
Bayesian Statistics: Laboratory 6

Vincenzo Gioia

DEAMS

University of Trieste

vincenzo.gioia@units.it

Building D, room 2.13

Office hour: Friday, 15 - 17

19/05/2023

1/41

mailto:vincenzo.gioia@units.it

Outline

1 Cockroaches’ example: Recap from the previous Labs

2 Negative Binomial hierarchical regression model with varying intercept,
slope and time varying-effect

3 Model Comparison

2/41

Section 1

Cockroaches’ example: Recap from the previous Labs

3/41

Recap from the previous Labs

During the last labs we implemented several regression models for
analysing the relationship between the number of coackroaches
complaints and the number of traps considering

Poisson distribution

Model 1: Including only the covariate traps

Model 2: Adding to Model 1 the covariate super and the offset sqfoot

Negative Binomial (accounting for the overdispersion)

Model 3: Same linear predictor of Model 2

Model 4/5: Hierarchical model with varying intercept (CP/NCP)

Model 6: Hierarchical model with varying intercept and slope (NCP
and on an extended version of the data)

4/41

Load packages and data

Here, we directly load the longer version of the dataset

library(rstan)
library(loo)
library(bayesplot)
theme_set(bayesplot::theme_default())
set.seed(123)
stan_dat_hier_long <- readRDS('pest_data_long.RDS')

Exercise
While thereafter we will use the extended version of the dataset, a
good exercise would be to consider the smaller dataset and repeat the
analysis addressing the model comparison. Maybe, you will discover
some differences comparing the models

5/41

NB hier. model with varying intercept and slope

Recall the specification of the last model we implemented

complaintsb,t ∼ Neg − Binomial(λb,t , ϕ)
λb,t = exp (ηb,t)
ηb,t = µb + κb trapsb,t + log(sqfoot)i

µb ∼ N (α + building_databζ, σµ)
κb ∼ N (β + building_databγ, σκ)
α ∼ N (log(4), 1)
ζk ∼ N (0, 1), k = 1, . . . , 4
σµ ∼ T N (0, 1, 0, +∞)
β ∼ N (−0.25, 1)

γk ∼ N (0, 1), k = 1, . . . , 4
σκ ∼ T N (0, 1, 0, +∞)

ϕ−1 ∼ T N (0, 1, 0, +∞)

6/41

NB hier. model with varying intercept and slope

Compile

comp_model_NB_hier_slopes <- stan_model('hier_NB_regression_ncp_slopes.stan')

Sampling

fit_NB_hier_slopes <- sampling(
comp_model_NB_hier_slopes,
data = stan_dat_hier_long,
refresh = 0,
control = list(adapt_delta = 0.95))

Warning: There were 4 divergent transitions after warmup. See
https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
to find out why this is a problem and how to eliminate them.

Warning: Examine the pairs() plot to diagnose sampling problems

7/41

NB hier. model with varying intercept and slope - PPCs

We have not yet explored how the number complaints vary as
function of the time

Take a look at whether there is any pattern over time by analysing
the PPCs by month

Here, we restrict the check to only the first year of data

y_rep <- as.matrix(fit_NB_hier_slopes, pars = "y_rep")
sel_1year <- which(stan_dat_hier_long$mo_idx %in% 1:12)
with(stan_dat_hier_long, ppc_stat_grouped(

y = complaints[sel_1year],
yrep = y_rep[, sel_1year],
group = mo_idx[sel_1year],
stat = 'mean'

) + xlim(0, 11))

8/41

NB hier. model with varying intercept and slope - PPCs

We are missing the variation over time for the number of complaints

9 10 11 12

5 6 7 8

1 2 3 4

0 3 6 9 0 3 6 9 0 3 6 9 0 3 6 9

0 3 6 9 0 3 6 9 0 3 6 9 0 3 6 9

0 3 6 9 0 3 6 9 0 3 6 9 0 3 6 9

T = mean
T(yrep)

T(y)

9/41

Time series of complaints and traps for each building
Several competing factors can be related to the change over time of
the number of complaints. There might be more roaches in the
environment during the summer, but also more roach control in the
summer as well

building_id: 47 building_id: 62 building_id: 70 building_id: 93 building_id: 98

building_id: 5 building_id: 13 building_id: 26 building_id: 37 building_id: 45

ge
n

ap
r

lu
g ot
t

ge
n

ap
r

lu
g ot
t

ge
n

ap
r

lu
g ot
t

ge
n

ap
r

lu
g ot
t

ge
n

ap
r

lu
g ot
t

ge
n

ap
r

lu
g ot
t

ge
n

ap
r

lu
g ot
t

ge
n

ap
r

lu
g ot
t

ge
n

ap
r

lu
g ot
t

ge
n

ap
r

lu
g ot
t

0
5

10
15

0
5

10
15

0
5

10
15

0
5

10
15

0
5

10
15

0
5

10
15

0
5

10
15

0
5

10
15

0
5

10
15

0
5

10
15

Month

Live−in super FALSE TRUE Number of complaints Number of traps

10/41

Section 2

Negative Binomial hierarchical regression model with
varying intercept, slope and time varying-effect

11/41

NBH: varying intercept/slope and time varying-effect

In addition, maybe after a first sighting of roaches in a building,
residents are more vigilant and the number complaints could increase

We can expand the model including a (log-) additive monthly effect,
mot , that is

ηb,t = µb + κb trapsb,t + mot + log(sqfoot)b

We specify the following autoregressive (of order 1) prior structure for
our monthly effects

mot ∼ N (ρ mot−1, σmo)

Equivalently

mot = ρ mot−1 + ϵt , ϵt ∼ N (0, σmo) ρ ∈ [−1, 1]

12/41

NBH: varying intercept/slope and time varying-effect

Using the stationary assumption of the AR models, we get the
marginal distribution for mo1

Marginal variance: by independence of ϵt−1 and ϵt and by stationarity

Var(mot) = Var(ρmot−1) + Var(ϵt) = ρ2Var(mot) + σ2
mo =⇒ Var(mot) = σ2

mo
1 − ρ2

Marginal mean (for ρ ̸= 1)

E(mot) = E(ρmot−1) + E(ϵt) = 0
1 − ρ

= 0

Finally,

mo1 ∼ N

(
0,

σmo√
1 − ρ2

)
mot ∼ N (ρ mot−1, σmo)

13/41

NBH: varying intercept/slope and time varying-effect

There is a problem in Stan for specifying the prior for the
autoregressive parameter, ρ, because Stan does not implement
densities on [−1, 1]

Thus, we overcome the problem by using a variable transformation

That is, we define a variable rho_raw (ρ̃) defined in [0, 1] and we
transform it to get a density on [−1, 1]

ρ̃ ∈ [0, 1] ρ = 2 × ρ̃ − 1

There could be positive or negative association between months, but
there should be a bit more weight placed on positive ρ. Thus, we
could consider ρ̃ ∼ Beta(10, 5), that is an informative prior pushing
the parameter towards positive estimate of ρ

14/41

NBH: varying intercept/slope and time varying-effect

Take a look to the Stan file
hier_NB_regression_ncp_slopes_mos.stan

Compile

comp_model_NB_hier_mos <- stan_model('hier_NB_regression_ncp_slopes_mos.stan')

Sampling

fit_NB_hier_mos <- sampling(comp_model_NB_hier_mos,
data = stan_dat_hier_long,
refresh = 0,
control = list(adapt_delta = 0.95))

15/41

NBH: varying intercept/slope and time varying-effect

We do not expand further the model, although we could

Rather, we run through our PPCs

y_rep2 <- as.matrix(fit_NB_hier_mos, pars = "y_rep")
ppc_dens_overlay(

y = stan_dat_hier_long$complaints,
yrep = y_rep[1 : 200,]

)

16/41

NBH: varying intercept/slope + time varying-effect - PPCs

It looks OK, with no large difference w.r.t. the previous model

0 100 200 300

y
yrep

17/41

NBH: varying intercept/slope + time varying-effect - PPCs

Again, PPCs by month

sel_1year <- which(stan_dat_hier_long$mo_idx %in% 1 : 12)
with(stan_dat_hier_long,

ppc_stat_grouped(
y = complaints[sel_1year],
yrep = y_rep2[, sel_1year],
group = mo_idx[sel_1year],
stat = 'mean') + xlim(0, 11))

18/41

NBH: varying intercept/slope + time varying-effect - PPCs

As we can see, our monthly random intercept has captured a monthly
pattern across all the buildings

9 10 11 12

5 6 7 8

1 2 3 4

0 3 6 9 0 3 6 9 0 3 6 9 0 3 6 9

0 3 6 9 0 3 6 9 0 3 6 9 0 3 6 9

0 3 6 9 0 3 6 9 0 3 6 9 0 3 6 9

T = mean
T(yrep)

T(y)

19/41

NBH: varying intercept/slope + time varying-effect - PPCs

We can also compare the prior and posterior for the autoregressive
parameter to see how much we have learned. Here, we compare
draws from prior and draws from posterior

rho_draws <- cbind(
2 * rbeta(4000, 10, 5) - 1, # draw from prior
as.matrix(fit_NB_hier_mos, pars = "rho")

)
colnames(rho_draws) <- c("prior", "posterior")
mcmc_hist(rho_draws, freq = FALSE, binwidth = 0.025,

facet_args = list(nrow = 2)) + xlim(-1, 1)

20/41

NBH: varying intercept/slope + time varying-effect - PPCs

posterior

prior

−1.0 −0.5 0.0 0.5 1.0

−1.0 −0.5 0.0 0.5 1.0

21/41

NBH: varying intercept/slope + time varying-effect - PPCs

Plot of predictions by number of bait stations, with uncertainty
intervals

with(stan_dat_hier_long, ppc_intervals(
y = complaints,
yrep = y_rep2,
x = traps) +
labs(x = "Number of traps", y = "Number of complaints"))

22/41

NBH: varying intercept/slope + time varying-effect - PPCs
Overall, the model seems to capture the data

0

50

100

150

0 5 10 15
Number of traps

N
um

be
r

of
 c

om
pl

ai
nt

s

y
yrep

23/41

NBH: varying intercept/slope + time varying-effect - PPCs

Standardised residuals:

mean_y_rep2 <- colMeans(y_rep2)
mean_inv_phi2 <- mean(as.matrix(fit_NB_hier_slopes,

pars = "inv_phi"))
std_resid2 <- (stan_dat_hier_long$complaints - mean_y_rep2) /

sqrt(mean_y_rep2 + mean_y_rep2ˆ2*mean_inv_phi2)
ggplot() +

geom_point(mapping = aes(x = mean_y_rep2, y = std_resid2)) +
geom_hline(yintercept = c(-2,2))

24/41

NBH: varying intercept/slope + time varying-effect - PPCs
Only one observation seems not to be well captured: try to discover
which is and investigate the source
for this large residual. Do we miss a source of information in the model?

0.0

2.5

5.0

7.5

0 25 50 75
mean_y_rep2

st
d_

re
si

d2

25/41

Section 3

Model Comparison

26/41

Model Comparison
We built several models of increasing complexity: it is the turn to
compare them

We compare the models leveraging predictive information criteria (IC)

crit = −2êlpd = −2(l̂pd − parameters penalty)
l̂pd is a measure of the log predictive density of the fitted model:
computed log pointwise predictive density

l̂ppd =
n∑

i=1
log
(

1
S

S∑
s=1

p(yi |θ(s))
)

with θ(s), s = 1, . . . , S are the draws from π(θ|y)

parameters penalty is a penalization accounting for the effective
number of parameters of the fitted model

Lower is the value for an IC, and the better is the model fit
27/41

Model comparison

Several well known IC belongs to this class of predictive IC, such as
AIC, BIC and DIC

Here, we will see the Watanabe AIC (WAIC) and the leave-one-out
(LOO) cross-validation

The purpose of using LOO or WAIC is to estimate the pointwise
out-of-sample prediction accuracy from a fitted Bayesian model
using the log-likelihood evaluated at the posterior simulations of the
parameter values

For more details, see
https://link.springer.com/article/10.1007/s11222-013-9416-2/ and
https://link.springer.com/article/10.1007/s11222-016-9696-4

28/41

https://link.springer.com/article/10.1007/s11222-013-9416-2/
https://link.springer.com/article/10.1007/s11222-016-9696-4

Model comparison: WAIC

The WAIC takes the form

WAIC = −2(̂lppd + 2pWAIC)

with
pWAIC =

n∑
i=1

Varθ|y(log(p(yi|θ)),

which computes the variance separately for each data point. We can
practically compute this quantity by using the sample variance

Compared to AIC and DIC, WAIC has the desirable property of
averaging over the posterior distribution rather than conditioning
on a point estimate

29/41

Model comparison: LOO
Exact CV requires re-fitting the model with different training sets, while
approximate leave-one-out CV (LOO) can be computed easily using importance
sampling

Drawback: resulting estimate is noisy, as the variance of the importance weights
can be large or even infinite

The LOO can be improved using Pareto smoothed importance sampling (PSIS),
which applies a smoothing procedure to the importance weights, obtaining ω

(s)
i

The PSIS estimate of the LOO elpd determines the LOOIC criteria:

LOOIC = −2
n∑

i=1

log

{(S∑
s=1

ω
(s)
i p(yi |θ(s)

)
/

S∑
s=1

ω
(s)
i

}

Here pLOO is not need for computing the LOOIC, but has diagnostic value; it can
be computed as the difference between elpdLOO and the non-cross-validated lpd

30/41

Model Comparison

At first, we need to recover the super variable and include in the
extended dataset

pest_data <- readRDS('pest_data.RDS')
lis <- pest_data$live_in_super[seq(1, 120, by = 12)]
stan_dat_hier_long$super <- rep(lis, each = 36)

Otherwise, we have problems fitting the multiple Poisson an Negative
Binomial regression models

31/41

Model Comparison
Compile and sampling

stan_model <- c("simple_poisson_regression.stan",
"multiple_poisson_regression.stan",
"multiple_NB_regression.stan",
"hier_NB_regression.stan",
"hier_NB_regression_ncp.stan",
"hier_NB_regression_ncp_slopes.stan",
"hier_NB_regression_ncp_slopes_mos.stan")

no_model <- length(stan_model)

comp_model <- fit <- list()
set.seed(2)
for(j in 1 : no_model){

comp_model[[j]] <- stan_model(stan_model[[j]])
fit[[j]] <- sampling(comp_model[[j]],

data = stan_dat_hier_long,
control = list(adapt_delta = 0.95))

print(j)
}

32/41

Model comparison

The loo R package provides the functions loo() and waic(), which
allow computing PSIS-LOO and WAIC for fitted Bayesian models

These functions take in argument the fitted model, extracting the
S × N matrix that include the log-likelihood contribution, with S the
number of retained draws and N the number of data points

The loo() function returns PSIS-LOOIC and pLOO, while the waic()
function returns the WAIC and pWAIC

33/41

Model comparison
We need to compute and store the pointwise log-likelihood in Stan

The model does not change, the only part to change is the
generated quantities block, where we include a log_lik vector (of
size N) and in the for loop we store the log-likelihood contributions.
For the last model, it corresponds to

generated quantities {
int y_rep[N];
vector[N] log_lik;
real eta_n;
for (n in 1:N) {

eta_n = mu[building_idx[n]] +
kappa[building_idx[n]] * traps[n] +
mo[mo_idx[n]] + log_sqfoot[n];

y_rep[n] = neg_binomial_2_log_safe_rng(eta_n, phi);
log_lik[n] = neg_binomial_2_log_lpmf(complaints[n] | eta_n, phi);

}
}

34/41

Model comparison

Extract pointwise log-likelihood, compute the LOO and WAIC and
compare the models

log_lik <- loo_mod <- waic_mod <- list()
for(j in 1 : no_model){

log_lik[[j]] <- extract_log_lik(fit[[j]])
loo_mod[[j]] <- loo(log_lik[[j]])
waic_mod[[j]] <- waic(log_lik[[j]])

}
loo_compare(loo_mod)
loo_compare(waic_mod)

35/41

Model comparison
loo_compare(loo_mod)

elpd_diff se_diff
model7 0.0 0.0
model6 -130.3 12.6
model5 -158.3 13.3
model4 -158.4 13.2
model3 -236.3 16.3
model1 -1160.9 129.6
model2 -1254.0 153.0

loo_compare(waic_mod)

elpd_diff se_diff
model7 0.0 0.0
model6 -131.4 12.5
model5 -159.5 13.2
model4 -159.6 13.2
model3 -237.6 16.3
model1 -1162.2 129.6
model2 -1255.8 153.3

36/41

Model comparison
The estimated shape parameter k̂ of the generalized Pareto distribution can be used to
assess the reliability of the estimate:

k̂ ≤ 1/2: the variance of the raw importance ratios is finite, the central limit theorem
holds, and the estimate converges quickly

k̂ > 1/2: the variance of the PSIS estimate is finite but may be large

loo_mod[[7]]

##
Computed from 4000 by 360 log-likelihood matrix
##
Estimate SE
elpd_loo -744.3 26.8
p_loo 43.0 3.9
looic 1488.6 53.7

Monte Carlo SE of elpd_loo is NA.
##
Pareto k diagnostic values:
Count Pct. Min. n_eff
(-Inf, 0.5] (good) 351 97.5% 468
(0.5, 0.7] (ok) 8 2.2% 221
(0.7, 1] (bad) 1 0.3% 674
(1, Inf) (very bad) 0 0.0% <NA>
See help(’pareto-k-diagnostic’) for details.

37/41

Model comparison

waic_mod[[7]]

##
Computed from 4000 by 360 log-likelihood matrix
##
Estimate SE
elpd_waic -743.0 26.7
p_waic 41.7 3.8
waic 1486.0 53.5
##
23 (6.4%) p_waic estimates greater than 0.4. We recommend trying loo instead.

38/41

Model comparison

looic <- waic <- list()
for(j in 1 : no_model){

looic[[j]] <- loo_mod[[j]]$estimates[3,1]
waic[[j]] <- waic_mod[[j]]$estimates[3,1]

}

looics <- unlist(looic)
waics <- unlist(waic)
mod_names <- c("P1", "P2", "NB", "HNB1", "HNB1NCP", "HNB2","HNB3")
par(xaxt="n", mfrow=c(1,2))
plot(looics, type="b", xlab = "", ylab = "LOOIC")
par(xaxt="s")
axis(1, 1:7, mod_names, las=2)

par(xaxt="n")
plot(waics, type="b", xlab="", ylab="WAIC")
par(xaxt="s")
axis(1, 1:7, mod_names, las = 2)

39/41

Model comparison
15

00
25

00
35

00

LO
O

IC

P
1

P
2

N
B

H
N

B
1

H
N

B
1N

C
P

H
N

B
2

H
N

B
3

15
00

25
00

35
00

W
A

IC

P
1

P
2

N
B

H
N

B
1

H
N

B
1N

C
P

H
N

B
2

H
N

B
3

40/41

A shiny app

A useful way to explore several aspects of your fitting by means of a
shiny app

library(shinystan)
launch_shinystan(fit[[4]])

41/41

	Cockroaches' example: Recap from the previous Labs
	Negative Binomial hierarchical regression model with varying intercept, slope and time varying-effect
	Model Comparison

