadrauc function in g ., gwing two roots (gy and g;)

representing the coordinates of the fixed points P and . These roots are still function of

I oand f.

\V A

=

To adjust the frequency tuming such that the amplitudes of points P and O are equal,
the roots of Equation (8.42) are found and substituted into Equation (8.38). When the
expressions for P and O are equated, a simple relation between 1 and f 1s obtamed:

r_ 1

’ 1+

(8.43)

Note that ¢/ ¢, cancels out since the amphtudes of pomnts P and O are independent
of damping. 1

8
'

Pogaz\ s

Y '
I

38
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X, UJ x: (1)
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P, sinm ¢
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=

Now to find the opumum dampmg (c/c;) Equation (5.43) 1s substituted into

-:Ipl‘
Equation (8.38). The resulting equation 1s differentiated with respect to g and set equal to
zero while one of the two roots obtamnmed in Equation (8.42) 15 also replaced in

Equation (8.38). From tlus calculation, we obtamn for an optumum at pownt P

R pli 3 — —"— )
= - T (8.44)
O opt — P Sl: 1 + L }_.

Alternauvely, if the demrvative 1s set to zero at pomnt 0, we also get:

| 5

i f L1 \
) i3+ | |
e\ \ Np+20 .
(<) _ 3 (8.45)
) ﬂJapr—Q 8{1+|J]
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Figure 8.8 Resonance Curves for Optimum Frequency and Damping Tuni_ﬂg

(atter Den Hartog 1985)

In practice, for optimum tuning, the mean value of Equations (8.44) and (8.43) 1s
used:

[ c (3w

(8.440

\ g (. 3
Ce ept ""-jl SI:_ 1+ L _:Ij




Table 8-1: Optimum Tuning Conditions for damped TMDs Attached to
Undamped Primary Structure (after Constantinou et al. 1998)

Loading
Case

Optimization Criteria

Optimum Tuning Conditions

Frequency, [ Damping, ¢/c,

1) Harmome Load
Applied to Primary
Structure

2y Harmomie Load
Applied to Primary
Structure

3) Harmomnic Base
Acceleration

4) Harmomic Base
Acceleration

5) Random Load
Applied to Primary
Structure

6) Random Base

Acceleration

Mimimum Relative
Displacement Amphude
of Primary Struchure

Minimum Relanve
Acceleration Amplitude of
Primary Structure

Minimum Relanve
Displacement Amphtude
of Primary Structure

Minimum Absoclute
Acceleration Amplitude of
Primary Structure

Minimum Root Mean
Square Value of Relatrre
Displacement of Primary
Structure

Minmmum Root Mean
Square Value of Relatrve
Displacement of Primary
Structure

1 i 3u
— |
l+u N 8(1 +ILl}3
[Equation (8.43)] [Equation (3.46)]
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5. Seismic Application of Tuned-Mass Dampers

095 -
q"_“ Cases
g 0.9 - iand4
'5..
§ 0RS -
g‘ Case 2
- 0.8
= Cases
= 3,5 and 6
g 07s
2
I::'.T 1 1 ] 1 1
i 005 a1 0.15 [ 0.25

Mass Ratio, p

Figure 8.9 Optimum Frequency Tuning for Cases Listed in Table 8-1
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5. Seismic Application of Tuned-Mass Dampers
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Figure 8.10 Optimum Damping Tuning for Cases Listed in Table 8-1
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6. Analysis of Structures with

Tuned-Mass Dampers
 TMD tuned to a single structural frequency.

 [For seismic applications, TMDs usually tuned to
fundamental mode of vibration.

e TMD often installed on building roof.
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6. Analysis of Structures with
Tuned-Mass Dampers

Neglecting the damping in the prmary structure, the equations of motons for thus
coupled system are given by

‘ [M]{#(1)} + [K]{x(1)} = —[M]{r}i (r)+ {P(1)}

(8.47)
mZ+ci+kz = —miy— Mg ' '

where N 1s the number of degrees of freedom (considering one degree-of-freedom per
floor of the building) of the primary structure and represents the NH Jerel degree of
freedom, [M] and [K] are the global mass and stiffness matrices of the main structure;
ix} and (X) are the displacements and accelerations of the structure relative to the
ground; {7} 1s the dynamic coupling vector; m, ¢, and I are the mass, damping constant
and stiffness of the TMD; z(r) 1s the displacement of the TMD relative to the roof; and
1Pty = 10, .0, 2+ k:}r. From Equation (8.47), 1t 1s clear that the structural
analysis needs to be carned in the (N + 1 )-dimensional space under general conditions.
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6. Analysis of Structures with
Tuned-Mass Dampers

Now consider the case where, under ground motion, the structure responds pnimanly

i 1ts first mode of wibration and where the response vector {x(7)} can be approximated

by
(x(1)y = (A4 (1) (3.48)

where {4 ) y 1s the first mode shape and x(f) 1s the displacement of the roof relative
to the ground.

Substituting Equqtic:? (8.48) into the fiurst expression of Egquation (8.47), pre-
multiplying it by {:’ILJ} , and using the orthogonality conditions of the mode shapes

Tields:
| Myin(r) + Kyxu() = c2(1) + kz(r) — o My (8.49)
where:
M, = {4 = }I[ m]{A' 1 't = generalized mass in first mode
K, = {ﬁ'l:'}jr[.fc] {Ail'} = generalized stiffness coefficient in first mode (3 50)
T
oy = (4 ’ }ME:”] 1} _ modal participation factor in first mode 46




6. Analysis of Structures with
Tuned-Mass Dampers

By companng the second expression of Equation (8.47) and Equaton (8.49) with
Equations (8.24) and (8.23), one can conclude that the first modal representanon of a
multi-degree-of-freedom structure 1s exactly the same as that of a single-degree-of-
freedom structure, except that the modal mass and the modal stiffness are employed
mstead of the physical parameters in the SDOF case. Therefore, the tuning of a TMD for
the fundamental mode of a multi-degree-of-freedom structural system can be performed

by using Equations (8.43) and (8.46) or Figures 8.9 and 8.10 or Table 8-1 wath:

m .
L = =— = 111855 ratio

M (8.51)

= m; = fundamental frequency of main structure

e

Min(1) + Kixpn(t) = e2(1) + kz(1) — o M, M3y + Kxy + k(xy —x3) + c(¥y —X3) = Pypsinet

mI+ci+kz = —miy—mi, miy+ k(xy—x1)+c(iy—3;) =0




6. Analysis of Structures with
Tuned-Mass Dampers
e Same approach can mitigate vibrations of any mode.

A structure with a TMD may experience inelastic
deformations during a strong earthquake.

 \When inelastic deformations occur, fundamental
frequency decreases.

 TMD may lose effectiveness due to de-tuning effect.
e Detuning phenomenon discussed in next section.
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/. Seismic Response of Inelastic
Buildings with Tuned-Mass Dampers

o Carr (2005) investigated seismic response of
shear wall reinforced concrete buildings
equipped with TMDs

e Main objective to investigate seismic fragility
of elastic and inelastic reinforced concrete
buildings with TMDs of various sizes

* Ensembles of ground motions representing
various seismic hazard levels
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/. Seismic Response of Inelastic
Buildings with Tuned-Mass Dampers

 Building Models
— Shear wall-type buildings, 3 and 10, and 25 stories.
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-
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Dead Load for each Floor = 5 kN / m’
Live Load for each Floor = 2.4 kN / m’
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50
Figure 8.12 Layout and Design Loads for 10-Storey Building Model



7. Seismic Response of Inelastic
Buildings with Tuned-Mass Dampers

Analysis Procedure

— Two-dimensional lumped-mass model of each building model with and without
TMD:s.

— Torsional effects neglected.

— Each model included only one wall with one gravity column.

— Total dead loads acting on interior columns applied to gravity column.
— TMD modeled as a SDOF system on roof of building.

— TMD tuned to Equations (8.43) and (8.46).

Table 8-3: Properties of TMDs for 10-Storey Building

Mass Ratio TMD Natural Period TMD Damping Ratio
(s)
0.05 1.72 0.13
0.10 1.80 0.17

0.20 1.97 0.21 51



7. Seismic Response of Inelastic
Buildings with Tuned-Mass Dampers

e Ground Motions

— Ensembles of synthetic strong ground motions generated
for Southern California site.

— Ground motions for 2%, 5%, 10%, and 20% probabilities
of exceedence in 50 years (return periods of 2475, 975,
475, and 224 years).

— Each ensemble comprised of 25 earthquake records.
— Total of 100 strong ground motions considered.

— Strong motions simulated using the Specific Barrier Model
(Papageorgiou and Aki 1983a, 1983hb).
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/. Seismic Response of Inelastic
Buildings with Tuned-Mass Dampers
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Figure 8.13 Mean Peak Absolute Floor Acceleration, 10-Storey Building with and
without TMD: a) Elastic Response, b) Inelastic Response
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8. Design Considerations

The desigﬂ pr-::.-::edure of a TMD for a building struchiire {::scillaﬁng mainljr i 1ts
fundamental frequenc‘f.' and mode can be carnied out with the f{::]lc:wing steps.

a) Step 1: Evaluation of Mass Ratio: First, the equivalent wiscous damping ratio
of the structure-TMD assembly needs to be identified. A procedure proposed
by Luft (1979} can be used for thus purpose. This involves locking at design
acceleration and displacement response spectra, Sp and 5. and selectung an

’!_P}_]J.D]_}il’!_tﬂ dampmg value £, that satisfies:

—eq
a1 Spl oy, -\___E-gl ) = X Nimax)

(6.32)
oS 404, —eq:'— mmmj

where Xyimaxry and Xnimary are the target maxmum relattve displacement and
maxmum absolute acceleration at the roof level of the budding.
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8. Design Considerations

The required mass ratto |1 can then be estimated by the following equation (Luft,

1979): e.g.:
- 2 h Ceq =0.20 S
L = 1ﬁ{g€g—D.Sgl} = M £, =0.05 (5.23)
e u = 0.41 —very difficult

where £y 1s the first modal damping rato of the main structure. Note that, in most

practical applicatnons, the selection of 1 1s himuted by physical considerations.

b}  Step 2: Tuning of TMD properties: Figures 8.9 and 8.10 or Table 8-1 can be

J
used to estimate the optimum frequency ratio and damping of the TMD.

c) Step 3: Structural Dynamic Analysis Check: The final step in designing the
TMD 1s to check that the selected TMD parameters give the buidding response
that 1s i the range of predetermuned response threshold. Otherwise, the
preliminary design has to be refined by tnal-and-error
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Thank you!
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