EN4103 – Renewable Energy Design a.y. 2018/19 6 February 2019

Wind Turbine Tower Design

Prof Massimiliano Gei

Scheme of an offshore wind turbine

References

‐ **Books**

Hau (2006) Wind Turbine Fundamentals Burton et al (2014) Wind Energy Handbook

‐ **Standards**

Eurocode 3, National Annex (BS EN 1993) DNV-GL code of practice/guidelines on wind turbines

‐ **Software**

Bladed 4.4 Educational, Garrad Hassan

‐ **Reports**

Rawlinson-Smith (2004) Load calculations for a generic 1.5 MW wind turbine…

Design Constraints

‐ **Ultimate limit state (ULS)**

Plastic limit (tower, joints) Buckling (tower) Fatigue (tower, joints)

‐ **Serviceability limit state (SLS)**

Slip resistance check (joint)

- ‐ **Avoidance of resonance (vibration frequency)**
- ‐ **Blade clearance**
- ‐ **Transportability**

Standards

- ‐ **EN 1993-1-6:2007** DESIGN OF STEEL STRUCTURES STRENGTH AND STABILITY OF SHELL STRUCTURES
- ‐ **EN 1993-1-8:2007** DESIGN OF STEEL STRUCTURES DESIGN OF JOINTS
- ‐ **EN 1993-1-9:2007** DESIGN OF STEEL STRUCTURES FATIGUE
- ‐ See National Annexes

Load Analysis

‐ **Wind Turbine Loads**

Inertia and gravity loads Aerodynamic loads Operational loads Other loads (wake, impact, ice …)

‐ **Load Analysis**

Bladed Software

Indications can be suggested also by scaling from other WT designs

Load Analysis

Table 5.4 - Ultimate Loads: Tower at 0.00m

Materials

Table 1 - Steel properties

According to EN1993-1-8:2005 [5] bolt class and relevant properties are reported below:

Table 2 - Bolt properties

Partial Factors

- ‐ **EC-3: Ultimate LS**
	- $\gamma_{G_1} = 1,35$ Permanent loads $\gamma_{O_1} = 1,50$ Variable loads

‐ **EC-3: Serviceability LS**

 $\gamma_{G_1} = 1,00$ $\gamma_{Q_1} = 1,00$

Mat., bolts

 $1,10$ $\gamma_{\scriptscriptstyle M3,res}$

‐ **DNV-GL guidelines**

ULS: Plastic limit (tower)

Reference: **EC3-1-6**, sect 4.1 etc (tower), Annex A

ULS: Plastic limit (joints)

Reference: **EC3-1-8**

Table 3.2: Categories of bolted connections

For a **perfect** cylindrical shell under axial load,

 σ_{cr} = 0.605 E (t/R)

- E = Modulus of elasticity,
- $t =$ Wall thickness, $R =$ Shell radius

Imperfections

- are magnified by applied compression
- result in earlier onset of yield (on concave surfaces)

Reference: **EC3-1-6**, sect 8 etc (tower)

Imperfections

First step: Decide the "fabrication tolerance quality $class'' - A$, B or C

These correspond to % deviations of 0.6%, 1% and 1.6% respectively

The % imperfections of the finished tower section will be checked, using

- a) a straight rod of length $L = 4(Rt)^{0.5}$ placed vertically anywhere
- b) a curved gauge of same length placed circumferentially
- c) a straight rod of length $L = 25t$ placed vertically across horizontal welds

 $b)$

Measurement on a meridian (see $8.4.4(2)a$)

 \sim \sim

 $a)$

First measurement on a circumferential circle (see $8.4.4(2)a$)

Buckling curves (Euler hyperbola)

The elastic critical buckling stress determines the relative shell slenderness, λ = (f_y/σ_{cr})^{0.5}

The buckling strength is then determined as a proportion of the yield strength, according to

- The relative shell slenderness, λ
- The fabrication tolerance quality class
- The balance of axial stresses and bending stresses

A low proportion of axial stress – as normally found on WTG towers – results in a relatively higher buckling strength.

Resistance buckling stress

 $\sigma_{x, Rd} = \sigma_{x, Rk} / \gamma_{M1}, \quad \sigma_{\theta, Rd} = \sigma_{\theta, Rk} / \gamma_{M1}, \quad \tau_{x\theta, Rd} = \tau_{x\theta, Rk} / \gamma_{M1}$

where

$$
\sigma_{x, Rk} = \chi_x f_{yk}, \quad \sigma_{\theta, Rk} = \chi_{\theta} f_{yk}, \quad \tau_{x\theta, Rk} = \chi_{\tau} f_{yk} / \sqrt{3}
$$

Buckling reduction factor
(slenderness, imperfections, ...)
$$
\sigma_{x, Ed} \le \sigma_{x, Rd}, \qquad \sigma_{\theta, Ed} \le \sigma_{\theta, Rd}, \qquad \tau_{x\theta, Ed} \le \tau_{x\theta, Rd}
$$

+ combined loading check

Tower doorways

Tower doorways are always stiffened round the edge, but standard rules for a cylindrical shell no longer apply. FE analysis can be used.

Analysis of buckling using finite elements

first buckling mode

ULS: Fatigue

A WTG tower may see 1,000,000,000 loading cycles in its life

No. of load cycles = No. of blade passes For 20 rpm 3 bladed machine operating continuously, this gives 20 x 3 x 60 x 8760 x25 = ca 800,000,000 cycles

The turbine manufacturer describes these loads in terms of **fatigue load spectra**.

These are tables of load ranges (eg tower base bending moment or TBOM) against numbers of cycles.

ULS: Fatigue

Fatigue bending moment ranges are converted to stress ranges using $\sigma = M/Z$.

[Load safety factor = Material safety factor = 1.0]

S/N curves give the number of constant amplitude load cycles permitted for each stress range.

ULS: Fatigue

Sources of Tower Excitation

A. Blade passing frequency

Stochastic wind loading (gust slicing)

Each blade "slices through" a localised gust in turn. Dominant effect.

Tower shadow

Load on each blade drops off sharply as it passes behind tower

Wind shear, yaw, shaft tilt

Largely averaged out over three blades - 2nd order

Sources of Tower Excitation

B. Rotational frequency

Blade pitch error

+/- 0.3 degrees specified in 2003 GL rules \Rightarrow thrust variation of \sim +/- 1% of steady thrust

Rotor mass imbalance

0.005R eccentricity specified in 1999 GL rules \Rightarrow moment variation of \sim +/-1% of max thrust x R

Variation of dynamic magnification with tower natural frequency for variable speed turbine with 13.33 to 20 rpm speed range (0.222 - 0.333 Hz) for zero damping

Design options

Second moment of area (π R³t) restricted by natural frequency limitations.

Initially, increasing the R/t ratio gives more efficient use of material, but at high R/t the buckling reduction factor penalty increases.

-

Blade Clearance

Blades bending close to tower

Image: Vestas