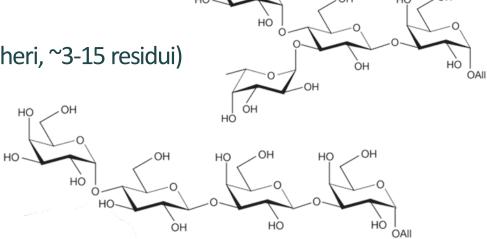


Modulo 8 CARBOIDRATI e POLISACCARIDI

2022-23

I CARBOIDRATI

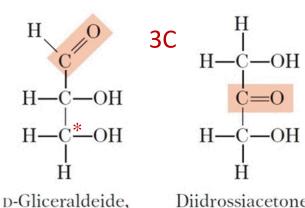
I carboidrati sono le molecole organiche più abbondanti in natura

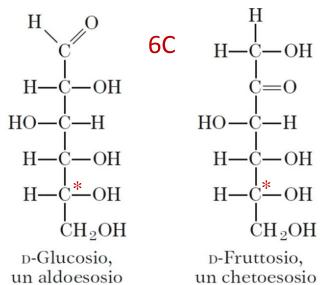

Principali funzioni:

- Fonti energetiche per gli organismi non fotosintetici
- Molecole in cui la CO₂ dell'atmosfera viene fissata (250x10⁹ Kg/day)
- Componenti strutturali di piante e batteri, e di strutture cellulari (polisaccaridi)
- Riconoscimento tra molecole (spesso legati a lipidi e proteine come glicoconiugati)
- Precursori metabolici di quasi tutte le altre biomolecole

▶ I carboidrati sono caratterizzati da una elevatissima diversità molecolare

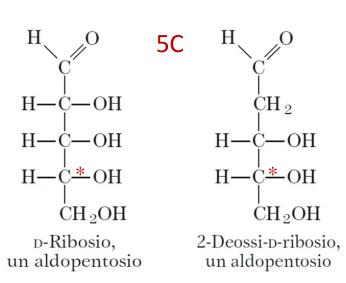
Suddivisi in 3 gruppi principali:


- Monosaccaridi (zuccheri, glucidi)
- Oligosaccharidi (polimeri con alcuni zuccheri, ~3-15 residui)
- Polisaccaridi (polimeri con ~>15)
- Oligosaccaridi e polisaccaridi possono essere catene lineari o ramificate


MONOSACCARIDI

- Zuccheri semplici: aldeidi o chetoni con due o più gruppi ossidrilici
- hanno uno scheletro carbonioso non-ramificato, con 3 7 C
- i prinicipali monosaccaridi sono:

Centri chirali multipli; * configurazione D o L data dal carbonio asimmetrico più distante dal carbonio carbonilico. D domina

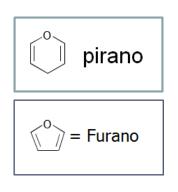


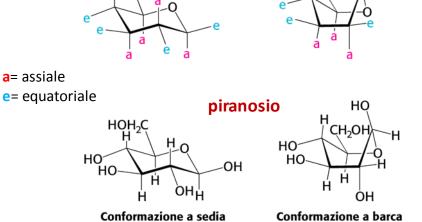
Diidrossiacetone, un chetotriosio

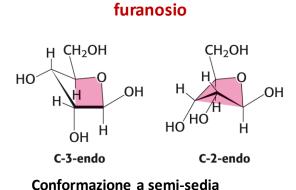
- le strutture mostrate qui sono lineari ma in soluzione acquosa la forma preferita ad equilibrio è ciclica

un aldotriosio

CONFORMAZIONI DELL'ANELLO

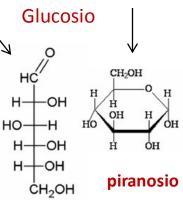

\blacktriangleright Esosi e pentosi sono in equilibrio tra forme lineari e cicliche (configurazione α o β)

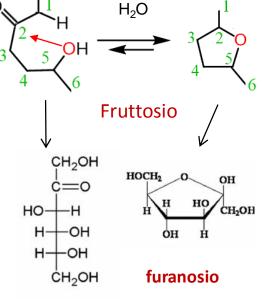

▶ Gli zuccheri possono assumere diverse conformazioni

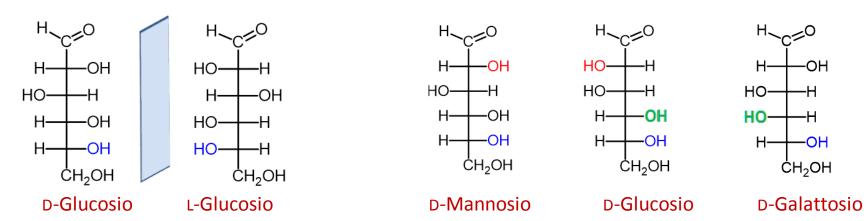

- -data la **natura tetraedrica dei legami del carbonio** gli zuccheri **non assumono strutture planari**
- -i **piranosi** possono assumere **conformazioni a "sedia" o a "barca"** e quelli **furanosi** assumono conformazioni a **semi-sedia** con 4 atomi quasi planari e uno fuori piano

- nella «sedia» **OH sono preferenzialmente in posizione assiali** e H equatoriali; minor ingombro

sterico e maggiore stabilità



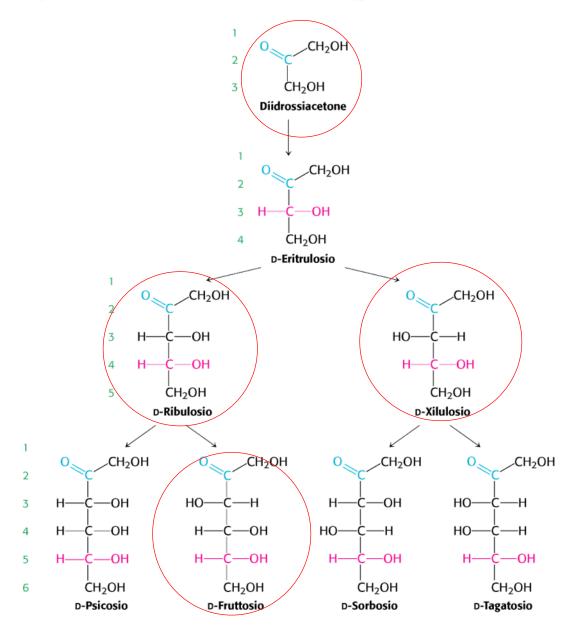



STEREOISOMERI, ENANTIOMERI, EPIMERI e ANOMERI

- ▶ Zuccheri con la stessa formula possono avere diverse forme isomeriche
- la forma lineare e le forme cicliche del Glucosio e Fruttosio sono 2 anomeri 3
- Glucosio e Fruttosio sono stereoisomeri
 {aldosio} {chetosio}

- D-Glucosio ed L-Glucosio sono enantiomeri (speculari) e mantengono lo stresso nome
- **D-Gluciosio**, **D-Galattosio** e **D-Mannosio** sono **epimeri (non speculari)** con nomi diversi

Alcuni zuccheri aldosi sono importanti intermedi metabolici (generalmente nella forma fosforilata) CHO -OH CH₂OH nucleotidi D-Gliceraldeide CHO CHO intermedi metabolici 2 H—C—OH oligosaccaridi C-OH H-C-OH nucleotidi CH₂OH CH₂OH **D-Eritrosio D-Treosio** CHO CHO CHO CHO --ОН H—Ċ—OH но—ċ—н H—Ċ—OH но—с—н но—с—н --ОН н---с---он H—C—OH H-C-OH CH₂OH ĊH₂OH CH₂OH CH₂OH **D-Ribosio D-Xilosio D-Arabinosio** D-Lisosio CHO CHO CHO CHO CHO CHO CHO HO-HO--Ċ---OH -OH HO-HO-HO-−č—oh --ОН HO-−с∙—он -OH HO-HO-HO-HO-H-C-OH \OH -OH -OH H-C-OH ĊH₂OH ĊH₂OH CH₂OH ĊH₂OH ĊH₂OH CH2OH ĊH₂OH ĊH₂OH **D-Allosio D-Altrosio** p-Talosio p-Glucosio D-Mannosio D-Gulosio **D-Idosio** p-Galattosio


I CHETOSI

Alcuni zuccheri chetosi sono importanti intermedi metabolici (generalmente nella forma

fosforilata)

intermedi metabolici

O oligodaccaridi

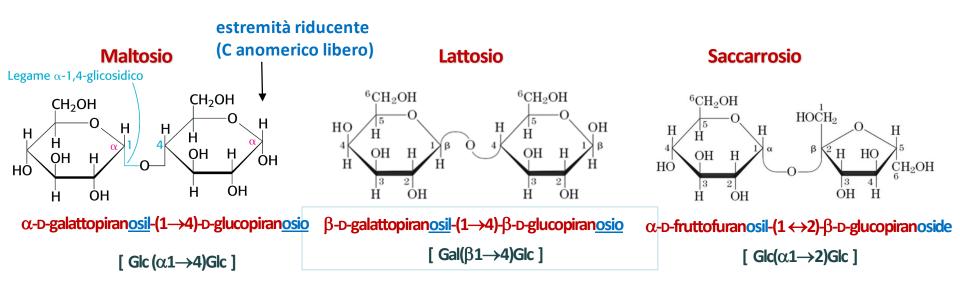
ZUCCHERI DERIVATI

▶ Gli zuccheri possono avere diversi derivati con sostituzione dei gruppi OH

- alcol poliossidrilici: (alditoli) derivano dalla riduzione del gruppo C=O; ribitolo, xilitolo, glicerolo
- **zuccheri acidi:** es. acido carbossilico in C1 (acidi aldonici) o in C6 (uronici, es. glucuronico)
- amminozuccheri: un gruppo amminico (che può essere acetilato) sostituisce un ossidrile.

HO HO HO HO HO HO HO OH
$$\alpha$$
-D-Glucosammina α -D-N-acetilglucosammina

PRINCIPALI MONOSACCARIDI


▶ Abbreviazione dei principali monosaccaridi e loro derivati

	Abogueco	Abe	Glucuronic acid	GlcA
	Abequose	ADE	Gluculottic aciu	GICA
ָ ֡	Arabinose	Ara	Galactosamine	GalN
	Fructose	Fru	Glucosamine	GlcN
	Fucose	Fuc	N-Acetylgalactosamine	GalNAc
	Galactose	Gal	N-Acetylglucosamine	GlcNAc
	Glucose	Glc	Iduronic acid	IdoA
[Mannose	Man	Muramic acid	Mur
	Rhamnose	Rha	N-Acetylmuramic acid	Mur2Ac
	Ribose	Rib	N-Acetylneuraminic acid	Neu5Ac
	Xylose	Xyl	(a sialic acid)	

DISACCARIDI

Maltosio, lattosio e saccarosio (zucchero comune)

- diversi tipi di legame glicosidico, che connettono diversi carboni con diverse conformazioni

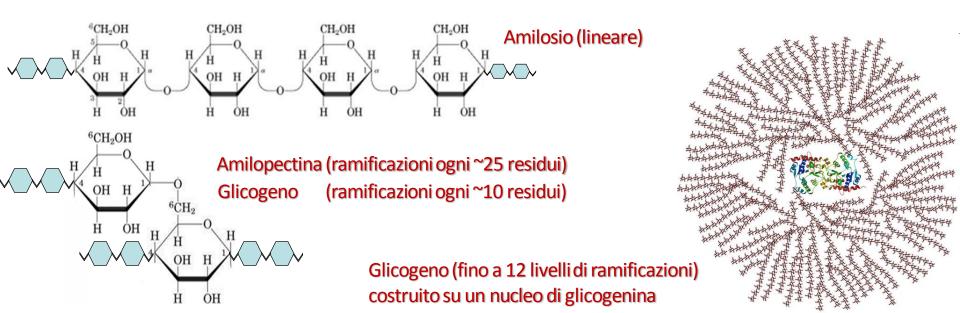
- Il **maltosio** è un disaccaride del glucosio, prodotto dell'idrolisi dell'amido (dalle amilasi) e poi convertito in glucosio da *α-glicosidasi* (*maltasi*); ha un **carbonio anomerico** libero noto come **estremità riducente** (è uno **zucchero riducente**)
- Anche il **lattosio** ha una estremità riducente; è un **eterodisaccaride** formato da **galattosio** e **glucosio**, legati in conformazione $\beta(1-4)$
- Il **saccarosio** è formato da **glucosio** e **fruttosio** con entrambe i carboni anomerici nel legame glicosidico (**testa-testa**), quindi **non ha un terminale riducente** e **non è uno zucchero riducente**; è un **prodotto intermedio della fotosintesi nelle piante**, e non viene prodotto negli animali

I POLISACCARIDI (glicani)

- ▶ I carboidrati in natura si trovano spesso sotto forma di polimeri (polisaccaridi, Mw >10.000)
- possono essere composti da un solo zucchero (omo) o da diversi zuccheri (etero)
- possono variare i **gradi di ramificazione** e **la grandezza** (sono **sostanze polidisperse**)

Omopolisaccaridi: sono costituiti solo da glucosio che forma polimeri due funzioni:

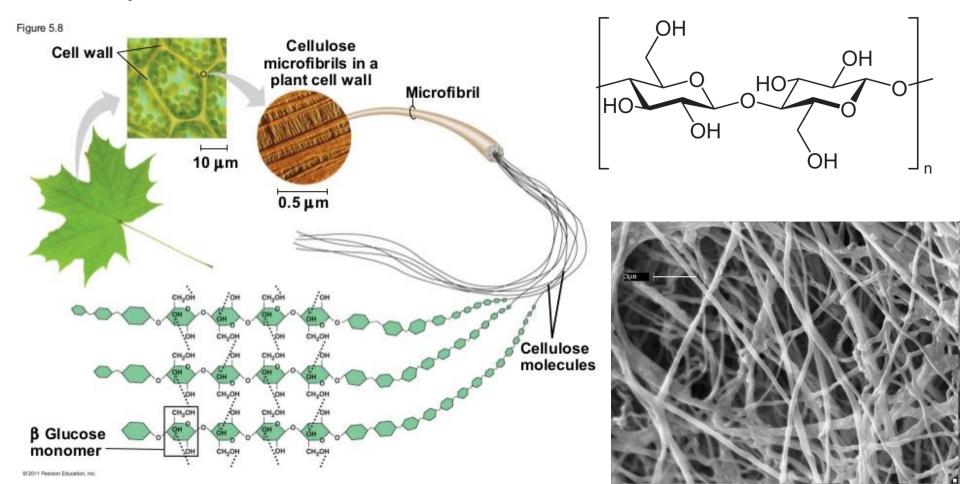
Strutturale – formano rivestimenti o impalcature e conferiscono forma, elasticità o rigidità.


Riserva – di carboidrati nelle cellule come fonte energetica/di percursori metabolici

Eteropolisaccaridi: polimeri la cui l'unità ripetitiva è costituita da un disaccaride formato da due unità di tipo diverso.; hanno varie funzioni strutturali o di riconoscimento

I POLISACCARIDI DI RISERVA: polimeri ramificati

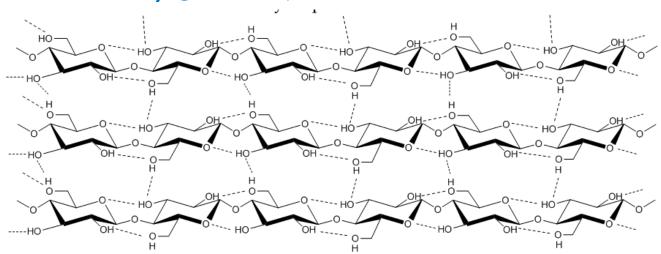
L'amido è la riserva di glucidi nelle piante, il glicogeno negli animali


- -Il Glucosio (la più **importante fonte di energia) non può essere accumulato** nelle cellule ([Glc]↑ **pressione osmotica**↑ **lisi cellulare**↑); è quindi convertito in **polimero (> 50.000 residui)**
- -nelle piante l'amido è costituito da **Amilosio** [~25%, polimero lineare con legami $\alpha(1\rightarrow 4)$ glicosidici e conformazione elicoidale] e da **Amilopectina** (polimero ramificato con legami $\alpha(1\rightarrow 4)$ glicosidici e ramificazioni ogni ca. 25 residui formate da legami $\alpha(1\rightarrow 6)$ glicosidici
- -negli animali, il Glicogeno (simile all'Amilopectina) ha ramificazioni ogni ca. 10 residui
- -hanno **strutture compatte con numerose terminazioni** accessibili alle α -amilasi (enzimi digestivi degli animali) che idrolizzano fino a **maltosio** (disaccaride) e **maltodestrine** (ramificazioni); poi subentrano **destrinasi** e **maltasi** che rilasciano glucosio

I POLISACCARIDI STRUTTURALI: polimeri lineari

La CELLULOSA è il più importante polisaccaride strutturale

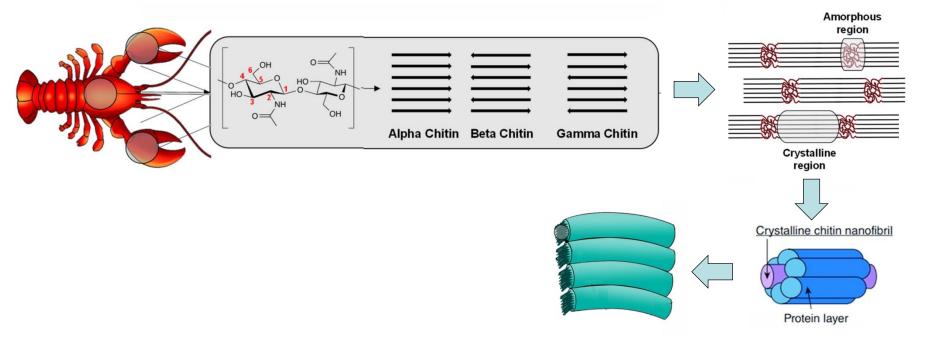
- -è un polimero fibroso, insolubile in acqua (ca. ½ di tutto il carbonio nella biosfera)
- -forma catene lineari di glucosio (10000-150000 unità) unite da legami $\beta(1\rightarrow 4)$ glicosidici
- -costituisce le pareti delle cellule vegetali, si trova in tutte le **parti legnose**; si trova allo stato allo **stato puro nel cotone**



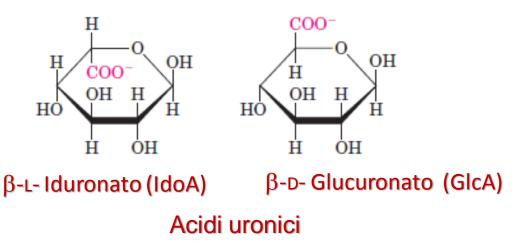
I POLISACCARIDI STRUTTURALI: Cellulosa (cont.)

▶ I legami $\beta(1\rightarrow 4)$ glicosidici sono alla base della struttura della cellulosa

- la conformazione più stabile della cellulosa è quella in cui **ogni monomero è ruotato di 180**° rispetto a quello precedente generando una catena lineare e distesa

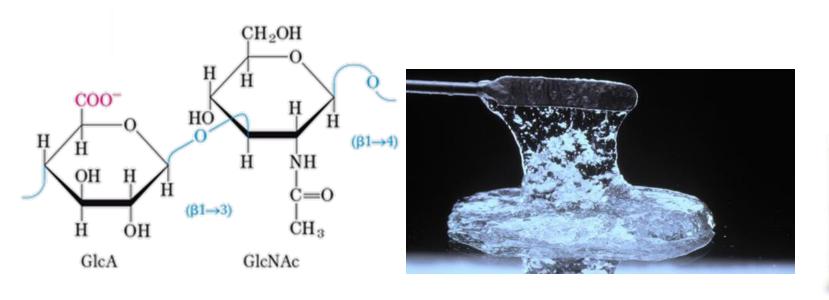

-diverse catene si affiancano per formare **strutture reticolari** (foglietti) stabilizzate da **legami-H intra-catena e inter-catena** e si formano strutture sopramolecolari stabili (fibre) con notevole resistenza alla tensione e **difficili da degradare** (solo da microorganismi che producono una *cellulasi*, una β -glicosidasi)

I POLISACCARIDI STRUTTURALI: Cellulosa (cont.)


La chitina è la componente principale dell'esoscheletro (carapace) degli artropodi

- è un **omopolimero** formato da unità di **N-acetil-D-glucosammina** unite da legami ($\beta 1 \rightarrow 4$) glicosidici

ETEROPOLISACCARIDI: GLICOSAMMINOGLICANI


- ▶ I glicosamminoglicani hanno funzioni strutturali, protettive e di segnalazione
- formati da unità disaccaridiche con:
- 1) un amminozucchero: N-acetilglucosammina o N-acetilgalattosammina
- 2) un acido uronico (spesso acido glucuronico o acido iduronico)
- 3) esteri solforici (OSO₃-) sono spesso presenti su una delle due unità (con eccezioni)
- sono **anionici** ed assumono **conformazioni estese**, **polidisperse** e **molto idratate** (hanno una elevata viscosità e formano sostanze della consistenza gelatinosa)
- sono tra i **principali costituenti della matrice extracellulare** (**ECM** sostanza tra le cellule costituita da materiale viscoso e gelatinoso), assieme a proteine (collagene, elastine ecc.)
- -sono presenti negli animali e anche nei batteri, ma non nelle piante

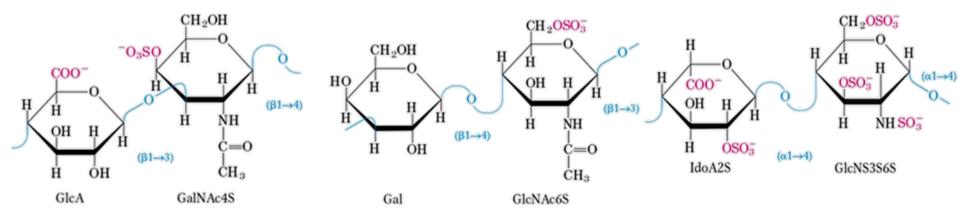
ETEROPOLISACCARIDI: Glicosamminoglicani (cont.)

Acido ialuronico (ialuronato)

- formato da unità disaccaridiche di **acido glucuronico** e **N-acetil-glucosammina** (senza SO_3^-) con legame ($\beta 1 \rightarrow 3$) glicosidico, a loro volta connesse con legame ($\beta 1 \rightarrow 4$) glicosidico
- le molecole sono **molto grandi** (composte da **500-50000 unità disaccaridiche**; >1000 KDa) e sono **molto igroscopiche**
- è un componente importante del fluido sinoviale nelle giunzioni (agisce come lubrificante) e della cartilagine/tendini (isolante, fornisce resistenza ed elasticità)
- è un costituente dell'umor vitreo nell'occhio dei vertebrati

ETEROPOLISACCARIDI: Matrice extracellulare

▶ I glicosamminoglicani sono costituenti della matrice extracellulare


- altri glicosamminoglicani formano catene più corte rispetto all'acido ialuronico, e sono spesso associati a proteine (proteoglicani)
- -contengono gruppi solforici (esteri) e hanno diverse funzioni:

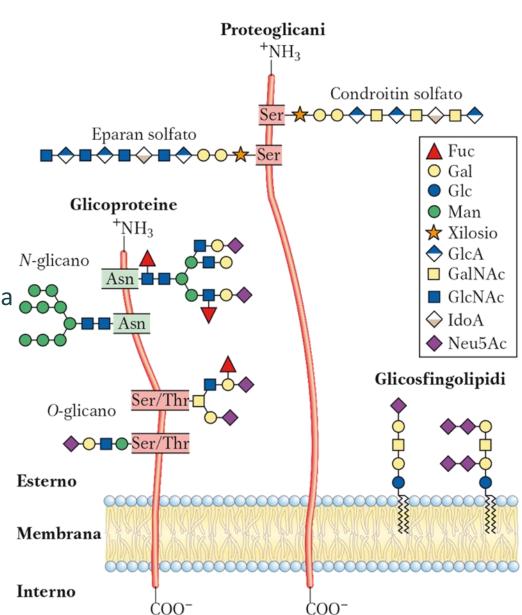
Condroitin solfati: forniscono resistenza alla tensione in cartilagine, tendini e legamenti.

Cheratan solfati: (senza acidi uronici) presenti in cartilagine, ossa e strutture cornee di cellule morte (es. corna, unghie, artigli, ecc.)

Eparan solfati: prodotto da cellule animali con quantità variabili di zuccheri solforati

(es. **Eparina**): acido iduronico-2-solfato + glucosammina-2-3-6-solfato (molto anionico agisce come anticoagulante)

Condroitin solfato

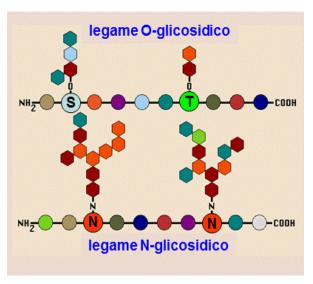

Cheratan solfato

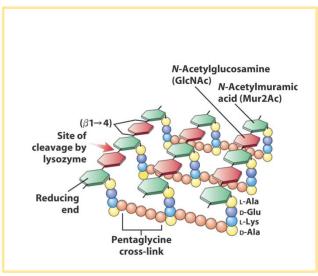
Eparina

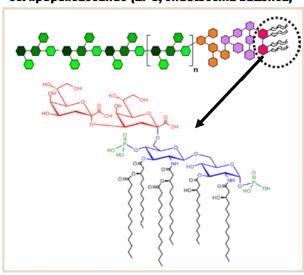
GLICOCONIUGATI

I carboidrati possono legarsi ad altre molecole (lipidi o proteine) formando glicoconiugati

- diversitipi di glicoconiugati:
- 1) Proteoglicani: glicosamminoglicani associati a proteine (componenti della membrana e dell'ECM)
- 2) Peptidoglicani: oligosaccaridi legati da peptidi (pareti batteriche)
- **3) Glicoproteine:** oligosaccaridi associati N-glicoproteine extracellulari o di membrana
- 4) Glicosfingolipidi: mono/oligosaccaridi associati a lipidi di membrana (vedi Modulo 6A).
- **5) Lipopolisaccaridi:** oligosaccaridi legati ad acidi grassi (pareti dei batteri G -)


GLICOCONIUGATI (esempi)


oligosaccaride + proteina = GLICOPROTEINA

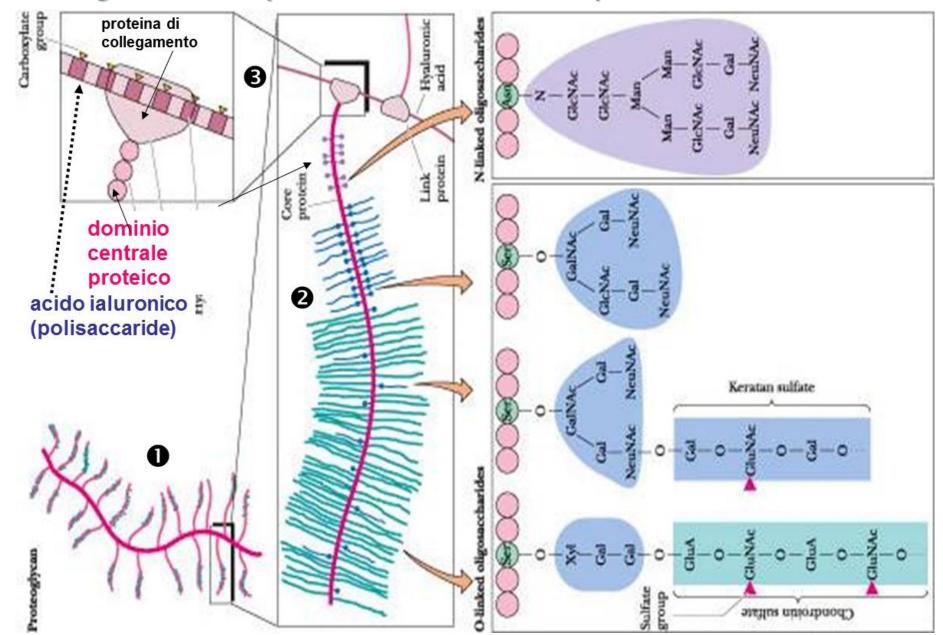

oligosaccaride + peptide = PEPTIDOGLICANO oligosaccaride + acido grasso

= LIPOPOLISACCARIDE

es. lipopolisaccaride (LPS, endotossina batterica)

Proteine extracellulari

Parete batteri Gram-positivi e Gram-negativi (no penta-Gly)


= residuo amminoacidico

= residuo di zucchero

Parete batteri Gram-negativi

GLICOCONIUGATI (esempi)

▶ Il Proteoglicano è un componente della ECM animale e fa parte del tessuto connettivo

