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1 Damped Primary System, Undamped Tuned Mass Damper

Consider a damped single-degree-of-freedom (SDOF) oscillator (with mass m, stiffness k and
damping ¢ driven by a sinusoidal force f(t) = fcoswt) with an attached undamped and
unforced SDOF oscillator, (with mass m, and stiffness k,). The coupled equations of motion
are

mi(t) + ci(t) + kr(t) — ka(ra(t) —7(t)) = fcoswt (1)
Mafa(t) + ka(ra(t) —r(t)) = 0 (2)

Using complex-exponential notation and retaining the positive-exponent parts, the steady
state responses r(t) = 7e™! and r,(t) = T,e™" to forcing f(t) = fe™? can be inserted into the
equations of motion to obtain

|

(—w?m +iwe + k + ko )7 — ka7 (3)
—kaT 4+ (—w?ma + ka)Ta = 0 (4)

and the frequency response function from forcing to the displacement response of the primary
system mass, m

r —w?m, + k.

Hw)= Flk (k) (—w?m +iwe + k + ko) (—w?m, + ka) — K2 ?

The frequency response function has a value of zero where —w?m, + k, = 0 which gives the
tuning equation for the un-damped tuned mass damper. The TMD should be tuned so that
it’s natural frequency equals the forcing frequency.
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For systems tuned in this way, the motion amplitude of the TMD is out of phase with the
forcing, 7, = — f/ka. Undamped TMD’s are applicable to cases in which the forcing frequency
is known precisely and in which the forcing frequency does not vary. Systems with undamped
TMD’s are very sensitive to mis-tuning errors; they are not robust with respect to variations
in forcing frequency.
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2 Undamped Primary System, Damped Tuned Mass Damper

Now, neglecting damping in the primary system, but adding damping to the TMD, we
consider the Den-Hartog absorber [1].

If ¢, = o0, the absorber is essentially linked with the primary system and the “linked” natural
frequency is wy, = \/k/(m +m,). If c, = 0, the system is un-damped and 7/f is zero at

W= \/ka/M,.

The equations of motion in this case are
mi(t) + kr(t) — ca(Fa(t) — 7#(t)) — ka(ra(t) — r(t)) = fcoswt (7)
Mai'a(t) + ca(Fa(t) — 7(2)) + ka(ra(t) —r(t)) = 0 (8)

Using complex-exponential notation and considering the positive-exponent part of the solu-
tion, the frequency-response from forcing f to response 7 is

r —w?m, + iwe, + ks

Hw) = flk— (UR)[(—w?m + iwe, + k + k) (—w?m, + iwey + ko) — (ko + iwc,)?] ¥

For fixed values of m, k, m,, and k,, and for any value of c,, all of the frequency-response
curves from f to 7 pass through the same coordinates, w4, H4 and wg, Hp.

Den-Hartog showed that when H4 # Hp the peaks of H(w) are not at wy or wg.

Define: the mass ratio a = m,/m, the primary system natural frequency wy,, = \/k/m, the

absorber natural frequency wy, = 1/ka/ma., and the absorber damping ratio ¢ = c,/(2vVmk).
The Den-Hartog design objectives are:

e to select wy, so that H4 = Hp'.

e to select ¢, as the average of the damping values that maximize H(w) at wy and at wp.

The optimal tuning is found from the criterion H4 = Hp.

na 1
(“’ ) - . (10)
wnp opt 1 +a

The values of Hs and Hp are both /(2 + a)/a and are located at frequencies
02— ( w >2 2+ a*xvVar+2a
AB =

AB - (1+a)2+ )

— 11
o (1)
The optimal absorber damping is found from averaging the damping values that maximize
H(w) at wa and at wp;

3o

Copt = m . (12)

'In this sense Den-Hartog invented H,, theory
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Figure 2. Force and displacement coordinates for the Den Hartog absorber
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H(w) = r / (f/k)
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Figure 3. un-tuned tuned-mass damper
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Figure 4. Den-Hartog tuned-mass damper
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