Astrofisica Nucleare e Subnucleare Cosmic Ray Astrophysics - II Esperimenti per misure dirette di RC

CR detectors

Space like environment for balloon experiments. Balloons are a valuable tool for scientific CR and atmospheric research

CR detectors

4

The **Tracking Detectors** are used to image the paths taken by charged particles. To measure the momentum of the particles the detectors sit in a magnetic field, which causes the trajectories of the particles to bend. The amount of bending depends on the momentum of the particle: very high momentum particles travel in almost straight paths, low momentum particles make tight spirals.

The **Calorimeter** is a composite detector using total absorption of particles to measure the energy and position of incident particles or jets. In the process of absorption *showers* are generated by cascades of interactions,

CR detectors

Identificazione di particelle

- Identificazione di particelle= massa, carica, energia/impulso
- Spettrometro: strumento per la misura della rigidità $R = \frac{pc}{Ze}$ in campo magnetico. B è noto, Z e p possono essere misurati
- La risoluzione nella misura dell'impulso è dipende dalla precisione nella misura della traccia e dallo scattering multiplo della traccia all'interno del magnete.
- Un sistema di tempo di volo (ToF) (ad esempio A,C sono 2 contatori a scintillazione o contatori proporzionali) fornise la misura di dE/dx (ossia Z²), tempo, posizione e trigger. La misura del ToF tra due posizioni note fornisce la velocità della particella. Da r_L si ottiene la massa della particella.
- Talvolta, un rivelatore distruttivo (calorimetro) può essere usato per avere una misura indipendente dell'energia totale della particella.

Esperimenti nello spazio

- Sviluppi recenti: esperimenti nello spazio (PAMELA, AMS, altri) finalizzati alla misura diretta di RC e della ricerca di antimateria.
- Spettrometri: misurano la carica dei RC \rightarrow RC, antinuclei.
- Occorre però un campo magnetico → magnete nello spazio, superconduttori, criogenia → pesanti, costosi!
- Identificazione di particelle: occorre una ottima discriminazione di particelle per separare elettroni da antiprotoni. Occorrono diversi strumenti a seconda dell'energia della particella:
 - **Low energy:** TOF, Cherenkov
 - **High energy:** RICH, TRD, calorimetri elettromagnetici
- Tipicamente: 1 antiprotone su $10^{5\div6}$.

PAMELA

 Lanciato 15/6/2006 da Baikonur Cosmodrome-Kazakhstan

PAMELA

- Obiettivi dell'esperimento:
 - Misurare lo spettro di antiprotoni, positroni e (anti)nuclei in un ampio intervallo di energie;
 - Ricerca di antimateria
 "primordiale"
 - Studio del flusso dei RC primari
- PAMELA è capace di misurare rigidità magnetiche (=impulso/ carica) sino a **700 GV/c**.

- Identificazione di particelle usando:
 - TOF
 - Calorimetro
 - Rivelatore di neutroni (basato sulla cattura da parte di ³He n)→ aiuta a discriminare cascate elettromagnetiche da quelle adroniche
 - Misura della rigidità tramite spettrometro, costituito da un magnete permanente ed un sistema tracciante al silicio

Integrazione e posizionamento nel satellite

Lo Spettrometro Magnetico

 Per avere un idea del grado di complessità di tali esperimenti, guardiamo con qualche dettaglio lo spettrometro magnetico:

- Magnete Permanente
 - 5 blocchi di Nb-B-Fe
 - 0.48 T al centro della cavità
 - "Torre" Magnetica = $(13.2 \text{ x} 16.2 \text{ cm}^2) \text{ x} 44.5 \text{ cm high} \Rightarrow$ accettanza: 20.5 cm² sr

Tracciamento: Piani di silicio

- **Double-sided silicon microstrips** (300 µm thick):
 - 25 μm implantation pitch (junction side) / 67 μm (ohmic side)
 - Strips mutually orthogonal on opposite sides
 - Readout pitch 50 µm

Calorimetro Elettromagnetico

- 44 single-sided silicon sensor planes (380 μm thick) interleaved with 22 plates of tungsten absorber for a total depth of 16.3 X0 (0.6 nuclear interaction lengths).
- A self-trigger system was implemented in the calorimeter read-out electronics to measure high-energy electrons

Ricerca di antinuclei nei RC: il mistero della mancanza di antimateria nell'Universo

Antiprotons

Positrons

Positrons

Galactic Cosmic Rays

AMS01

- ♦ Magnet : 1024 blocks of $Nd_2Fe_{14}B$
- ♦ TOF: four planes of scintillators
 - velocity and Z measurement
- Tracker: six planes of DS Silicon Microstrip Detectors
 - Charge sign and Rigidity measurements
 - Z measurement up to Oxigen
- ♦ Aerogel Threshold Cerenkov
 - velocity measurement
- ♦ Anticounters
- reject multi particle events

AMS is a Large Acceptance Magnetic Spectrometer for:

Antimatter Search (He,C)

Accurate measurements of Cosmic-ray composition and energy spectra

Dark Matter Signatures $(\stackrel{+}{e}, \stackrel{-}{p}, \stackrel{-}{D}, \gamma)$

- High-energy \u03c6-ray sky exploration
- Superconducting Magnet: 0.8 T
- 4 layers of Scint. Counters (ToF):120 ps
- 8 layers Si-Tracker: MDR 2 3 TeV
- Gaseous TRD: h/e 10² 10³
- Pb-Sci. ECAL:h/e O(103)
- Aerogel (1.05) RICH : $\frac{d\beta}{\beta} = 0.07 1\%$

AMS

Alpha Magnetic Spectrometer (AMS) Experiment

- ISS : 108 m x 80*m*, 420 *t*
- orbit height 400km

Inclination = 51.57°
15.62 revolutions/day

AMS Transfer to the Shuttle, 26 March 2011

AMS features

TRD

Cosmic ray studies with AMS

Goals:

- Searches for primordial antimatter:
 - Light anti-nuclei: D, He, ...
 - p / p ratio
- Dark Matter searches:
 - e⁺,e⁺,p¯,...
 - simultaneous observation of several signal channels.
- Searches for new forms of matter:
 - strangelets, …
- Measuring CR spectra refining propagation models;
- Identification of local sources of high energy CR (~TeV):
 - SNR, Pulsars, PBH, ...
- Study effects of solar modulation on CR spectra over 11 year solar cycle
- ...

Risultati sulle misure dirette: protoni e nuclei

Balloon and satellites

Charge: usually measured through the excitation/ionization losses (which depends on Z²) in scintillators or silicon detectors.

The spectral index is almost the same for all nuclear species. $\Phi_i = K_i (E/\text{GeV})^{\alpha_i} \quad \text{cm}^{-2}\text{s}^{-1}\text{sr}^{-1}\text{GeV}^{-1}$

This is one of the fundamental input for the theories studying the acceleration mechanisms of CRs

Confronto tra p – He $10^9 < E < 10^{12} eV$

Antimateria nella Galassia:antip/p

Gli antiprotoni nei RC sono circa 10⁻⁴ rispetto ai protoni.
Questo rapporto (e la sua dipendenza dall'energia) è completamente spiegato da un modello in cui anti-p sono prodotti dalla propagazione dei RC nella Galassia e loro interazione con il mezzo interstellare 38

Gli elettroni nei RC

- 1% rispetto ai p
- Spettro più ripido (∝E⁻³)
- "Cut-off" nello spettro a ~1 TeV
- Quale è la ragione plausibile delle differenze tra protoni ed elettroni?
- Non dovuto ad asimmetria di carica dell'Universo!

Effetti delle perdite di energia degli elettroni. Queste producono la radiazione EM osservata in varie bande dagli astrofisici, dal radio ai raggi X

Antimateria nella Galassia: e⁺/e⁻

- Gli e- sono 1% dei protoni (sopra una certa energia)
- I positroni nei RC sono circa 10⁻¹ rispetto agli elettroni.
- Gli antiprotoni sono 10⁻⁴ rispetto ai protoni
- Le sorgenti di e- sono più vicine alla Terra!

- Two possible explanations:
 - signal of the presence of Dark Matter (problematic)presence of a near Galactic accelerator, as a pulsar

41

AMS02 - e + /e -

42
AMS02 - protons

AMS02 - antiprotons

The Origin of Cosmic Rays

• Galactic

- Ordinary stars (produce ~10²⁸ J/s)
- Magnetic stars (produce up to 10³² J/s)
- Supernovae (produce ~3x10³² J/s)
- Novae (produce $\sim 3x10^{32}$ J/s)

Origin of Galactic Cosmic Rays

- Energy output required: assume Galaxy is sphere radius 30kpc = 10²¹ m => volume = 10⁶³ m³
- Energy density CR ~ 10^{-13} J m⁻³ (10^{-6} eV m⁻³) Thus total energy of CR in Galaxy ~ 10^{50} J.
- <u>Age of Galaxy</u> ~10¹⁰ years, ~ 3x10¹⁷ sec hence av. CR production rate ~ 3x10³² J s⁻¹ Particles shortlived, => continuous acceltn.

Cosmic Rays from stars

- Ordinary stars Too low!!! Our Sun emits
 CR during flares but these have low-E
 ~10¹⁷ J/s, total 10²⁸ J/s (10¹¹ stars in Galaxy)
- Magnetic stars

Optimistic!!! Mag field about a million times higher than the Sun so output a million times higher, but only 1% magnetic (and low-E); $\sim 10^{32}$ J/s

Supernovae

• <u>Supernovae</u> - *a likely source!*

- Synchrotron radiation observed from SN so we know high energy particles are involved. Total particle energy estimated at $\sim 10^{42}$ J per SN
- Taking 1 SN every 100 years, => 3x10³² J/s. (also, SN produce heavies)

Supernovae and Remnants

Supernova Remnants

Nearby molecular clouds can provide targets for ions accelerated at the SNR shock. Gamma-rays are then produced by neutral pion decay pointing out the production of hadronic cosmic rays

Supernovae and Cosmic Rays

- Most scientists believe that Galactic CR are accelerated in SNR shocks
- EGRET detected π^0 bump at 68 MeV \rightarrow direct evidence of nucleon-nucleon interactions
- EGRET detected γ -rays from LMC but not SMC \rightarrow CR production varies
- Some EGRET sources could be SNRs, but poor resolution prevented confirmation
- X-ray and TeV observations of SNR show shocked electrons accelerated to CR-energies

A case by case analysis

- A case by case analysis is needed for each SNR-EGRET source coincident pair.
- There should be, nearby, enhancements of molecular material that could act as target for accelerated protons.
- This material, then, must be excited by the shock.
- Leptonic processes and other candidate sources must be discarded as the origin of the gamma-ray radiation.

Torres et al. **astro-ph/0209565**, Supernova Remnants and gamma-ray sources, Residew for the Physics Reports (2002)

$GeV \; SNR \; \text{Detection strategy} \;$

- Hadronic channel increased
- $F_{SNR} \sim \rho_{ISM}$ $F_{nubi} \sim \varepsilon_{CR} = 1 eV/cm^3$

- Molecular cloud near SNR $\rightarrow \epsilon_{\rm CR}$ >> 1eV/cm³
- R= CO(J=2->1)/CO(J=1->0)
- R~0.7, but R \rightarrow 2.5 for excited clouds

Supernovae

SNR and cosmic rays

• For SNR candidates, the LAT sensitivity and resolution will allow mapping to separate extended emission from the SNR from possible pulsar components.

• Energy spectra for the two emission components may also differ.

• Resolved images will allow observations at other wavelengths to concentrate on promising directions.

(*a*) Observed (EGRET) and (*b*) simulated LAT (1-yr sky survey) intensity in the vicinity of γ -Cygni for energies >1 GeV. The coordinates and scale are the same as in the images of γ -Cygni in the box at left. The dashed circle indicates the radio position of the shell and the asterisk the pulsar candidate proposed by Brazier et al. (1996).

Supernova Remnants

1st order Fermi mechanism

- Basic principles:
 - Strong shock
 - Scattering by irregularities

1st order :
 acceleration in strong shock waves
 (supernova ejecta, RG hot spots...)

shock frame

 $\left\langle \frac{\Delta E}{E} \right\rangle = \frac{4}{3} \left(\frac{v}{c} \right)$

 $\frac{\Delta \mathbf{E}}{\mathbf{E}} \sim \beta \qquad \beta = \frac{\mathbf{V}}{\mathbf{C}} \lesssim 10^{-1}$

Incremento di energia in urto con onda di shock

- Onda di shock= perturbazione che si propaga con velocità V> velocità del suono nel mezzo.
- Assumeremo l'approssimazione di onda piana e con massa M » massa particella
- L'urto è elastico nel SR di quiete di un osservatore sull'onda si shock (S').

Considereremo il processo nei due SR:

> **S** = Sistema di riferimento dell'osservatore

S'= Sistema di riferimento dell'onda di shock

SR osservatore

SR onda shock

Quadrimpulso particella

$$(E, p_x)$$

$$(E', p'_x)$$

$$E' = \gamma (E + Vp_x)$$
$$p'_x = \gamma (p_x + \frac{V}{c^2}E)$$

Urto elastico:

$$E' \xrightarrow{} E'$$

$$p'_{x} \xrightarrow{} p'_{x}$$

$$p'_{x} \xrightarrow{} p'_{x}$$

Conseguenze dell'urto: $E = \gamma(E' - Vp'_x) \xrightarrow{}_{urto} \gamma(E' - V(-p'_x)) \equiv E^*$

dove $E^* =$ energia della particella dopo l'urto: $E^* = \gamma (E - V(-p'_x))$ $E^* = \gamma \left[\gamma (E + Vp_x) + V\gamma (p_x + \frac{V}{c^2}E) \right]$

Ricordando che:

$$p_{x} = mv\gamma\cos\theta$$

$$E = mc^{2}\gamma$$

$$\frac{p_{x}}{E} = \frac{mv\gamma\cos\theta}{mc^{2}\gamma} = \frac{v}{c^{2}}\cos\theta$$

$$E^* = \gamma \left[\gamma (E + Vp_x) + V\gamma (p_x + \frac{V}{c^2}E) \right] = \gamma^2 \left[(E + 2Vp_x + \frac{V^2}{c^2}E) \right] =$$

$$= \gamma^2 E \left[1 + 2V \frac{p_x}{E} + \frac{V^2}{c^2} \right] = \gamma^2 E \left[1 + 2V \frac{v \cos \theta}{c^2} + \frac{V^2}{c^2} \right]^{Taylor} \cong$$

$$= \left(1 + \frac{V^2}{c^2}\right) E\left[1 + 2V\frac{v\cos\theta}{c^2} + \frac{V^2}{c^2}\right]^{Taylor} \cong E\left[1 + 2\frac{Vv\cos\theta}{c^2} + 2\frac{V^2}{c^2}\right]$$

L'energia guadagnata dalla particella nell'urto con l'onda di shock nel sistema S (Galassia):

$$\Delta E = E^* - E = \left[2\frac{Vv\cos\theta}{c^2} + 2\frac{V^2}{c^2}\right] \cdot E$$
$$\underset{v \approx c}{\cong} \left(2\frac{V\cos\theta}{c}\right) \cdot E$$

$$\frac{\Delta E}{E} = \frac{E^* - E}{E} = \left(2\frac{V\cos\theta}{c}\right)$$

 In altri termini, il rapporto tra energia finale e iniziale è >1 nel caso in cui la particella si diriga contro l'onda (cosθ>0) :

$$\frac{E^*}{E} = \left(1 + 2\frac{V}{c}\cos\theta\right)$$

■ Mediando (ossi, integrando) su tutti gli angoli per cui $\cos\theta > 0$:

$$\langle \cos \theta \rangle = \frac{\int_{0}^{1} \cos \theta \cdot \cos \theta d\theta}{\int_{0}^{1} \cos \theta d\theta} = \frac{2}{3}$$

$$\left\langle \frac{E^*}{E} \right\rangle = \left(1 + \frac{4}{3} \frac{V}{c}\right) = \mathbf{B}$$

$$\left\langle E^{*}\right\rangle = \mathbf{B}\left\langle E\right\rangle$$

66

eq. 4.1

Accelerazione ricorsiva

 Dalla eq. 4.1 abbiamo ottenuto che in ogni urto frontale, la particella guadagna energia:

$$E^f = \mathbf{B} \cdot E_o$$

- La particella inoltre rimane nella zona di accelerazione con una certa probabilità P
- **Dopo k collisioni:**
 - Energia in possesso della particella
 - Numero di particelle con energia E

$$E = E_o \mathbf{B}^k$$
$$N = N_o P^k$$

 \boldsymbol{P}

$$\ln(E/E_o) = k \ln B$$

$$\ln(N/N_o) = k \ln P$$

$$\ln(N/N_o) = k \ln P$$

$$\ln(N/N_o) = k \ln P$$

$$\ln(R/N_o) = \frac{\ln P}{\ln B} = \alpha$$
eq. 4.2
$$\frac{N}{N_o} = \left(\frac{E}{E_o}\right)^{\alpha}$$
eq. 4.3

La formula trovata si riferisce al numero N di particelle con energia >E, ossia N=N(>E) è la funzione integrale di:

$$\frac{dN(E)}{dE} \propto E^{\alpha - 1}$$

 La 4.4 rappresenta la distribuzione differenziale del numero di particelle in un certo intervallo di energia.

- La 4.4 ha la forma di uno spettro di potenza, con $\gamma = \alpha 1$.
- Questo è quanto cercavamo per lo spettro (osservato) dei RC.
 Il problema è ora determinare il valore di γ. Dalla 4.2:

$$\gamma = \alpha - 1 = \frac{\ln P}{\ln B} - 1$$
 eq. 4.5

Quindi, occorre determinare il valore del rapporto tra lnP/lnB

Stima del coefficiente α=lnP/lnB
Flusso di particelle relativistiche VERSO il fronte d'onda: F[s⁻¹] = ρ[cm⁻³] · c[cm/s] · A[cm²]
Le particelle nella regione *downstream* non vengono di nuovo accelerate. Il flusso di queste particelle verso sinistra è:

 $F' = \rho \cdot v_s \cdot A$

La probabilità che il RC oltrepassi il fronte d'onda e venga persa (ossia NON venga riaccelerato):

$$\overline{P} = \frac{F'}{F} = \frac{\rho \cdot v_s \cdot A}{\rho \cdot c \cdot A} = \frac{v_s}{c}$$

La probabilità che il RC rimanga nella regione di accelerazione:

$$P = 1 - \overline{P} = 1 - \frac{v_s}{c}$$

Il valore stimato di α $\gamma = \alpha - 1 = \frac{\ln P}{\ln B} - 1$ $\neg \gamma(\alpha)$ definito dalla eq. 4.5: $P = 1 - \overline{P} = 1 - \frac{v_s}{2}$ L'equazione 4.6 ■ B dalla eq. 4.1, con V=3/4v_s $\left\langle \frac{E^*}{E} \right\rangle = \left(1 + \frac{4}{3} \frac{V}{c}\right) = \left(1 + \frac{4}{3} \frac{(3/4)v_s}{c}\right)$ B

Quindi, se $(V/c) \ll 1$:

$$\alpha = \frac{\ln P}{\ln B} = \frac{\ln\left(1 - \frac{v_s}{c}\right)}{\ln\left(1 + \frac{v_s}{c}\right)} \stackrel{Taylor}{\cong} -\frac{\frac{v_s}{c}}{\frac{v_s}{c}} = -1.0$$
e quindi
$$\gamma = \alpha - 1 = -2$$
eq. 4.7

70

4.7

Spettro energetico alle sorgenti

 Il modello di Fermi <u>predice</u> quindi uno spettro energetico delle particelle in prossimità delle sorgenti (eq. 4.4) del tipo:

$$\frac{dN(E)}{dE} \propto E^{\alpha-1} = E^{-2}$$

- Si tratta di una predizione che si accorda coi dati sperimentali. La pagina seguente riporta una slide già vista:
- Occorre ora mostrare che:
 - L'energetica delle SN riesce a spiegare tutta l'energia associata ai RC
 - La velocità dell'onda di shock NON è relativistica
 - Come le particelle vengono fatte "rimbalzare" verso l'onda di shock
 - La massima energia cui si può giungere con questo modello

Spettro dei RC alle sorgenti

- Il risultato appena ottenuto è estremamente importante, perché permette di avere informazioni sullo spettro energetico dei RC alle sorgenti.
- Poiché il flusso dei RC sulla Terra è stazionario, vi deve essere equilibrio tra:
 - Spettro energetico misurato:
 - Spettro energetico alle Sorgenti: $Q(E) \propto E^{-?}(erg/s \cdot GeV)$
 - Probabilità di diffusione:

 $\tau(E) \propto E^{-0.6}(s)$

 $\Phi(E) \propto E^{-2.7} (erg / cm^3 \cdot GeV)$

Parametri caratteristici di un'onda di shock da Supernova

- Osservazioni di <u>Supernovae</u> (da altre Galassie): 1/τ= 1 SN/ 30 anni
- Energia emessa sotto forma di energia cinetica: K=10⁵¹ erg
- Massa caratteristica delle Supernovae: M=10 M_s (=10×2×10³³ g)
- "Potenza" alimentata dalle esplosioni di SN: $W=K/\tau = 10^{51} / 30(3 \times 10^7 \text{ s}) = 10^{42} \text{ erg/s}$
- Velocità di propagazione dell'onda di shock:

Massima energia per i RC da SN

• Incremento di energia in un singolo urto (eq.4.1):

$$\langle E \rangle = \mathbf{B} \langle E_o \rangle = \left(1 + \frac{4}{3} \frac{V}{c}\right) \langle E_o \rangle$$

$$\Delta E = \langle E \rangle - \langle E_o \rangle = \frac{4}{3} \frac{V}{c} \langle E_o \rangle = \eta \langle E_o \rangle; \quad \eta \approx 10^{-2}$$

- Tempo che intercorre tra due urti successivi: T_{ciclo};
- Numero massimo di urti possibili: $N_{cicli} = T_{OS}/T_{ciclo}$;
- La massima energia raggiungibile è dunque:

$$E_{\max} = N_{cicli} \Delta E = \frac{\eta E_{o} \cdot T_{os}}{T_{ciclo}}$$

eq. 4.11

• Occorre dunque stimare il parametro T_{ciclo};

Stima di T_{ciclo}

 λ_c =Lunghezza caratteristica della particella confinata = raggio di Larmoor nel campo magnetico Galattico

$$\lambda_C \approx r_L = \frac{E}{ZeB}$$

• Se assumiamo:

$$\lambda_C \approx r_L = \frac{E}{ZeB}$$

• Allora:
$$T_{ciclo} = \frac{\lambda_C}{V} = \frac{E}{ZeBV}$$

• Possiamo determinare la massima energia (eq. 4.11):

$$E_{\max} = N_{cicli} \Delta E = \frac{\eta E \cdot T_{OS}}{T_{ciclo}} \longrightarrow E_{\max} = \frac{\eta E \cdot T_{OS}}{T_{ciclo}} = \eta \Delta \left(\frac{ZeBV}{\Delta}\right) \cdot T_{OS}$$

$$\Rightarrow \eta = \frac{4}{3} \frac{V}{c} \Longrightarrow E_{\text{max}} = \frac{4}{3} \frac{ZeB}{c} V^2 \cdot T_{os} \qquad \qquad B = 3 \times 10^{-6} G$$
$$V = 5 \times 10^8 cm/s$$
$$T_{os} = 10^3 y = 3 \times 10^{10} s$$

$$E_{\text{max}} = \frac{4}{3} \frac{ZeB}{c} V^2 \cdot T_{OS} = 480 \cdot Z \quad erg = 3 \times 10^{14} Z \quad eV$$

 $E_{\text{max}} = 300 \times Z \qquad TeV$ eq. 4.12

29

Conclusioni circa il modello

- Il modello di accelerazione dei RC da parte di SN fonda la sua giustificazione sulla concordanza tra energia cinetica emessa (10^{42} erg/s) e la "potenza" sotto forma di RC nella Galassia: W_{CR} =5×10⁴⁰ erg/s
- Un meccanismo che trasferisca il ~5% di energia verso particelle relativistiche (RC) è sufficiente per spiegare i RC galattici sino ad energie ~ 10^{15} eV.
- Il meccanismo di Fermi ha proprio una efficienza $\eta = \frac{V}{c} \approx 5 \times 10^{-2}$
- Nella regione di accelerazione, lo spettro energetico dei RC è descritto da una legge di potenza: $dN(E) = E^{\alpha-1} E^{-2}$

$$\frac{dN(E)}{dE} \propto E^{\alpha - 1} = E^{-2}$$

- La legge di potenza alla sorgente del tipo E⁻² si confronta con l'osservazione sperimentale di uno spettro del tipo E^{-2.7} sulla Terra, tenendo conto della probabilità di fuga dalla Galassia vs. E
- L'energia *massima* che i RC possono acquisire in queste regione di accelerazione è

$$E_{\rm max} = 300 \times Z \qquad TeV$$

 In corrispondenza di questa energia, si trova una struttura nello spettro osservato (ginocchio). La previsione del modello è che il ginocchio dipende dalla rigidità (ossia, da Z) della particella

Astrofisica Nucleare e Subnucleare Propagazione di Raggi Cosmici

Modulazione dei RC di bassa energia dovuta al ciclo del Sole

La Galassia

- Il gas interstellare o intragalattico (GI) è il mezzo in cui si formano le stelle.
- Contribuisce per il 5% alla massa della Galassia

Distribuzione di idrogeno neutro nella Galassia

Il campo magnetico galattico

- Si misura tramite la polarizzazione della luce delle stelle
- Intensità media:
 3-4 μGauss
- Coerenti su scale di 1-10 pc

Nubi Gassose

- Scoperte con astronomia radio
- Il gas viene riscaldato da vari meccanismi:
 - Esplosioni di SN
 - Radiazione U.V. da stelle giganti
 - Eccitazione/ionizzazione da RC
- Si raffredda con altri meccanismi:
 - Bremsstrhalung (gas caldi, K>10⁷ K)
 - Diseccitazione $10^4 \text{ K} \le \text{T} \le 10^7 \text{ K}$
 - Emissione termica

Densità media del mezzo Interstellare

Figure 17.2. The radial distribution of atomic and molecular hydrogen as deduced from radio surveys of the Galaxy in the 21-cm line of atomic hydrogen and from millimetre surveys of the molecular emission lines of carbon monoxide, CO. (After D. Michalis and J. Binney (1981). *Galactic astronomy: structure and kinematics*, pp. 535, 554. San Francisco: W.H. Freeman and Co.)

• Figura 17.2 libro

$$ho_{\rm ISM} = 1 \text{ p/cm}^3 =$$

=1.6x10⁻²⁴ g/cm³

NOME	COSTITUENTI	Riveloti de	N'VOLUME e MASSA Jel Nezzo (at.		No	T(K)
NUBI	H2, CO CS etc	Lince moleculori Euriss. Polueri	~ 0.5 /.	40%	1000	10
NUBI DI H NUBI DIFRISE	H,C,O neutri	lines di 21 cm Liuce Assorbum.	5%	40%	1-100	80
INTER NEBULE	H1H+1E (1011377.10%)	21 cm + Dusorbiu. Linee H	40'l.	20%	0.1-1	-10
coRone stellari	H*, e 05*	soft X (0.1-2 keV)	~50%	0.1%	1000	106

Richiamo: moto di un RC nel campo magnetico Galattico

$$mv^{2}/r = pv/r = ZevB/c$$

$$r = pc/ZeB$$

$$r(cm) = \frac{1}{300} \frac{E(eV)}{ZB(G)}$$

$$(10^{12} eV) = 10^{15} cm = 3 \times 10^{-4} pc$$

$$r = (10^{15} eV) = 10^{18} cm = 3 \times 10^{-1} pc$$

$$(10^{18} eV) = 10^{21} cm = 300 pc$$

Abbondanze dei nuclei nel Sistema Solare

 Sono rappresentative delle abbondanze degli elementi nel mezzo interstellare

10¹⁰ Abundace relative to silicon = 10^6 Hydrogen burning Helium burning cosmological nucleosynthesis 10⁸ Carbon and oxygen burning explosive burning 10⁶ Silicon burning equilibrium or quasi-equilibrium explosive burning 10 r-, s-, and p-processes 10^{2} 10⁰ Spallation or/and explosive nucleosynthesis 10⁻² 50 100 150 200 0 Mass number

Lang'80 from Type I carbonaceous chrondile meteorites

Suess & Urey'56 from terrestrial, meteorite, and solar abundances

Ref: Mashnik, astro/ph: 0008382

Confronto tra le abbondanze dei vari nuclidi nei RC e nel mezzo IG

- I RC hanno una composizione chimica analoga a quella del Sistema Solare (Solar System Abundance, SSA)?
- Se sì, questo indica una origine simile a quella del SS.
- Le abbondanze degli elementi nei RC si determinano tramite esperimenti di misura diretta dei RC
- Si notano alcune discrepanze rispetto al SSA, in particolare in corrispondenza al gruppo Li,Be,B e del gruppo prima del Fe

Abbondanze relative dei RC e del sistema

- H e He sono dominanti (98%), leggermente in difetto rispetto SS
- Buon accordo tra CR e SS per molti elementi, in particolare C, O, Mg, Fe.
- Elementi leggeri Li, Be, B e quelli prima del ferro Sc,V sono straordinariamente abbondanti nei RC rispetto SSA

J.A. Simpson, Ann. Rev. Nucl. Part. Sci. 33 (1983)₂323