
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=nile20

Interactive Learning Environments

ISSN: 1049-4820 (Print) 1744-5191 (Online) Journal homepage: https://www.tandfonline.com/loi/nile20

Computational thinking and mathematics using
Scratch: an experiment with sixth-grade students

José Antonio Rodríguez-Martínez, José Antonio González-Calero & José
Manuel Sáez-López

To cite this article: José Antonio Rodríguez-Martínez, José Antonio González-Calero & José
Manuel Sáez-López (2020) Computational thinking and mathematics using Scratch: an
experiment with sixth-grade students, Interactive Learning Environments, 28:3, 316-327, DOI:
10.1080/10494820.2019.1612448

To link to this article: https://doi.org/10.1080/10494820.2019.1612448

Published online: 02 May 2019.

Submit your article to this journal

Article views: 4038

View related articles

View Crossmark data

Citing articles: 50 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=nile20
https://www.tandfonline.com/loi/nile20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10494820.2019.1612448
https://doi.org/10.1080/10494820.2019.1612448
https://www.tandfonline.com/action/authorSubmission?journalCode=nile20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=nile20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10494820.2019.1612448
https://www.tandfonline.com/doi/mlt/10.1080/10494820.2019.1612448
http://crossmark.crossref.org/dialog/?doi=10.1080/10494820.2019.1612448&domain=pdf&date_stamp=2019-05-02
http://crossmark.crossref.org/dialog/?doi=10.1080/10494820.2019.1612448&domain=pdf&date_stamp=2019-05-02
https://www.tandfonline.com/doi/citedby/10.1080/10494820.2019.1612448#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/10494820.2019.1612448#tabModule

Computational thinking and mathematics using Scratch: an
experiment with sixth-grade students
José Antonio Rodríguez-Martínez a, José Antonio González-Calero a and
José Manuel Sáez-López b

aDepartment of Mathematics, School of Education of Albacete (Edificio Simón Abril), University of Castilla-La Mancha,
Albacete, Spain; bDepartament de Didactics, Faculty of Education, Spanish National University of Distance Education
(UNED), Madrid, Spain

ABSTRACT
The potential benefits from the introduction of programming
environments such as Scratch for learning mathematics has reactivated
research in this area. Nonetheless, there are few studies which attempt
to analyse their influence at the stage of Primary Education. We present
the results of a quasi-experimental piece of research with sixth-grade
students which studies the influence of Scratch both on the acquisition
of mathematical concepts, and on the development of computational
thinking. The experiment consisted of two different phases, a
programming phase linked to the instruction in Scratch and focused on
the acquisition of basic concepts of computational thinking (sequences,
iterations, conditionals, and events-handling), and a mathematical phase
completely oriented towards the resolution of mathematical tasks. In
particular, the mathematical phase focused on word problems whose
resolution involves the use of the least common multiple and the
greatest common divisor. In order to evaluate the aims of the study,
results from tests before and after instruction, both in computational
thinking and in the mathematical standards, were compared. The results
seem to indicate that Scratch can be used to develop both students’
mathematical ideas and computational thinking.

ARTICLE HISTORY
Received 15 December 2017
Accepted 19 December 2018

KEYWORDS
Scratch; computational
thinking; problem solving;
mathematics; elementary
school; programming

Nowadays, society demands citizens with extensive technological knowledge in areas that evolve at a
great rate. Consequently, there is no doubt that technological knowledge and skills will become a
fundamental element in the future promotion and development of current students’ careers.
Additionally, technology has also produced new ways of relating, communicating, learning and
working (Cabero & Llorente, 2010). The introduction of programming languages is essential for the
complete acquisition of digital competence and the appropriate use of information and communi-
cation technology (hereinafter, ICT) by our children (Maloney, Peppler, Kafai, Resnick, & Rusk, 2008).

Although programming languages are currently more accessible to elementary students than the
earliest languages were, other issues need to be overcome to fully exploit their pedagogical capabili-
ties. For instance, a common error consists of designing programming activities highly disconnected
from the students’ real-life context, hence, they are not found motivating (Resnick et al., 2009). These
disadvantages, in addition to technical limitations over past decades, have eclipsed the didactic
potential that the field of programming may promote during early educational stages (Garneli &
Chorianopoulos, 2018). In this context, the present work aims to study the effect of programming

© 2019 Informa UK Limited, trading as Taylor & Francis Group

CONTACT José Antonio González-Calero jose.gonzalezcalero@uclm.es

INTERACTIVE LEARNING ENVIRONMENTS
2020, VOL. 28, NO. 3, 316–327
https://doi.org/10.1080/10494820.2019.1612448

http://crossmark.crossref.org/dialog/?doi=10.1080/10494820.2019.1612448&domain=pdf&date_stamp=2020-04-23
http://orcid.org/0000-0001-8151-676X
http://orcid.org/0000-0003-0842-8151
http://orcid.org/0000-0001-5938-1547
mailto:jose.gonzalezcalero@uclm.es
http://www.tandfonline.com

activities on both the development of sixth-grade students’ computational thinking and mathemat-
ical learning.

Antecedents

On computational thinking

Wing (2008) predicted that by the middle of this century computational thinking (hereinafter, CT)
would be critical in students’ upcoming competences. Although CT is a concept currently in
vogue, the idea of developing CT in K-12 education was first introduced by Papert (1980). Basically,
CT implies the recognition of the computational aspects of the world, and the use of tools and tech-
niques of Computer Science, for the understanding of both natural and artificial processes and
systems (Furber, 2012). More specifically, CT is defined as the ability to solve problems, to design
systems and to understand human behaviour based on different computer concepts and processes
(Wing, 2008). DiSessa (2000) underlined one of the most important perspectives on CT when arguing
that it can be seen as a new form of literacy with the potential of be pervasive across different sub-
jects, contexts, and domains (Weintrop et al., 2016).

In order to constitute a useful operational framework, there is a need to delimit the constituent
components of CT. Although, as Wing (2008) suggests, CT is more complex than programming, pro-
gramming requires the use of CT and is often employed to reach it (Lye & Koh, 2014). Thus, Román-
González, Pérez-González, and Jiménez-Fernández (2017) considered the fundamental concepts of
computing, and the logic-syntax of programming, with the aim of assessing students’ acquisition
of computational thinking. As a result, different computational concepts were taken into account:
basic sequences, loops, iteration, conditionals, functions and variables.

The emergence and lack of maturity of the field of CT may lead to an even more delicate ambi-
guity when looking at areas of education. Thus, teachers are usually unfamiliar with CT and, as a
result, are not able to find connections between educational curricula and CT (Shute, Sun, &
Asbell-Clarke, 2017). This fact leads to little consensus on how CT should be integrated into edu-
cational processes. As a consequence, different visions are translated into a set of unplanned
actions and policies that make the development of CT extremely difficult (Lye & Koh, 2014).
Besides, the absence of a standard definition of the use of CT leads to research studies where
measurements vary greatly across each piece of research, which makes the results less appropriate
and certainly extremely difficult to compare (Shute et al., 2017).

Regardless of the difficulties of properly integrating CT into teaching sequences, different studies
have produced evidence of the beneficial results that the learning of computational concepts may
entail (e.g. Garneli & Chorianopoulos, 2018; Lye & Koh, 2014). So, the acquisition of CT is associated
with an improvement in the ability to reason and solve everyday problems related to practically all
areas of learning (Chen et al., 2017). In addition, Wing (2014) highlights the educational benefits of
being able to think computationally due to the use of abstractions and reasoning skills, which
enhance and reinforce intellectual abilities and, therefore, are transferable to different domains.
Each element within CT, such as loops, conditionals or algorithmic development may be related to
the student’s effectiveness in solving any typology of problem (Chao, 2016). In a study with nine-
year-old students, Mannila et al. (2014) found an association between the completion of activities
aimed at developing students’ CT and a relevant improvement in the participants’ ability to divide
a problem into easier steps, or sub-problems, or the ability to create algorithms with an increasing
level of abstraction. However, these authors stressed the need to include programming activities
in the classroom on a daily basis for better assimilation. Different authors (e.g. Garneli & Chorianopou-
los, 2018; Lye & Koh, 2014) think that it is necessary to develop new studies aimed at analysing how
recent methodologies can promote CT in different traditional areas within student classrooms. In this
regard, mathematics instruction seems a promising field since understanding of mathematic con-
cepts are particularly prone to be enhanced using CT (Hickmott, Prieto-Rodriguez, & Holmes,

INTERACTIVE LEARNING ENVIRONMENTS 317

2018). However, these authors claim that currently there is a lack of empirical studies designed to
include specific practices for K-12 that explicitly connect CT and the learning of mathematics.

Programming languages for teaching in K-12

The first programming language used with educational aims at elementary levels was LOGO (Feur-
zeig, Papert, & Lawler, 2011). Papert (1990) believed that the use of LOGO would help students to
develop their understanding since he considered this programming language as “an instrument
designed to help change the way you talk about and think about mathematics and writing and
the relationship between them”. However, although it is important to underline the existence of a
large amount of research (Bar-On, 1986; Howe, Ross, Johnson, Plane, & Inglis, 1982; Layman & Hall,
1988; Pea, Kurland, & Hawkins, 1985) that indicates eventual pedagogical advantages derived from
the use of LOGO, most of the systematic studies was conducted exclusively with high school stu-
dents. In turn, Buitrago Flórez et al. (2017) point out that skills related to CT must be taught not
just at secondary and upper education levels, but from the elementary stages in order to initiate
the cognitive development of students at an earlier age.

After LOGO’s appearance, a large number of programming languages, many modelled after
seminal LOGO, started to emerge with the aim of introducing coding activities into teaching settings
in K-12 education. Regarding mathematical instruction in elementary levels, different environments
have been employed to study the eventual impact of programming activities on mathematical learn-
ing. Thus, for example, a Logo-like programming environment has been successfully used with kin-
dergarten students to work problem solving strategies and different mathematical skills related to
numbers and geometry (Fessakis, Gouli, & Mavroudi, 2013), or an animated programming world,
ToonTalk, has proved to be effective to work deep mathematical ideas with young students (Kahn,
Sendova, Sacristán, & Noss, 2011). Among these environments, Scratch stands out as one of the
most popular and studied programming languages. It was created to help young people learn to
think creatively, reason systematically and work collaboratively (Brennan, Balch, & Chung, 2014).
Scratch provides a visual programming tool that lets pupils create programmes by manipulating
sequence elements graphically, rather than by coding them textually. This kind of language helps
younger students work more easily and focus on activities. Related to this, Funke, Geldreich, and Hub-
wieser (2017) carried out a study with fourth-grade students and observed that all the participants
were able to learn basic programming using Scratch in just three days.

Several studies point to the benefit in the development of mathematical thinking as a result of
working with Scratch (Calao, Moreno-León, Correa, & Robles, 2015; Calder, 2010; Marmolejo &
Campos, 2013). According to de Morais, Basso, and Fagundes (2017), CT is a field which is especially
appropriate to foster students’ mathematical learning due to the overlapping between both
domains. In addition, the Scratch coding environment may encourage young students to seek new
representations of mathematical ideas and relationships (Hughes, Gadanidis, & Yiu, 2017). Besides,
mathematical activities with Scratch allow teachers to adapt their teaching style to the students’ indi-
vidual characteristics and, at the same time, to deal not only with mathematical knowledge but also
with CT (Benton, Hoyles, Kalas, & Noss, 2017). In the same way, Calder (2010) describes how students
improved mathematical competence during the construction of applications in Scratch. In particular,
the use of Scratch promoted the use of critical, meta-cognitive and reflexive skills, which are closely
related to mathematics.

According to the above, it should be pointed out that although some studies offer evidence in
support of the use of programming activities when teaching mathematics, there is a scarcity of
works that, up to now, have addressed how these activities affect learning in specific areas of math-
ematics. Regarding this, the present work focuses on mathematical concepts whose, to the best of
our knowledge, learning has not previously been addressed by means of programming activities
in a visual language. In particular, concerning the field of mathematics, this work focuses on the div-
isibility concepts of the greatest common divisor (GCD) and the least common multiple (LCM), and

318 J. A. RODRÍGUEZ ET AL.

the use of these concepts in solving word problems. Problem solving in situations that involve the use
of GCD and LCM is one of the mathematical topics at elementary levels where students find the most
difficulties (Bintaş & Çamlı, 2009). Indeed, several studies underline the relevance of these difficulties,
and point to the fact that even pre-service elementary teachers do not have a good understanding of
these concepts (Brown, Thomas, & Tolias, 2002; Gutiérrez-Gutiérrez, Gómez Guzmán, & Rico Romero,
2015; Noblet, 2013).

Objectives

The main aim of this study is to evaluate the potential of programming activities with Scratch to foster
sixth-grade students’ acquisition of mathematical ideas and CT. Specifically, to address this objective
we try to answer the following research questions:

RQ1. Does explicit teaching of computational concepts in a Scratch environment during mathematical instruction
have a significant effect on sixth-grade students’ computational thinking?

RQ2. Does the use of a programming language during mathematical instruction have a significant effect on the
mastery of sixth grade students in the resolution of problems that involve the use of GCD and LCM?

Method

Participants

We performed a between-groups teaching intervention with 47 students from two Primary Education
sixth grade classes from an urban public school in the region of Castilla-La Mancha (Spain). Each class
constituted a different condition in the study (either experimental or control). The experimental
group and the control group were composed of 24 students (10 boys and 14 girls) and 23 students
(9 boys and 14 girls), respectively. There was no evidence that the students had previous training in
programming activities.

Research design

The study is based on a quasi-experimental design that consisted of two phases for both the exper-
imental and the control group (EG and CG, respectively) (Figure 1). The first stage, called the program-
ming phase, was a teaching sequence aimed at providing students with the basic knowledge and
skills needed to create programmes using Scratch. This phase was composed of five sessions
(60 min each) and was completed by both the EG and the CG. It was designed to explicitly work
different computational concepts, namely: (i) sequences (the sequence structure of instructions
that should be followed to complete a goal); (ii) iteration or loop (the control structure that makes
it possible to repeat one or more sequences multiple times), (iii) event handling (instructions that

Figure 1. Phases of the experiment.

INTERACTIVE LEARNING ENVIRONMENTS 319

makes it possible to interact with objects in the programme environment); and, (iv) conditionals
(instructions that either perform an action or not, according to a condition). Although programming
consists of more computational concepts, some of them, such as functions and variables, were not
explicitly considered in this study because these elements are more appropriate for secondary stu-
dents. Indeed, the choice of the computational concepts addressed in this study, which can be
seen as basic elements of CT, is based on the work of Román-González et al. (2017). These authors
underline that these concepts are aligned with some of the CT framework (Brennan & Resnick,
2012) and with standards for students in grades 6–9 from the CSTA Computer Science Standards
(Seehorn et al., 2011).

Additionally, a second phase, called themathematics phase, focused on the teaching of mathemat-
ical learning standards using Scratch as a pedagogical tool. In particular, students completed three
sessions of 60 min aimed at working a mathematical learning standard from the sixth-grade
Spanish curriculum: calculate the least common multiple (LCM) and the greatest common divisor
(GCD), and solve problems involving these concepts. As opposed to the first phase, different con-
ditions were encountered by the CG and the EG during the second stage. While the EG used
Scratch as a tool to solve the different tasks proposed, the CG worked in a classic paper-and-pencil
environment. All the sessions were held once a week.

Before the programming phase, both groups completed a pre-test in order to assess their level in the
field of computational thinking before any intervention. Likewise, at the beginning of themathematics
phase, they also completed a pre-test in which the students’mathematical level in relation to the learn-
ing standard addressed in the study was measured. All the tests carried out in this study lasted 60 min
and were conducted at the same time in both groups. At the end of the second phase, both groups of
students completed twopost-testswith the aimof assessing the student’s level in computational think-
ing and the acquisition of the mathematics learning standards, respectively. The comparison between
pre- and post-tests will allow us to analyse to what extent the acquisition of computational concepts of
CT and mathematical knowledge evolved for each experimental condition.

Instruments

Computational thinking test

The Computational Thinking Test (CTT) was composed of ten items aimed at evaluating four compu-
tational concepts: sequences, iterations or loops, handling of events and conditional sentences. The
test was based on the instrument proposed in Román-González et al. (2017), where a computational
thinking test aimed at 5th to 10th grades is provided. The specific structure within the questionnaire
responds to a less-to-greater difficulty ordering according to the computational concepts previously
presented. In each item, the different answers are presented through a set of symbols which must be
associated with a succession of visual orders in the exercise (e.g. see Figures 2 and 3).

Table 1 lists the different items used in the questionnaire organised according to the main com-
putational concept of CT addressed. Every item involves at least one of the computational concepts
previously mentioned, although due to the nature of these concepts the combined use of elements is
usually necessary as the difficulty increases. The post-test used to measure the students’ level of
acquisition of CT (CTTpost) is a version of the pre-test (CTTpre) with the same number of items, but
with some variations in the items used with the objective of exactly measuring the same objectives.
Both tests related to computational thinking (CTTpre and CTTpost) were designed as online question-
naires and, as a result, participants completed them in the computer classroom.

Mathematical knowledge test

The second instrument, the Mathematical Knowledge Test (MKT), used in the experiment was a test
designed with the aim of evaluating the selected mathematics learning standard. As in the case of

320 J. A. RODRÍGUEZ ET AL.

CT, two versions of the same test with the same structure and features were employed for the pre-test
(MKTpre) and the post-test (MKTpost), respectively. The test was made up of four items, taken from a
specific instrument employed in González-Calero, Martínez, and Sotos (2016). Each item is assessed,
depending on the degree of acceptance of the questionnaire. In Table 2, a brief justification of each
item is presented, together with its literal statement.

Procedure

As we said earlier, during the programming phase the sessions were focused on the Scratch environ-
ment. The design aimed to address the computational concepts and, in turn, offer basic instruction

Figure 2. Example – Item from CTT (Sequences).

Figure 3. Example – Item from CTT (Iterations).

Table 1. Computational concepts in computational thinking test.

Item Computational concepts involved Computational concept evaluated

1 Sequences Sequences
2 Sequences Sequences
3 Sequences /Event handling Event handling
4 Loops/Event handling Event handling
5 Sequences / Loops Loops
6 Loops Loops
7 Conditional/ Event handling Conditional
8 Sequences/Conditional/Event handling Conditional
9 Sequences/ Event handling / Loops Loops
10 Sequences /Iteration /Conditional Conditional

INTERACTIVE LEARNING ENVIRONMENTS 321

that allowed students to use Scratch as a tool to solve mathematical problems. After a first session
aimed at the students becoming familiar with the Scratch environment, each session was devoted
to specifically working each of the computational concepts. Furthermore, following the recommen-
dations of Brennan et al. (2014), each session was organised in two different periods: firstly, where
group activities were carried out, and in which the component of the computational thinking in ques-
tion was introduced in tasks where Scratch was not yet used. After this, a second part was developed,
where the concept was transferred to activities with Scratch. Additionally, this design is aligned with
suggestions presented in Benton et al. (2017), who support activities in which the students them-
selves play the role of a programming object as this constitutes an adequate basis to later identify
actions in the programming language. For example, in one of the activities the group was divided
into pairs and one of the members watched a video showing a dance. Then, this student, using
just a sequence of words, instructed his/her partner to do the dance. This type of activity works as
a bridge to help students understand and assimilate computational concepts and to practice them
more easily than in a real programming environment.

In the mathematics phase, the EG used Scratch to solve word problems. In particular, students
worked in pairs using a computer. It was decided to group the students this way in order to facilitate
student interactions and discussions concerning the solution to the different problems. Each pair was
asked to develop a Scratch project in which they had to solve a problem related to GCD and LCM. At
the beginning of the first session, the teacher (one of the authors) showed different examples of how
the situations depicted in the word problems may be modelled using Scratch (e.g. see Figure 4). Some
of the instructions (set of blocks) used in the example projects were highlighted; for instance, the
different use of control blocks (loops and conditionals) or a sequence order that students should
use in their projects. Different recommendations were made, such as the possibility of copying
parts of the blocks that were already developed in all the previous exercises. After presenting
these examples, each pair of students was given a list of word problems, completely different
from the examples used in the programming phase, and were asked to use Scratch to solve them.
In particular, they were asked to code a programme for each problem that could be of use in
order to find the solution.

On the other hand, the CG worked on exactly the same problems as the EG, but using a traditional
approach in a paper-and-pencil setting. In order not to introduce differences between conditions, stu-
dents were also grouped in pairs in the CG, and they were invited to discuss their solutions with their
partners. In addition, the same examples presented in the EG were also offered at the beginning of
each session to the CG as an example of models that can be employed to represent these mathemat-
ical situations. As students in the EG had to code a programme for each problem, the pace of solving
problems was slower in comparison to the CG. In fact, while students from the EG completed three

Table 2. Classification and description of items of MKT.

Item Description Statement

1 Word problem whose solution implies calculating the
greatest common divisor. The word maximum is used in
the statement.

Two ropes, 18 and 24 cm long, respectively, must to be cut
into equal pieces. Find out the maximum length of these
pieces.

2 Word problem whose solution implies calculating the
greatest common divisor. The word minimum is used in
the statement.

We have two wires, one 42 m long and the other 35 m long. If
we want to cut them into the minimum number of equal
pieces, what will be the length of the pieces?

3 Word problem whose solution implies calculating the least
common multiple. The word maximum is used in the
statement.

Philip and Albert study at UCLM, and coincide from time to
time in some classes, practical classes, etc. In addition,
whatever happens, Philip goes to the cafeteria every 18
days and Albert every 15. If today they coincide at the
cafeteria, work out the maximum number of days it would
take for them to meet again.

4 Word problem whose solution implies calculating the least
common multiple. The word minimum is used in the
statement.

One beacon flashes its light every 12 s, and another one every
18 s. If they have just flashed simultaneously, find out what
the minimum time to flash together again will be.

322 J. A. RODRÍGUEZ ET AL.

problems (one per session) in this phase, participants from the CG solved six problems (two per
session).

In relation to mathematical knowledge, the only feedback that students from both the CG and EG
were given is that, at the end of each session, they were informed about the numerical result of each
problem so that they could check if they had solved them properly.

Results

RQ1. Computational thinking

In order to test the first aim of the study, differences between CTTpre and CTTpost are compared. On
both tests, correct answers were given a score of 1, and incorrect ones 0. Finally, each student was
assigned a global score on each test as a result of adding the scores for each question. Before analys-
ing eventual gains on students’ computational thinking during the intervention, an independent t-
test was employed to assure that the students’ prior level in computational thinking between con-
ditions was homogenous. Both groups scored no significantly different in the CTTpre (t(44.04) =
−0.92, p = .3612, r = 0.14). After checking that both groups were initially comparable, a paired-
sample t-test was conducted to examine if there were significant differences in the CTT before
and after the intervention. Prior to conducting the analysis, we checked that the assumptions for
parametric tests were satisfied. On average, students showed better results in the CTTpost (M =
7.15, SD = 1.93) than in the CTTpre (M = 4.68, SD = 1.78), t(46) =−6.23, p < .001, r = .68).

At the same time, students from CG showed similar gains in their computational thinking between
pre-test and post-test (M = 2.48, SD = 0.63) compared to students from EG (M = 2.46, SD = 0.51). An
independent t-test confirmed the absence of statistically significant differences between groups (t
(42.77) = 0.02, p = .9804, r = .004).

The assumptions for parametric tests were not fulfilled when studying gains between CTTpre and
CTTpost for each computational concept. Consequently, we used a non-parametric test, the Wilcoxon
signed-rank test. Results showed statistical differences after the intervention for all the components:
sequences (p = .0007, r = 0.35), loops (p = .0285, r = 0.23), conditionals (p < .001, r = 0.41) and events-
handling (p < .001, r = 0.37).

Regarding RQ1, the results seem to indicate a significant effect of explicit instruction in compu-
tational concepts on the level of the participants’ computational thinking. In addition, no differences
in CT were detected between the EG and CG, despite the fact that participants in the EG worked with
Scratch during the mathematics phase, while students in the CG just worked in a paper-and-pencil
environment.

Figure 4. Screenshot of a word problem modelled using Scratch.

INTERACTIVE LEARNING ENVIRONMENTS 323

RQ2. Mathematical knowledge

As in the case of the CTT, each student was assigned a global score in the MKTpre and MKTpost as a
result of adding the scores for each question. Similarly, completely correct solutions were scored as 1,
and incorrect ones 0. Since the assumption of normality was not satisfied, a non-parametric test, the
Wilcoxon rank-sum test, was used to analyse the students’ prior level in the mathematical learning
standard within the scope of the study. No statistical differences were observed between both
groups in the MKTpre (W = 285.5, p = .8349, r = .03).

Again, since assumptions for parametric tests were not fulfilled, Wilcoxon signed-ranked tests
were conducted to examine if there were differences in the students’ mathematical performance
before and after the intervention. No significant differences were shown in the CG between
MKTpre (M = 1.96, SD = 1.07) and MKTpost (M = 2.43, SD = 1.44), although it did represent a medium-
sized effect (p = .0522, r = 0.29). On the other hand, the tests revealed a significant improvement in
the EG between MKTpre (M = 1.92, SD = 1.44) and MKTpost (M = 2.54, SD = 1.22), but also with a
medium-sized effect (p = .0224, r = 0.33).

With regard to RQ2, the data gathered reveals a relevant improvement in the sixth-grade students’
proficiency in solving word problems related to LCM and GCF after completing programming activi-
ties with Scratch. Although the differences between MKTpre and MKTpost are only statistically signifi-
cant in the EG, the comparisons of the effect sizes reveal that learning gains between both conditions
are very similar. As a result, although students from the EG solved a lower number of problems than
students from the CG during the intervention, we can affirm that the use of Scratch does not produce
a negative effect on the students’ learning of the mathematical concepts addressed in the present
work in comparison with students instructed using a traditional approach.

Conclusions

The main objective of this piece of research was to analyse the potential of programming activities
using Scratch for both the learning of mathematical ideas and the acquisition of computational think-
ing (CT) in sixth-grade students. First, our results make it clear that the students’ prior experience with
CT was scarce. This fact indicates that the development of computational concepts does not inciden-
tally take place over the elementary education stage. On the contrary, it may be an indicator that
explicit instruction is necessary in order to develop basic computational concepts. As a consequence,
modifications should be introduced to official curricula to appropriately tackle the question of CT,
which is considered to be a critical skill for citizens in future years (Wing, 2008). Related to this,
our results underline the effectiveness of specific instruction in developing computational concepts.
In particular, after just five sessions a significant increase in the students’ level of CT was detected,
whose effect size, according to Cohen (1988), may be considered as very large.

Concerning the students’ proficiency in solving word problems related to the concepts of LCM
and GCD, a statistically significant improvement has been detected in the participants who solved
problems using Scratch, while no significant differences occurred in the control group. Besides this
fact, a more detailed analysis shows that gains in both conditions, although slightly higher for the
experimental group, may be classified as medium-sized. Although previous studies underlined the
benefits of programming activities with Scratch in the field of problem-solving (e.g. Benton et al.,
2017; Calao et al., 2015; Calder, 2010), our results do not indicate a substantial improvement in com-
parison with a more traditional approach. However, our data seems to confirm that no detrimental
effects are produced due to the teaching of problem solving through Scratch. This fact opens the
door to cross-disciplinary approaches in which computational and mathematical concepts can be
addressed simultaneously.

There are some limitations that can lead us to recommending future studies. First, the work
addresses a specific typology of word problems, and the duration of the mathematical phase is
short. Supported by our results, longitudinal research could be designed to deal with concepts

324 J. A. RODRÍGUEZ ET AL.

and skills from other mathematical areas (e.g. geometry or algebra). In addition, this study was not
designed to analyse other interesting variables, such as the students’ attitude towards mathematics
or the student’s engagement over time. However, longitudinal studies with a larger sample could
investigate such variables to further enrich research and practice. Similarly, it should be underlined
that the present work has evaluated the sixth-grade students’ acquisition of a specific subset of
basic computational concepts. Nonetheless, other computational concepts, such as operators and
expressions, have not formally included in this study. Additional proposals and research studies
are necessary to evaluate the learning of more abstract computational concepts by Primary school
students.

Disclosure statement

No potential conflict of interest was reported by the authors.

Notes on contributors

José Antonio Rodriguez is a primary education teacher. He is member of the research group Labintic, which is focused on
the analysis of the integration of technology in teaching and learning. His main research interests include educational
mathematics, computational thinking, and learning analytics.

José Antonio González-Calero is currently a lecturer in the School of Education of Albacete at the University of Castilla-La
Mancha. He is a member of the Spanish Society of Research in Mathematics Education (SEIEM). His research interests
include educational mathematics, word problem solving, and interactive learning environments.

José-Manuel Sáez-López is a lecturer in the Faculty of Education at the National University of Distance Education (UNED).
His lines of research are the integration of educational technology, methodological strategies, gamification, and pro-
gramming in K-12. It has been recognised as Microsoft Expert Educator 2014 and Microsoft Innovative Expert in 2015.

ORCID

José Antonio Rodríguez-Martínez http://orcid.org/0000-0001-8151-676X
José Antonio González-Calero http://orcid.org/0000-0003-0842-8151
José Manuel Sáez-López http://orcid.org/0000-0001-5938-1547

References

Bar-On, E. (1986). A programming approach to mathematics. Computers & Education, 10(4), 393–401. doi:10.1016/0360-
1315(86)90015-1

Benton, L., Hoyles, C., Kalas, I., & Noss, R. (2017). Bridging primary programming and mathematics: Some findings of
design research in England. Digital Experiences in Mathematics Education, 3(2), 115–138. doi:10.1007/s40751-017-
0028-x

Bintaş, J., & Çamlı, H. (2009). The effect of computer aided instruction on students’ success in solving LCM and GCF pro-
blems. Procedia - Social and Behavioral Sciences, 1(1), 277–280. doi:10.1016/J.SBSPRO.2009.01.050

Brennan, K., Balch, C., & Chung, M. (2014). Creative computing. Retrieved from http://scratched.gse.harvard.edu/guide/
Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational think-

ing. Annual American Educational Research Association Meeting, Vancouver, BC, Canada, 1–25. https://doi.org/10.1.1.
296.6602

Brown, A., Thomas, K., & Tolias, G. (2002). Conceptions of divisibility: Success and understanding. In S. Campbell & R.
Zazkis (Eds.), Learning and teaching number theory (pp. 41–82). Westport, CA: Ablex.

Buitrago Flórez, F., Casallas, R., Hernández, M., Reyes, A., Restrepo, S., & Danies, G. (2017). Changing a generation’s way of
thinking: Teaching computational thinking through programming. Review of Educational Research, 87(4), 834–860.
doi:10.3102/0034654317710096

Cabero, J., & Llorente, M. d. C. (2010). Comunidades virtuales para el aprendizaje. Edutec. Revista Electrónica de Tecnología
Educativa, 34, 1–10. doi:10.21556/EDUTEC.2010.34.419

Calao, L. A., Moreno-León, J., Correa, H. E., & Robles, G. (2015). Developing mathematical thinking with Scratch. In G.
Conole, T. Klobučar, C. Rensing, J. Konert, & E. Lavoué (Eds.), Design for Teaching and Learning in a Networked
World. Lecture Notes in Computer Science, vol 9307 (pp. 17–27). Cham: Springerdoi:10.1007/978-3-319-24258-3_2

INTERACTIVE LEARNING ENVIRONMENTS 325

http://orcid.org/0000-0001-8151-676X
http://orcid.org/0000-0003-0842-8151
http://orcid.org/0000-0001-5938-1547
https://doi.org/10.1016/0360-1315(86)90015-1
https://doi.org/10.1016/0360-1315(86)90015-1
https://doi.org/10.1007/s40751-017-0028-x
https://doi.org/10.1007/s40751-017-0028-x
https://doi.org/10.1016/J.SBSPRO.2009.01.050
http://scratched.gse.harvard.edu/guide/
https://doi.org/10.1.1.296.6602
https://doi.org/10.1.1.296.6602
https://doi.org/10.3102/0034654317710096
https://doi.org/10.21556/EDUTEC.2010.34.419
https://dx.doi.org/10.1007/978-3-319-24258-3_2

Calder, N. (2010). Using Scratch: An integrated problem-solving approach to mathematical thinking. Australian Primary
Mathematics Classroom, 15(4), 9–14. doi:10.1007/s10857-012-9226-z

Chao, P. Y. (2016). Exploring students’ computational practice, design and performance of problem-solving through a
visual programming environment. Computers and Education, 95, 202–215. doi:10.1016/j.compedu.2016.01.010

Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., & Eltoukhy, M. (2017). Assessing elementary students’ compu-
tational thinking in everyday reasoning and robotics programming. Computers and Education, 109, 162–175. doi:10.
1016/j.compedu.2017.03.001

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. New York, NY: Routledge Academic.
de Morais, A. D., Basso, M. V. d. A., & Fagundes, L. d. C. (2017). Educação Matemática & Ciência da Computação na escola:

aprender a programar fomenta a aprendizagem de matemática? Ciência & Educação (Bauru), 23(2), 455–473. doi:10.
1590/1516-731320170020011

DiSessa, A. A. (2000). Changing minds: Computers, learning, and literacy. Cambridge: MIT Press.
Fessakis, G., Gouli, E., & Mavroudi, E. (2013). Problem solving by 5–6 years old kindergarten children in a computer pro-

gramming environment: A case study. Computers & Education, 63, 87–97. doi:10.1016/J.COMPEDU.2012.11.016
Feurzeig, W., Papert, S. A., & Lawler, B. (2011). Programming-languages as a conceptual framework for teaching math-

ematics. Interactive Learning Environments, 19(5), 487–501. doi:10.1080/10494820903520040
Funke, A., Geldreich, K., & Hubwieser, P. (2017). Analysis of Scratch projects of an introductory programming course for

primary school students. In 2017 IEEE global engineering education conference (EDUCON) (pp. 1229–1236). IEEE. doi:10.
1109/EDUCON.2017.7943005

Furber, S. (2012). Shutdown or restart? The way forward for computing in UK schools. London: The Royal Society.
Garneli, V., & Chorianopoulos, K. (2018). Programming video games and simulations in science education: Exploring com-

putational thinking through code analysis. Interactive Learning Environments, 26(3), 386–401. doi:10.1080/10494820.
2017.1337036

González-Calero, J. A., Martínez, S., & Sotos, M. A. (2016). La tendencia a restar en la resolución de problemas de m.c.d. en
alumnos de primaria. In J. A. Macías, A. Jiménez, J. L. González, M. T. Sánchez, P. Hernández, C. Fernández,… A.
Berciano (Eds.), Investigación en Educación Matemática XX (pp. 295–304). Málaga: SEIEM.

Gutiérrez-Gutiérrez, A., Gómez Guzmán, P., & Rico Romero, L. (2015). Conocimiento matemático sobre números y oper-
aciones de los estudiantes de Magisterio. Educación XX1, 19(1). doi:10.5944/educxx1.15581

Hickmott, D., Prieto-Rodriguez, E., & Holmes, K. (2018). A scoping review of studies on computational thinking in K–12
mathematics classrooms. Digital Experiences in Mathematics Education, 4(1), 48–69. doi:10.1007/s40751-017-0038-8

Howe, J. A. M., Ross, P. M., Johnson, K. R., Plane, F., & Inglis, R. (1982). Teaching mathematics through programming in the
classroom. Computers & Education, 6(1), 85–91. doi:10.1016/0360-1315(82)90016-1

Hughes, J., Gadanidis, G., & Yiu, C. (2017). Digital making in elementary mathematics education. Digital Experiences in
Mathematics Education, 3(2), 139–153. doi:10.1007/s40751-016-0020-x

Kahn, K., Sendova, E., Sacristán, A. I., & Noss, R. (2011). Young students exploring cardinality by constructing infinite pro-
cesses. Technology, Knowledge and Learning, 16(1), 3–34. doi:10.1007/s10758-011-9175-0

Layman, J., & Hall, W. (1988). Logo: A cause for concern. Computers & Education, 12(1), 107–112. doi:10.1016/0360-1315
(88)90063-2

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through programming: What
is next for K-12? Computers in Human Behavior, 41, 51–61. doi:10.1016/j.chb.2014.09.012

Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M., & Rusk, N. (2008). Programming by choice. In Proceedings of the 39th
SIGCSE technical symposium on computer science education - SIGCSE ‘08 (Vol. 40, pp. 367–371). New York: ACM
Press. doi:10.1145/1352135.1352260

Mannila, L., Dagiene, V., Demo, B., Grgurina, N., Mirolo, C., Rolandsson, L., & Settle, A. (2014). Computational thinking in K-9
education. In Proceedings of the working group reports of the 2014 on innovation & technology in computer science edu-
cation conference - ITiCSE-WGR ‘14 (pp. 1–29). New York, NY: ACM Press. doi:10.1145/2713609.2713610.

Marmolejo, J. E., & Campos, V. (2013). Pensamiento lógico matemático con Scratch en nivel básico. Revista Vínculos, 9(1),
87–95. doi:10.14483/issn.2322-939X

Noblet, K. (2013). Preservice elementary teachers’ understanding of greatest common factor story problems. In
Proceedings of the 16th annual conference on research in undergraduate mathematics education (pp. 219–225).
Denver: Sigmaa.

Papert, S. A. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic Books.
Papert, S.A. (1990). A critique of technocentrism in thinking about the school of the future. Cambridge, MA: Epistemology

and Learning Group, MIT Media Laboratory.
Pea, R. D., Kurland, D. M., & Hawkins, J. (1985). Logo and the development of thinking skills. In M. Chen & W. Paisley (Eds.),

Children and microcomputers: Research on the newest medium (pp. 193–317). Norwood, NJ: Ablex Publishing Corp.
Resnick, M., Silverman, B., Kafai, Y., Maloney, J., Monroy-Hernández, A., Rusk, N.,… Silver, J. (2009). Scratch: Programming

for all. Communications of the ACM, 52(11), 60–67. doi:10.1145/1592761.1592779
Román-González, M., Pérez-González, J. C., & Jiménez-Fernández, C. (2017). Which cognitive abilities underlie compu-

tational thinking? Criterion validity of the computational thinking test. Computers in Human Behavior, 72, 678–691.
doi:10.1016/j.chb.2016.08.047

326 J. A. RODRÍGUEZ ET AL.

https://doi.org/10.1007/s10857-012-9226-z
https://doi.org/10.1016/j.compedu.2016.01.010
https://doi.org/10.1016/j.compedu.2017.03.001
https://doi.org/10.1016/j.compedu.2017.03.001
https://dx.doi.org/10.1590/1516-731320170020011
https://dx.doi.org/10.1590/1516-731320170020011
https://doi.org/10.1016/J.COMPEDU.2012.11.016
https://doi.org/10.1080/10494820903520040
https://doi.org/10.1109/EDUCON.2017.7943005
https://doi.org/10.1109/EDUCON.2017.7943005
https://dx.doi.org/10.1080/10494820.2017.1337036
https://dx.doi.org/10.1080/10494820.2017.1337036
https://doi.org/10.5944/educxx1.15581
https://doi.org/10.1007/s40751-017-0038-8
https://doi.org/10.1016/0360-1315(82)90016-1
https://doi.org/10.1007/s40751-016-0020-x
https://doi.org/10.1007/s10758-011-9175-0
https://doi.org/10.1016/0360-1315(88)90063-2
https://doi.org/10.1016/0360-1315(88)90063-2
https://doi.org/10.1016/j.chb.2014.09.012
https://doi.org/10.1145/1352135.1352260
https://doi.org/10.1145/2713609.2713610
https://doi.org/10.14483/issn.2322-939X
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1016/j.chb.2016.08.047

Seehorn, D., Carey, S., Fuschetto, B., Lee, I., Moix, D., O’Grady-Cunniff, D.,… Verno, A. (2011). CSTA k–12 computer science
standards: Revised 2011. New York, NY: ACM.

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22, 142–
158. doi:10.1016/j.edurev.2017.09.003

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining computational thinking
for mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127–147. doi:10.1007/
s10956-015-9581-5

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences, 366(1881), 3717–3725. doi:10.1098/rsta.2008.0118

Wing, J. M. (2014). Computational thinking benefits society [Blog post]. Retrieved from http://socialissues.cs.toronto.edu/
index.html%3Fp=279.html

INTERACTIVE LEARNING ENVIRONMENTS 327

https://doi.org/10.1016/j.edurev.2017.09.003
https://doi.org/10.1007/s10956-015-9581-5
https://doi.org/10.1007/s10956-015-9581-5
https://doi.org/10.1098/rsta.2008.0118
http://socialissues.cs.toronto.edu/index.html%3Fp=279.html
http://socialissues.cs.toronto.edu/index.html%3Fp=279.html

	Abstract
	Antecedents
	On computational thinking
	Programming languages for teaching in K-12

	Objectives
	Method
	Participants
	Research design

	Instruments
	Computational thinking test
	Mathematical knowledge test

	Procedure
	Results
	RQ1. Computational thinking
	RQ2. Mathematical knowledge

	Conclusions
	Disclosure statement
	Notes on contributors
	ORCID
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.245 841.846]
>> setpagedevice

