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1 Damped Primary System, Undamped Tuned Mass Damper

Consider a damped single-degree-of-freedom (SDOF) oscillator (with mass m, stiffness k and
damping c driven by a sinusoidal force f(t) = f̄ cosωt) with an attached undamped and
unforced SDOF oscillator, (with mass ma and stiffness ka). The coupled equations of motion
are

mr̈(t) + cṙ(t) + kr(t)− ka(ra(t)− r(t)) = f̄ cosωt (1)
mar̈a(t) + ka(ra(t)− r(t)) = 0 (2)

Using complex-exponential notation and retaining the positive-exponent parts, the steady
state responses r(t) = r̄eiωt and ra(t) = r̄ae

iωt to forcing f(t) = f̄ eiωt can be inserted into the
equations of motion to obtain

(−ω2m+ iωc+ k + ka)r̄ − kar̄a = f̄ (3)
−kar̄ + (−ω2ma + ka)r̄a = 0 (4)

and the frequency response function from forcing to the displacement response of the primary
system mass, m

H(ω) = r̄

f̄/k
= −ω2ma + ka

(1/k)(−ω2m+ iωc+ k + ka)(−ω2ma + ka)− k2
a

(5)

The frequency response function has a value of zero where −ω2ma + ka = 0 which gives the
tuning equation for the un-damped tuned mass damper. The TMD should be tuned so that
it’s natural frequency equals the forcing frequency.

ω2 = ka

ma
= ωn

2
a (6)

For systems tuned in this way, the motion amplitude of the TMD is out of phase with the
forcing, r̄a = −f̄/ka. Undamped TMD’s are applicable to cases in which the forcing frequency
is known precisely and in which the forcing frequency does not vary. Systems with undamped
TMD’s are very sensitive to mis-tuning errors; they are not robust with respect to variations
in forcing frequency.
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2 Undamped Primary System, Damped Tuned Mass Damper
Now, neglecting damping in the primary system, but adding damping to the TMD, we
consider the Den-Hartog absorber [1].

If ca =∞, the absorber is essentially linked with the primary system and the “linked” natural
frequency is ωnl =

√
k/(m+ma). If ca = 0, the system is un-damped and r̄/f̄ is zero at

ω =
√
ka/ma.

The equations of motion in this case are

mr̈(t) + kr(t)− ca(ṙa(t)− ṙ(t))− ka(ra(t)− r(t)) = f̄ cosωt (7)
mar̈a(t) + ca(ṙa(t)− ṙ(t)) + ka(ra(t)− r(t)) = 0 (8)

Using complex-exponential notation and considering the positive-exponent part of the solu-
tion, the frequency-response from forcing f̄ to response r̄ is

H(ω) = r̄

f̄/k
= −ω2ma + iωca + ka

(1/k)[(−ω2m+ iωca + k + ka)(−ω2ma + iωca + ka)− (ka + iωca)2] (9)

For fixed values of m, k, ma, and ka, and for any value of ca, all of the frequency-response
curves from f̄ to r̄ pass through the same coordinates, ωA, HA and ωB, HB.

Den-Hartog showed that when HA 6= HB the peaks of H(ω) are not at ωA or ωB.

Define: the mass ratio α = ma/m, the primary system natural frequency ωnp =
√
k/m, the

absorber natural frequency ωna =
√
ka/ma, and the absorber damping ratio ζ = ca/(2

√
mk).

The Den-Hartog design objectives are:

• to select ωna so that HA = HB
1.

• to select ca as the average of the damping values that maximize H(ω) at ωA and at ωB.

The optimal tuning is found from the criterion HA = HB.(
ωna

ωnp

)
opt

= 1
1 + α

. (10)

The values of HA and HB are both
√

(2 + α)/α and are located at frequencies

Ω2
A,B =

(
ω

ωnp

)2

A,B

= 2 + α±
√
α2 + 2α

(1 + α)(2 + α) (11)

The optimal absorber damping is found from averaging the damping values that maximize
H(ω) at ωA and at ωB;

ζopt =

√√√√ 3α3

8(1 + α)3 . (12)

1In this sense Den-Hartog invented H∞ theory
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Figure 1. un-damped tuned-mass damper
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Figure 2. Force and displacement coordinates for the Den Hartog absorber
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Figure 3. un-tuned tuned-mass damper
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Figure 4. Den-Hartog tuned-mass damper
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