The cosmic-ray positron energy spectrum measured by PAMELA

seventh Journal Club

FABRIZIO DIAZ GUERRA 17 maggio 2023

1. The PAMELA telescope

- 1. The PAMELA telescope Cosmic rays The satellite The article PAMELA's structure
- Data and results Montecarlo simulations Results Fits with positrons models Positrons flux and solar cycles

Cosmic rays are high energy particles coming from outer space.

π /// Electromagnetic Shower

Hadron Cascade

Cosmic rays are high energy particles coming from outer space.

When these particles (primary cosmic rays) interact with the atmosphere they can generate other type of particles and radiation, known as secundary cosmic rays.

Cosmic rays are high energy particles coming from outer space.

When these particles (primary cosmic rays) interact with the atmosphere they can generate other type of particles and radiation, known as secundary cosmic rays.

Some components of cosmic rays are:

Hadron

- naked atomic nuclei
- electrons
- positrons
- antiprotons

What does the PAMELA telescope do?

What does the PAMELA telescope do?

Abstract

Precision measurements of the positron component in the cosmic radiation provide important information about the propagation of cosmic rays and the nature of particle sources in our Galaxy. The satellite-borne experiment PAMELA has been used to make a new measurement of the cosmicray positron flux and fraction that extends previously published measurements up to 300 GeV in kinetic energy. The combined measurements of the cosmic-ray positron energy spectrum and fraction provide a unique tool to constrain interpretation models. During the recent solar minimum activity period from July 2006 to December 2009 approximately 24500 positrons were observed. The results cannot be easily reconciled with purely secondary production and additional sources of either astrophysical or exotic origin may be required.

~470 Kg / ~360 W

- S1,S2,S3 double layer
- plastic scintillator (8mm)
- ToF resolution \sim 300 ps
- lepton-hadron separation < 1 Gev/c

~470 Kg / ~360 W

~470 Kg / ~360 W

~470 Kg / ~360 W

2. Data and results

- 1. The PAMELA telescope Cosmic rays The satellite The article PAMELA's structure
- 2. Data and results Montecarlo simulations Results Fits with positrons models Positrons flux and solar cycles

PAMELA model

PAMELA model

multilayer perceptron

2. Data and results

TABLE I: Summary of positron results. The lower limit is that for a 90% confidence level. For the flux the first and second errors represent the statistical (68% confidence level) and systematic uncertainties, respectively.

Rigidity	Mean Kinetic	Observed	Rescaled Flux	$\frac{e^+}{(e^+ + e^-)}$
at the	Energy at	number of	at top of	at top of
spectrometer	top of	events e^+	payload	payload
$\mathrm{GV/c}$	payload GeV		$({\rm GeV^{-1}s^{-1}sr^{-1}m^{-2}}){\times}10^{-3}$	
1.5 - 1.8	1.64	4644	$1762\pm24\pm111$	0.0777 ± 0.0011
1.8 - 2.1	1.94	3356	$1262\pm21\pm80$	0.0711 ± 0.0012
2.1 - 2.7	2.38	2809	$808 \pm 11 \pm 51$	0.0653 ± 0.0009
2.7 - 3.5	3.06	3755	$411\pm 6\pm 26$	0.0586 ± 0.0010
3.5 - 4.2	3.83	3951	$226\pm5\pm15$	0.0545 ± 0.0013
4.2 - 5	4.57	1520	$137\pm3\pm9$	0.0535 ± 0.0014
5 - 6	5.46	1124	$79.9\pm2.2\pm5.0$	0.0523 ± 0.0015
6 - 8	6.88	712	$38.4\pm1.0\pm2.6$	0.0504 ± 0.0014
8 - 10	8.9	920	$17.1\pm0.6\pm1.2$	0.0520 ± 0.0019
10 - 13	11.3	491	$8.4\pm0.3\pm0.6$	0.0557 ± 0.0023
13 - 15	13.9	448	$4.82 \pm 0.27 \pm 0.40$	0.063 ± 0.004
15 - 20	17.2	307	$2.30 \pm 0.13 \pm 0.18$	0.061 ± 0.004
20 - 28	23	195	$0.92 \pm 0.07 \pm 0.08$	0.062 ± 0.005
28 - 42	33.1	114	$0.32 \pm 0.03 \pm 0.03$	0.073 ± 0.007
42 - 65	50.2	68	$0.109 \pm 0.013 \pm 0.012$	0.099 ± 0.013
65 - 100	77.5	33	$0.034 \pm 0.006 \pm 0.005$	0.121 ± 0.022
100 - 200	135	25	$0.0118 \pm 0.0026 \pm 0.0024$	0.163 ± 0.040
200 - 300			> 0.00091	> 0.107

2. Data and results

TABLE I: Summary of positron results. The lower limit is that for a 90% confidence level. For the flux the first and second errors represent the statistical (68% confidence level) and systematic uncertaintics connectionly.

