
Multiple Pattern Matching

Chapters 5 and 7 of Dan Gusfield: Algorithms on 

strings, trees, and sequences 

Giulia Bernardini

giulia.bernardini@units.it 

Algorithmic Design

a.y. 2022/2023


mailto:giulia.bernardini@units.it


Tries: an example
Let R={pot, potato, pottery, tattoo, tempo}

Trie(R) is represented below. Black nodes mark the end of the 
strings in R.



Tries: an example
Let R={pot, potato, pottery, tattoo, tempo}

Trie(R) is represented below. Black nodes mark the end of the 
strings in R. A compacted trie has edges labelled by strings 
instead of letters, and no nodes with just one child.



Definition of Suffix Tree
For constructing the suffix tree, it is desirable that all the terminal 
nodes are leaves. That’s why it is standard to add an extra letter 

$ Σ at the end of the string, and to construct the suffix tree of this 
extended string. The suffix tree of T=mississippi$ is
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Properties of the Suffix Tree
…but all the strings labelling the edges of the suffix tree of T are 
substrings of T. Thus each of them can be represented by an 
interval of positions over T. Representing one such interval requires 
O(1) space, and since the suffix tree has O(n) edges (because there 
are O(n) nodes) the whole representation requires O(n) space!

O(n) space O(n2) space
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The longest repeating factor of a text T is the longest substring 
that occurs at least twice in T. It is represented by the deepest 
branching node in the suffix tree.

The longest repeating factor of T=mississippi$ is “issi”.

Exercise. Write pseudocode

for a solution to this problem, 

and analyse its time 

complexity. i

s

Using the Suffix Tree: Longest Repeating Factor 



Problem: preprocess a text T of length n so that the following 
queries can be answered efficiently.

Query: given a pair (i,j), return the longest common prefix of T[i..n] 
and T[j..n]

The lowest common ancestor (LCA) of two nodes u and v is the 
deepest node that is an ancestor of both u and v.
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Problem: preprocess a text T of length n so that the following 
queries can be answered efficiently.

Query: given a pair (i,j), return the longest common prefix of T[i..n] 
and T[j..n]

The lowest common ancestor (LCA) of two nodes u and v is the 
deepest node that is an ancestor of both u and v.

Theorem (Bender and Farach-Colton). Any tree of size O(N) can 
be preprocessed in O(N) time so that the LCA of any two nodes 
can be computed in O(1) time.

Theorem. Longest Common Prefix queries in T can be answered 
in O(1) time after O(n) time preprocessing of the suffix tree of T. 
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Problem: preprocess a text T of length n so that the following 
queries can be answered efficiently.

Query: given a pair (i,j), return the longest common prefix of T[i..n] 
and T[j..n]

For T=mississippi$, let (5,8)

be the query. The answer is

“i”, which is the path label of

the LCA of leaves 5 and 8.

Using the Suffix Tree: Longest Common Prefix  
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The key to efficient suffix tree construction are suffix links:

For an explicit node u, slink(u) is the node v such that Sv  is the 
longest proper suffix of Su, i.e., if Su =T[i..j] then Sv =T[i+1..j]. 


For example, let T = banana$.

The suffix links are represented

by the red arrows.

Suffix links
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McCreight’s suffix tree construction is a simple modification of the 
brute force algorithm that computes the suffix links during the 
construction and uses them as shortcuts.

Say we have just added a leaf wi representing the suffix Ti  as a 
child to a node ui . The next step is to add wi+1 as a child to a node 
ui+1. The brute force algorithm finds ui+1 by traversing the partially 
constructed suffix tree from the root; McCreight’s algorithm takes 
a shortcut to slink(ui). This is safe because slink(ui) represents a 
prefix of Ti+1! 


McCreight’s Construction Algorithm



The concept of suffix tree of a string can be easily extended to a 
set of strings.

The generalised suffix tree of a set of strings S1,S2,…,Sk is the 
compacted trie of all the suffixes of all the strings in the set. 

To build it, it suffices to build the suffix tree of their concatenation 
S1$1S2$2…Sk$k, where $1,$2,…,$k are distinct terminal symbols.


S1=miss$

S2=issippi#

Generalised Suffix Tree for a Set of Strings



The Longest Common Substring (LCS) of two strings S and T is 
the longest substring that occurs both in S and in T. 

It is represented by the deepest branching node in the suffix tree 
that have at least a descending leaf corresponding to S and at 
least a descending leaf corresponding to T. 

The LCS of “miss” and

“issippi” is “iss”  


Use of the GST: Longest Common Substring



The LCS of S and T can be found in O(|S|+|T|) time by:

• preprocessing the GST of S and T to mark each branching node 

with the strings corresponding to the leaves descending from 
there. This can be done traversing the GST bottom-up.


• Picking the deepest node marked with both S and T. This can be 
done with a DFS.

S=miss$

T=issippi#


Use of the GST: Longest Common Substring
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Building the suffix tree of S1$1S2$2…Sk$k, requires time linear in 
the sum of the lengths of the strings in the set. 

The suffix tree built in this way, though, contains also spurious 
substrings that span more than one input string.

For example, the concatenation miss$issippi# contains the 
substring ss$issippi#. 

However, because each terminal symbol is distinct and is not in 
any of the original strings, the label on any path from the root to a 
branching node must be a substring of one of the original strings. 

To remove these spurious substrings it suffices to truncate the 
labels of the branches ending at the leaves to the first terminal 
symbol.

Generalised Suffix Tree for a Set of Strings


