
Bernardini et al.

RESEARCH

Constructing Phylogenetic Networks via Cherry
Picking and Machine Learning
Giulia Bernardini1, Leo van Iersel2, Esther Julien2 and Leen Stougie3,4,5*

*Correspondence:

leen.stougie@cwi.nl
3CWI, Amsterdam, The

Netherlands

Full list of author information is

available at the end of the article

Abstract

Background: Combining a set of phylogenetic trees into a single phylogenetic
network that explains all of them is a fundamental challenge in evolutionary
studies. Existing methods are computationally expensive and can either handle
only small numbers of phylogenetic trees or are limited to severely restricted
classes of networks.

Results: In this paper, we apply the recently-introduced theoretical framework of
cherry picking to design a class of efficient heuristics that are guaranteed to
produce a network containing each of the input trees, for practical-size datasets
consisting of binary trees. Some of the heuristics in this framework are based on
the design and training of a machine learning model that captures essential
information on the structure of the input trees and guides the algorithms towards
better solutions. We also propose simple and fast randomised heuristics that
prove to be very effective when run multiple times.

Conclusions: Unlike the existing exact methods, our heuristics are applicable to
datasets of practical size, and the experimental study we conducted on both
simulated and real data shows that these solutions are qualitatively good, always
within some small constant factor from the optimum. Moreover, our
machine-learned heuristics are one of the first applications of machine learning to
phylogenetics and show its promise.

Keywords: Phylogenetics; Hybridization; Cherry Picking; Machine Learning;
Heuristic

1 Background
Phylogenetic networks describe the evolutionary relationships between different ob-

jects: for example, genes, genomes, or species. One of the first and most natural

approaches to constructing phylogenetic networks is to build a network from a set

of gene trees. In the absence of incomplete lineage sorting, the constructed net-

work is naturally required to “display”, or embed, each of the gene trees. In addi-

tion, following the parsimony principle, a network assuming a minimum number of

reticulate evolutionary events (like hybridization or lateral gene transfer) is often

sought. Unfortunately, the associated computational problem, called Hybridiza-

tion, is NP-hard even for two binary input trees [1], and indeed existing solution

methods do not scale well with problem size.

For a long time, research on this topic was mostly restricted to inputs consisting of

two trees. Proposed algorithms for multiple trees were either completely impractical

or ran in reasonable time only for very small numbers of input trees. This situation

changed drastically with the introduction of so-called cherry-picking sequences [2].

Bernardini et al. Page 2 of 36

This theoretical setup opened the door to solving instances consisting of many

input trees like most practical datasets have. Indeed, a recent paper showed that this

technique can be used to solve instances with up to 100 input trees to optimality [3],

although it was restricted to binary trees all having the same leaf set and to so-

called “tree-child” networks. Moreover, its running time has a (strong) exponential

dependence on the number of reticulate events.

In this paper, we show significant progress towards a fully practical method by

developing a heuristic framework based on cherry picking comprising very fast ran-

domised heuristics and other slower but more accurate heuristics guided by machine

learning. Admittedly, our methods are not yet widely applicable since they are still

restricted to binary trees. However, our set-up is made in such a way that it may

be extendable to general trees.

Despite their limitations, we see our current methods already as a breakthrough

as they are not restricted to tree-child networks and scale well with the number of

trees, the number of taxa and the number of reticulations. In fact, we experimentally

show that our heuristics can easily handle sets of 100 trees in a reasonable time:

the slowest machine-learned method takes 4 minutes on average for sets consisting

of 100 trees with 100 leaves each, while the faster, randomised heuristics already

find feasible solutions in 2 seconds for the same instances. As the running time of

the fastest heuristic depends at most quadratically on the number of input trees,

linearly on the number of taxa, and linearly on the output number of reticulations,

we expect it to be able to solve much larger instances still in a reasonable amount

of time.

In addition, in contrast with the existing algorithms, our methods can be applied

to trees with different leaf sets, although they have not been specifically optimized

for this kind of input. Indeed, we experimentally assessed that our methods give

qualitatively good results only when the leaf sets of the input trees have small

differences in percentage (up to 5-15%); when the differences are larger, they return

feasible solutions that are far from the optimum.

Some of the heuristics we present are among the first applications of machine

learning in phylogenetics and show its promise. In particular, we show that crucial

features of the networks generated in our simulation study can be identified with

very high test accuracy (99.8%) purely based on the trees displayed by the networks.

It is important to note at this point that no method is able to reconstruct any

specific network from displayed trees as networks are, in general, not uniquely deter-

mined by the trees they display [4]. In addition, in some applications, a phenomenon

called “incomplete lineage sorting” can cause gene trees that are not displayed by

the species network [5], and hence our methods, and other methods based on the

Hybridization problem, are not (directly) applicable to such data.

We focus on orchard networks (also called cherry picking networks), which are

precisely those networks that can be drawn as a tree with additional horizontal

arcs [6]. Such horizontal arcs can for example correspond to lateral gene transfer

(LGT), hybridization and recombination events. Orchard networks are broadly ap-

plicable: in particular, the orchard network class is much bigger than the class of

tree-child networks, to which the most efficient existing methods are limited [7].

Bernardini et al. Page 3 of 36

Related work. Previous practical algorithms for Hybridization include PIRN [8],

PIRNs [9] and Hybroscale [7], exact methods that are only applicable to (very) small

numbers of trees and/or to trees that can be combined into a network with a (very)

small reticulation number. Other methods such as PhyloNet [10] and PhyloNet-

works [11] also construct networks from trees but have different premises and use

completely different models.

The theoretical framework of cherry picking was introduced in [12] (for the re-

stricted class of temporal networks) and [2] (for the class of tree-child networks) and

was later turned into algorithms for reconstructing tree-child [3] and temporal [13]

networks. These methods can handle instances containing many trees but do not

scale well with the number of reticulations, due to an exponential dependence. The

class of orchard networks, which is based on cherry picking, was introduced in [14]

and independently (as cherry-picking networks) in [15], although their practical

relevance as trees with added horizontal edges was only discovered later [6].

The applicability of machine-learning techniques to phylogenetic problems has

not yet been fully explored, and to the best of our knowledge existing work is

mainly limited to phylogenetic tree inference [16, 17] and to testing evolutionary

hypotheses [18].

Our contributions. We introduce Cherry Picking Heuristics (CPH), a class

of heuristics to combine a set of binary phylogenetic trees into a single binary phy-

logenetic network based on cherry picking. We define and analyse several heuristics

in the CPH class, all of which are guaranteed to produce feasible solutions to Hy-

bridization and all of which can handle instances of practical size (we run exper-

iments on tree sets of up to 100 trees with up to 100 leaves which were processed

in on average 4 minutes by our slowest heuristic).

Two of the methods we propose are simple but effective randomised heuristics

that proved to be extremely fast and to produce good solutions when run multiple

times. The main contribution of this paper consists in a machine-learning model

that potentially captures essential information about the structure of the input set

of trees. We trained the model on different extensive sets of synthetically generated

data and applied it to guide our algorithms towards better solutions. Experimen-

tally, we show that the two machine-learned heuristics we design yield good results

when applied to both synthetically generated and real data.

We also analyse our machine-learning model to identify the most relevant fea-

tures and design a non-learned heuristic that is guided by those features only. Our

experiments show that this heuristic leads to reasonably good results without the

need to train a model. This result is interesting per se as it is an example of how

machine learning can be used to guide the design of classical algorithms, which are

not biased towards certain training data.

A preliminary version of this work appeared in [19]. Compared to the preliminary

version, we have added the following material: (i), we defined a new non-learned

heuristic based on important features and experimentally tested it (Section 5.3); (ii),

we extended the experimental study to data generated from non-orchard networks

(Section 5.2.3), data generated from a class of networks for which the optimum

number of reticulations is known (Section 5.2.1) and to input trees with different leaf

sets (Section 5.2.6); and (iii), we provided a formal analysis of the time complexity

Bernardini et al. Page 4 of 36

of all our methods (Section 4.1) and conducted experiments on their scalability

(Section 5.2.5).

2 Preliminaries
A phylogenetic network N = (V,E,X) on a set of taxa X is a directed acyclic graph

(V,E) with a single root with in-degree 0 and out-degree 1, and the other nodes

with either (i) in-degree 1 and out-degree k > 1 (tree nodes); (ii) in-degree k > 1

and out-degree 1 (reticulations); or (iii) in-degree 1 and out-degree 0 (leaves). The

leaves of N are biunivocally labelled by X. A surjective map ` : E → R≥0 may

assign a nonnegative branch length to each edge of N . We will denote by [1, n]

the set of integers {1, 2, ..., n}. Throughout this paper, we will only consider binary

networks (with k = 2), and we will identify the leaves with their labels. We will

also often drop the term “phylogenetic”, as all the networks considered in this

paper are phylogenetic networks. The reticulation number r(N) of a network N

is
∑

v∈V max (0, d−(v)− 1) , where d−(v) is the in-degree of v. A network T with

r(T) = 0 is a phylogenetic tree. It is easy to verify that binary networks with r(N)

reticulations have |X|+ r(N)− 1 tree nodes.

Cherry-picking. We denote by N a set of networks and by T a set of trees. An

ordered pair of leaves (x, y), x 6= y, is a cherry in a network if x and y have the

same parent; (x, y) is a reticulated cherry if the parent p(x) of x is a reticulation,

and p(y) is a tree node and a parent of p(x) (see Figure 1). A pair is reducible if

it is either a cherry or a reticulated cherry. Notice that trees have cherries but no

reticulated cherries.

Reducing (or picking) a cherry (x, y) in a network N (or in a tree) is the action

of deleting x and replacing the two edges (p(p(x)), p(x)) and (p(x), y) with a single

edge (p(p(x)), y) (see Figure 1a). If N has branch lengths, the length of the new edge

is `(p(p(x)), y) = `(p(p(x)), p(x)) + `(p(x), y). A reticulated cherry (x, y) is reduced

(picked) by deleting the edge (p(y), p(x)) and replacing the other edge (z, p(x))

incoming to p(x), and the consecutive edge (p(x), x), with a single edge (z, x). The

length of the new edge is `(z, x) = `(z, p(x)) + `(p(x), x) (if N has branch lengths).

Reducing a non-reducible pair has no effect on N . In all cases, the resulting network

is denoted by N(x,y): we say that (x, y) affects N if N 6= N(x,y).

(a) (b)

Figure 1: (x, y) is picked in two different networks. In (a) (x, y) is a cherry, and

in (b) (x, y) is a reticulated cherry. After picking, degree-two nodes are replaced

by a single edge.

Any sequence S = (x1, y1), . . . , (xn, yn) of ordered leaf pairs, with xi 6= yi for all

i, is a partial cherry-picking sequence; S is a cherry-picking sequence (CPS) if, for

Bernardini et al. Page 5 of 36

each i < n, yi ∈ {xi+1, . . . , xn, yn}. Given a network N and a (partial) CPS S, we

denote by NS the network obtained by reducing in N each element of S, in order.

We denote S ◦ (x, y) the sequence obtained by appending pair (x, y) at the end of

S. We say that S fully reduces N if NS consists of the root with a single leaf. N

is an orchard network (ON) if there exists a CPS that fully reduces it, and it is

tree-child if every non-leaf node has at least one child that is a tree node or a leaf.

A normal network is a tree-child network such that, in addition, the two parents of

a reticulation are always incomparable, i.e., one is not a descendant of the other.

If S fully reduces all N ∈ N , we say that S fully reduces N . In particular, in this

paper we will be interested in CPS which fully reduce a set of trees T consisting of

|T | trees of total size ||T ||.
Hybridization. The Hybridization problem can be thought of as the computa-

tional problem of combining a set of phylogenetic trees into a network with the

smallest possible reticulation number, that is, to find a network that displays each

of the input trees in the sense specified by Definition 1, below. See Figure 2 for an

example. The definition describes not only what it means to display a tree but also

to display another network, which will be useful later.

(a) (b)

Figure 2: The two trees in (b) are displayed in the network (a).

Definition 1 Let N = (V,E,X) and N ′ = (V ′, E′, X ′) be networks on the sets

of taxa X and X ′ ⊆ X, respectively. The network N ′ is displayed in N if there is

an embedding of N ′ in N : an injective map of the nodes of N ′ to the nodes of N ,

and of the edges of N ′ to edge-disjoint paths of N , such that the mapping of the

edges respects the mapping of the nodes, and the mapping of the nodes respects the

labelling of the leaves.

We call exhaustive a tree displayed in N = (V,E,X) with the whole X as a leaf

set. Note that Definition 1 only involves the topologies of the networks, disregarding

possible branch lengths. In the following problem definition, the input trees may or

may not have branch lengths, and the output is a network without branch lengths.

We allow branch lengths for the input because they will be useful for the machine-

learned heuristics of Section 4.

Hybridization

Input: A set of phylogenetic trees T on a set of taxa X.

Output: A network displaying T with minimum possible reticulation number.

Bernardini et al. Page 6 of 36

Figure 3: The ON reconstructed from the sequence S = (x, y), (x,w), (w, y). The

pairs are added to the network in reverse order: if the first element of a pair is

not yet in the network, it is added as a cherry with the second element (see the

pair (x,w)). Otherwise, a reticulation is added above the first element with an

incoming edge from a new parent of the second element (see the pair (x, y)).

3 Solving the Hybridization Problem via Cherry-Picking
Sequences

We will develop heuristics for the Hybridization problem using cherry-picking se-

quences that fully reduce the input trees, leveraging the following result by Janssen

and Murakami.

Theorem 1 ([15], Theorem 3) Let N be a binary orchard network, and N ′ a (not

necessarily binary) orchard network on sets of taxa X and X ′ ⊆ X, respectively.

If a minimum-length CPS S that fully reduces N also fully reduces N ′, then N ′ is

displayed in N .

Notice that Hybridization remains NP-hard for binary orchard networks. For

binary networks we have the following lemma, a special case of [15, Lemma 1].

Lemma 1 Let N be a binary network, and let (x, y) be a reducible pair of N .

Then reducing (x, y) and then adding it back to N(x,y) results in N .

Note that Lemma 1 only holds for binary networks: in fact, there are different ways

to add a pair to a non-binary network, thus the lemma does not hold unless a specific

rule for adding pairs is specified (inspect [15] for details). Theorem 1 and Lemma 1

provide the following approach for finding a feasible solution to Hybridization:

find a CPS S that fully reduces all the input trees, and then uniquely reconstruct

the binary orchard network N for which S is a minimum-length CPS, by processing

S in the reverse order. N can be reconstructed from S using one of the methods

underlying Lemma 1 proposed in the literature, e.g., in [15] (illustrated in Figure

3) or in [3]. The following lemma relates the length of a CPS S and the number of

reticulations of the network constructed from S.

Lemma 2 ([20]) Let S be a CPS on a set of taxa X. The number of reticulations

of the network N reconstructed from S is r(N) = |S| − |X|+ 1.

In the next section we focus on the first part of the heuristic: producing a CPS

that fully reduces a given set of phylogenetic trees.

Bernardini et al. Page 7 of 36

3.1 Randomised Heuristics

We define a class of randomised heuristics that construct a CPS by picking one

reducible pair of the input set T at a time and by appending this pair to a growing

partial sequence, as described in Algorithm 1 (the two subroutines PickNext and

CompleteSeq will be later described in details). We call this class CPH (for Cherry-

Picking Heuristics). Recall that TS denotes the set of trees T after reducing all trees

with a (partial) CPS S.

Algorithm 1 CPH

INPUT: A set T of phylogenetic trees
OUTPUT: A CPS reducing T .

1: S ← ∅;
2: while there is a reducible pair in TS do
3: (x, y)← PickNext(TS);
4: S ← S ◦ (x, y);
5: Reduce (x, y) in all trees of TS ;
6: S ← CompleteSeq(S);
7: return S;

The while loop at lines 2-5 produces, in general, a partial CPS S, as shown in

Example 1. To make it into a CPS, the subroutine CompleteSeq at line 6 appends

at the end of S a sequence S′ of pairs such that each second element in a pair of

S ◦ S′ is a first element in a later pair (except for the last one), as required by the

definition of CPS. These additional pairs do not affect the trees in T , which are

already fully reduced by S. Algorithm 2 describes a procedure CompleteSeq that

runs in time linear in the length of S.

Example 1 Let T consist of the 2-leaf trees (x, y) and (w, z). A partial CPS at

the end of the while loop in Algorithm 1 could be, e.g., S = (x, y), (w, z). The trees

are both reduced to one leaf, so there are no more reducible pairs, but S is not a

CPS. To make it into a CPS either pair (y, z) or pair (z, y) can be appended: e.g.,

S◦(y, z) = (x, y), (w, z), (y, z) is a CPS, and it still fully reduces the two input trees.

The class of heuristics given by Algorithm 1 is concretised in different heuristics

depending on the function PickNext at line 3 used to choose a reducible pair at

each iteration. To formulate them we need to introduce the following notions of

height pair and trivial pair. Let N be a network with branch lengths and let (x, y)

be a reducible pair in N . The height pair of (x, y) in N is a pair (hNx , h
N
y) ∈ R2

≥0,

where hNx = `(p(x), x) and hNy = `(p(y), y) if (x, y) is a cherry (indeed, in this

case, p(x) = p(y)); hNx = `(p(y), p(x)) + `(p(x), x) and hNy = `(p(y), y) if (x, y) is a

reticulated cherry. The height hN(x,y) of (x, y) is the average (hNx +hNy)/2 of hNx and

hNy . Let T be a set of trees whose leaf sets are subsets of a set of taxa X. An ordered

leaf pair (x, y) is a trivial pair of T if it is reducible in all T ∈ T that contain both x

and y, and there is at least one tree in which it is reducible. We define the following

three heuristics in the CPH class, resulting from as many possible implementations

of PickNext.

Rand. Function PickNext picks uniformly at random a reducible pair of TS .

Bernardini et al. Page 8 of 36

Algorithm 2 CompleteSeq

INPUT: A partial CPS S = (x1, y1), . . . , (xn, yn) that reduces T
OUTPUT: A CPS S′ for T .
C ← ∅; P ← ∅;
for i = n, . . . , 1 do

if yi 6∈ C then
P ← P ∪ {yi};

C ← C ∪ {xi, yi};
S′ ← S;
while |P | > 1 do

Let r1 and r2 be two arbitrary elements of P ;
S′ ← S′ ◦ (r1, r2);
P ← P \ {r1};

return S′

LowPair. Function PickNext picks a reducible pair (x, y) with the lowest average

of values hT(x,y) over all T ∈ TS in which (x, y) is reducible (ties are broken

randomly).

TrivialRand. Function PickNext picks a trivial pair if there exists one and otherwise

picks a reducible pair of TS uniformly at random.

Theorem 2 Algorithm 1 computes a CPS that fully reduces T , for any function

PickNext that picks, in each iteration, a reducible pair of TS.

Proof The sequence S is initiated as an empty sequence. Then, each iteration of

the while loop (lines 2-5) of Algorithm 1 appends one pair to S that is reducible in

at least one of the trees in T , and reduces it in all trees. Hence, in each iteration,

the total size of TS is reduced, so the algorithm finishes in finite time. Moreover,

at the end of the while loop, each tree in TS is reduced, thus the partial CPS S

reduces TS . As CompleteSeq only appends pairs at the end of S, the result of this

subroutine still reduces all trees in TS .

In Section 5 we experimentally show that TrivialRand produces the best results

among the proposed randomised heuristics. In the next section, we introduce a

further heuristic step for TrivialRand which improves the output quality.

3.2 Improving Heuristic TrivialRand via Tree Expansion

Let T be a set of trees whose leaf sets are subsets of a set of taxa X, let S be a

partial CPS for T and let TS be the tree set obtained by reducing in order the pairs

of S in T . With respect to a trivial pair (x, y), each tree T ∈ TS is of one of the

following types: (i) (x, y) is reducible in T ; or (ii) neither x nor y are leaves of T ;

or (iii) y is a leaf of T but x is not; or (iv) x is a leaf of T but y is not.

Suppose that at some iteration of TrivialRand, the subroutine PickNext returns

the trivial pair (x, y). Then, before reducing (x, y) in all trees, we do the following

extra step: for each tree of type (iv), replace leaf x with cherry (x, y). We call

this operation the tree expansion: see Figure 4(c). The effect of this step is that,

after reducing (x, y), leaf x disappears from the set of trees, which would have

not necessarily been the case before, because of trees of type (iv). Tree expansion

followed by the reduction of (x, y) can, alternatively, be seen as relabelling leaf x in

Bernardini et al. Page 9 of 36

(a) (b) (c) (d)

Figure 4: Tree expansion of T (a) with the trivial cherry (x, y) of T(y,z). (b) After

picking cherry (y, z), leaf y is missing in T (1). (c) Leaf x is replaced by the cherry

(x, y). After completion of the heuristic, we have ST = (y, z), (x, y), (y, w), (w, z).

(d) The network NT reconstructed from S1 · (x, y). Note that the input tree T

is displayed in NT (solid edges).

any tree of type (iv) by y. The choice of describing this relabelling as tree expansion

is just for the purpose of proving Lemma 3.

To guarantee that a CPS S produced with tree expansion implies a feasible so-

lution for Hybridization, we must show that the network N reconstructed from

S displays all the trees in the input set T . We prove that indeed this is the case

with the following steps: (1), we consider the networks NT obtained by “reverting”

a partial CPS S obtained right after applying tree expansion to a tree TS : in other

words, to obtain NT we add to the partially reduced tree TS the trivial pair (x, y)

and then all the pairs previously reduced by S in the sense of Lemma 1. We show

that NT always displays T , the original tree; (2), we prove that this holds for an

arbitrary sequence of tree expansion operations; and (3), since the CPS obtained us-

ing tree expansions fully reduces the networks of point (2), and since these networks

display the trees in the original set T , we have the desired property by Theorem 1.

We prove this more formally with the following lemma.

Lemma 3 Let S be the CPS produced by TrivialRand using tree expansion with

input T . Then the network reconstructed from S displays all the trees in T .

Proof Let us start with the case where only 1 tree expansion occurs. Let S(i−1)

be the partial CPS constructed in the first i − 1 steps of TrivialRand, and let i be

the step in which we pick a trivial pair (x, y). For each T ∈ TS(i−1) that is reduced

by S(i−1) to a tree T (i−1) of type (iv) for (x, y), let S
(i−1)
T be the subsequence of

S(i−1) consisting only of the pairs that subsequently affect T . We use the partial

CPS Si
T = S

(i−1)
T ◦ (x, y) to reconstruct a network NT with a method underlying

Lemma 1, starting from T (i−1): see Figure 4(d).

For trees of type (i)-(iii), NT = T . We call the set NT , consisting of the networks

NT for all T ∈ T , the expanded reconstruction of T . Note that, by construction and

Lemma 1, all the elements of NT after reducing, in order, the pairs of S(i−1) ◦(x, y),

are trees: in particular, they are equal to the trees of TS(i−1)◦(x,y) in which all the

labels y have been replaced by x. We denote this set of trees (NT)S(i−1)◦(x,y).

We can generalise this notion to multiple trivial pairs: we denote by N (j)
T the

expanded reconstruction of T with the first j trivial pairs, and suppose we added

Bernardini et al. Page 10 of 36

the j-th pair (w, z) to the partial CPS S at the k-th step. Consider a tree T ′ ∈
(N (j−1)
T)S(k−1) of type (iv) for (w, z), and let N

(j−1)
T ∈ N (j−1)

T be the network it

originated from. Let S
(k−1)
T be the subsequence of S(k−1) consisting only of the

pairs that subsequently affected N
(j−1)
T . Then N

(j)
T is the network reconstructed

from S
(k−1)
T ◦ (w, z), starting from T ′. For trees of (N (j−1)

T)S(k−1) that are of type

(i)-(iii) for (w, z), we have N
(j)
T = N

(j−1)
T . The elements of N (j)

T are all networks

N
(j)
T . For completeness, we define N (0)

T = T and N (1)
T = NT .

By construction, S fully reduces all the networks in N (j)
T , thus the network N

reconstructed from S displays all of them by Theorem 1. We prove thatN
(j)
T displays

T for all T ∈ T , and thus N displays the original tree set T too, by induction on j.

In the base case, we pick j = 0 trivial pairs, so the statement is true by Theorem 1.

Now let j > 0. The induction hypothesis is that each network N
(j−1)
T ∈ N (j−1)

T
displays the tree T ∈ T it originated from. Let (w, z) be the j-th trivial pair, added

to the sequence at position k. Let T ′ ∈ (N (j−1)
T)S(k−1) be a tree of type (iv) for (w, z),

and let N
(j−1)
T be the network it originates from. Then there are two possibilities:

either z is a leaf of N
(j−1)
T or it is not. In case it is not, then adding (w, z) to

N
(j−1)
T does not create any new reticulation, and clearly N

(j)
T keeps displaying T . If

z does appear in N
(j−1)
T , then it must have been reduced by a pair (z, v) of S(k−1)

(otherwise T ′ would not be of type (iv)). Then the network N
(j)
T has an extra

reticulation, created with the insertion of (z, v) at some point after (w, z) during

the backwards reconstruction. In both cases, by [15, Lemma 10] N
(j−1)
T is displayed

in N
(j)
T , and thus by the induction hypothesis T is displayed too.

3.3 Good Cherries in Theory

By Lemma 1 the binary network N reconstructed from a CPS S is such that S is

of minimum length for N , that is, there exists no shorter CPS that fully reduces

N . By Theorem 1 if S, in turn, fully reduces T , then N displays all the trees in

T . Depending on S, though, N is not necessarily an optimal network (i.e., with

minimum reticulation number) among the ones displaying T : see Example 2.

Let OPT(T) denote the set of networks that display T with the minimum possi-

ble number of reticulations (in general, this set contains more than one network).

Ideally, we would like to produce a CPS fully reducing T that is also a minimum-

length CPS fully reducing some network of OPT(T). In other words, we aim to

find a CPS S̃ = (x1, y1), . . . , (xn, yn) such that, for any i ∈ [1, n], (xi, yi) is a re-

ducible pair of ÑS̃(i−1) , where S̃(0) = ∅, S̃(k) = (x1, y1), . . . , (xk, yk) for all k ∈ [1, n],

and Ñ ∈ OPT(T). Let S = (x1, y1), . . . , (xn, yn) be a CPS fully reducing T and

let OPT(k)(T) consist of all networks N ∈ OPT(T) such that each pair (xi, yi),

i ∈ [1, k], is reducible in NS(i−1) .

Lemma 4 A CPS S reducing T reconstructs an optimal network Ñ if and only

if each pair (xi, yi) of S is reducible in ÑSi−1 , for all i ∈ [1, n].

Proof (⇒) By Lemma 1, S is a minimum-length CPS for the network Ñ that is

reconstructed from it; and a CPS C = (w1, z1), . . . , (wn, zn) reducing a network N

is of minimum length precisely if, for all j ∈ [1, n], (wj , zj) is a reducible pair of

NC(j−1) (otherwise the pair (wj , zj) could be removed from C and the new sequence

Bernardini et al. Page 11 of 36

would still reduce N).

(⇐) If all pairs of S affect some optimal network Ñ , then S is a minimum-length

CPS for Ñ , thus Ñ is reconstructed from S (and it displays T by Theorem 1).

Lemma 4 implies that if some pair (xi, yi) of S does not reduce any network in

OPT(i−1)(T), then the network reconstructed from S is not optimal: see Example 2.

Example 2 Consider the set T of Figure 2b: S = (y, x), (y, z), (w, x), (x, z) is

a CPS that fully reduces T and consists only of pairs successively reducible in the

network N of Fig. 2a, thus it reconstructs it by Lemma 1. Now consider (w, x),

which is reducible in T but not in N , and pick it as first pair, to obtain e.g. S′ =

(w, x), (y, z), (y, x), (w, x), (x, z). The network N ′ reconstructed from S′, depicted in

Figure 5, has r(N ′) = 2, whereas r(N) = 1.

Figure 5: Network N ′ of Example 2.

Suppose we are incrementally constructing a CPS S = (x1, y1), . . . , (xn, yn) for T
with some heuristic in the CPH class. If we had an oracle that at each iteration i told

us if a reducible pair (x, y) of T (i−1) were a reducible pair in some N ∈ OPT(i−1)(T),

then, by Lemma 4, we could solve Hybridization optimally. Unfortunately no such

exact oracle can exist (unless P = NP). However, in the next section we exploit

this idea to design machine-learned heuristics in the CPH framework.

4 Predicting Good Cherries via Machine Learning
In this section, we present a supervised machine-learning classifier that (imperfectly)

simulates the ideal oracle described at the end of Section 3.3. The goal is to predict,

based on T , whether a given cherry of T is a cherry or a reticulated cherry in a

network N displaying T with a close-to-optimal number of reticulations, without

knowing N . Based on Lemma 4, we then exploit the output of the classifier to define

new functions PickNext, that in turn define new machine-learned heuristics in the

class of CPH (Algorithm 1).

Specifically, we train a random forest classifier on data that encapsulates infor-

mation on the cherries in the tree set. Given a partial CPS, each reducible pair in

TS is represented by one data point. Each data point is a pair (F, c), where F is

an array containing the features of a cherry (x, y) and c is an array containing the

probability that the cherry belongs to each of the possible classes described below.

Recall that cherries are ordered pairs, so (x, y) and (y, x) give rise to two distinct

data points. The classification model learns the association between F and c.

The true class of a cherry (x, y) of T depends on whether, for the (unknown)

network N that we aim to reconstruct: (class 1) (x, y) is a cherry of N ; (class 2)

Bernardini et al. Page 12 of 36

(x, y) is a reticulated cherry of N ; (class 3) (x, y) is not reducible in N , but (y, x) is

a reticulated cherry; or (class 4) neither (x, y) nor (y, x) are reducible in N . Thus,

for the data point of a cherry (x, y), c[i] contains the probability that (x, y) is in

class i, and c[1] + c[2] gives the predicted probability that (x, y) is reducible in N .

We define the following two heuristics in the CPH framework.

ML. Given a threshold τ ∈ [0, 1), function PickNext picks the cherry with the highest

predicted probability of being reducible in N if this probability is at least τ ;

or a random cherry if none has a probability of being reducible above τ .

TrivialML. Function PickNext picks a random trivial pair, if there exists one; other-

wise it uses the same rules as ML.

In both cases, whenever a trivial pair is picked, we do tree expansion, as described

in Section 3.2. Note that if τ = 0, since the predicted probabilities are never exactly

0, ML is fully deterministic. In Section 5.2.7 we show how the performance of ML

is impacted by the choice of different thresholds.

Table 1: Features of a cherry (x, y). Features 6-12 can be computed for both branch

lengths and unweighted branches. We refer to these two options as distance and

topological distance, respectively.

Num Feature name Description

1 Cherry in tree Ratio of trees that contain cherry (x, y)

2 New cherries Number of new cherries of T after picking cherry (x, y)

3 Before/after Ratio of the number of cherries of T before/after picking cherry (x, y)

4 Trivial Ratio of trees with both leaves x and y that contain cherry (x, y)

5 Leaves in tree Ratio of trees that contain both leaves x and y

Features measured by distance (d) and topology (t)

6d,t Tree depth Avg over trees with (x, y) of ratios “depth of the tree/max depth over all trees”

7d,t Cherry depth Avg over trees with (x, y) of ratios “depth of (x, y) in the tree/depth of the tree”

8d,t Leaf distance Avg over trees with x and y of ratios “x-y leaf distance/depth of the tree”

9d,t Leaf depth x Avg over trees with x and y of ratios “root-x distance/depth of the tree”

10d,t Leaf depth y Avg over trees with x and y of ratios “root-y distance/depth of the tree”

11d,t LCA distance Avg over trees with x and y of ratios “x-LCA(x, y) distance/y-LCA(x, y) distance”

12d,t Depth x/y Avg over trees with x and y of ratios “root-x distance/root-y distance”

To assign a class to each cherry, we define 19 features, summarised in Table 1,

that may capture essential information about the structure of the set of trees, and

that can be efficiently computed and updated at every iteration of the heuristics.

The depth (resp. topological depth) of a node u in a tree T is the total branch

length (resp. the total number of edges) on the root-to-u path; the depth of a cherry

(x, y) is the depth of the common parent of x and y; the depth of T is the maximum

depth of any cherry of T . The (topological) leaf distance between x and y is the

total branch length of the path from the parent of x to the lowest common ancestor

of x and y, denoted by LCA(x, y), plus the total length of the path from the parent

of y to LCA(x, y) (resp. the total number of edges on both paths). In particular,

the leaf distance between the leaves of a cherry is zero.

4.1 Time Complexity

Designing algorithms with the best possible time complexity was not the main

objective of this work. However, for completeness, we provide worst-case upper

bounds on the running time of our heuristics. The omitted proofs can be found

Bernardini et al. Page 13 of 36

in Appendix A. We start by stating a general upper bound for the whole CPH

framework in the function of the time required by the PickNext routine.

Lemma 5 The running time of the heuristics in the CPH framework is

O(|T |2|X| + cost(PickNext)), where cost(PickNext) is the total time required to

choose reducible pairs over all iterations. In particular, Rand takes O(|T |2|X|) time.

Proof An upper bound for the sequence length is (|X| − 1)|T | as each tree can

individually be fully reduced using at most |X| − 1 pairs. Hence, the while loop of

Algorithm 1 is executed at most (|X| − 1)|T | times. Moreover, reducing the pair

and updating the set of reducible pairs after one iteration takes O(1) time per tree.

Combining this with the fact that CompleteSeq takes O(|S|) = O(|X||T |) time, we

obtain the stated time complexity. Since choosing a random reducible pair takes

O(1) time at each iteration, Rand takes trivially O(|T |2|X|) time.

Note that, by Lemma 2, the number of reticulations r(N) of the network recon-

structed from the output CPS is bounded by (|X| − 1)|T | − |X| + 1 and thus the

time complexity of Rand is also O(r(N)|T |).
Let us now focus on the time complexity of the machine-learned heuristics ML

and TrivialML. At any moment during the execution of the heuristics, we maintain

a data structure that stores all the current cherries in T and allows constant-time

insertions, deletions, and access to the cherries and their features. A possible imple-

mentation of this data structure consists of a hashtable cherryfeatures paired with a

list cherrylist of the pairs currently stored in cherryfeatures. We will use cherrylist to

iterate over the current cherries of T , and cherryfeatures to check whether a certain

pair is currently a cherry of T and to access its features.

Note that the total number of cherries inserted in cherryfeatures over all the iter-

ations is bounded by the total size of the trees ||T || because up to two cherries can

be created for each internal node over the whole execution. We will assume that we

have constant-time access to the leaves of each tree: specifically, given T ∈ T and

x ∈ X, we can check in constant time whether x is currently a leaf of T [1].

Initialisation The cherries of T can be identified and features 1-3 can be initially

computed in O(||T ||) time by traversing all trees bottom-up. Features 4-5 can be

computed in O(min{|T | · ||T ||, |T | · |X|2}) time by checking, for each T ∈ T and

each cherry (x, y) of T , whether both x and y appear in T . Features 6d,t to 12d,t

can also be initially computed with a traversal of T made efficient by preprocessing

each tree in linear time to allow constant-time LCA queries [21] and by storing the

depth (both topological and with the branch lengths) of each node. We also store

the topological and branch length depth of each tree and their maximum value over

T . Altogether this gives the following lemma.

Lemma 6 Initialising all features for a tree set T of total size ||T || over a set of

taxa X requires O(min{|T | · ||T ||, |T | · |X|2}) time and O(||T ||) space.

[1]This can be obtained maintaining a list of leaves of each tree and a hashtable with

the leaves as keys: the value of a key x is a pointer to the position of x in the list.

Bernardini et al. Page 14 of 36

The next lemma provides an upper bound on the time complexity of updating

the distance-independent features.

Lemma 7 Updating features 1-5 for a set T of |T | trees of total size ||T || over a

set of taxa X requires O(|T |(||T ||+ |X|2)) total time and O(||T ||) space.

Since searching for trivial cherries at each iteration of the randomised heuristic

TrivialRand can be done with the same procedure we use for updating feature 4 in

the machine-learned heuristics, which in particular requires O(|T | · ||T ||) time, we

have the following corollary.

Corollary 1 The time complexity of TrivialRand is O(|T | · ||T ||) = O(|T |2 · |X|).

The total time required for updating the distance-dependent features raises the

time complexity of ML and TrivialML to quadratic in the input size. However, the

extensive analysis reported in Appendix A shows that this is only due to the single

feature 6d, and without such a feature, the machine-learned heuristics would be

asymptotically as fast as the randomised ones. Since Table 4 in Appendix C shows

that this feature is not particularly important, in future work it could be worth

investigating whether disregarding it leads to equally good results in shorter time.

Lemma 8 The time complexity of ML and TrivialML is O(||T ||2).

4.2 Obtaining Training Data

The high-level idea to obtain training data is to first generate a phylogenetic network

N ; then to extract the set T of all the exhaustive trees displayed in N ; and finally,

to iteratively choose a random reducible pair (x, y) of N , to reduce it in T as well as

in N , and to label the remaining cherries of T with one of the four classes defined

in Section 4 until the network is fully reduced.

We generate two different kinds of binary orchard networks, normal and not nor-

mal, with branch lengths and up to 9 reticulations using the LGT (lateral gene

transfer) network generator of [22], imposing normality constraints when generat-

ing the normal networks. For each such network N , we then generate the set T
consisting of all the exhaustive trees displayed in N .

If N is normal, N is an optimal network for T [23, Theorem 3.1]. This is not

necessarily true for any LGT-generated network, but even in this case, we expect N

to be reasonably close to optimal, because we remove redundant reticulations when

we generate it and because the trees in T cover all the edges of N . In particular, for

LGT networks r(N) provides an upper bound estimate on the minimum possible

number of reticulations of any network displaying T , and we will use it as a reference

value for assessing the quality of our results on synthetic LGT-generated data.

5 Experiments
The code of all our heuristics and for generating data is written in Python and is

available at https://github.com/estherjulien/learn2cherrypick. All exper-

iments ran on an Intel Xeon Gold 6130 CPU @ 2.1 GHz with 96 GB RAM. We

Bernardini et al. Page 15 of 36

5 10 20 50 100
Tree Set Size

0

20

40

60

80

100

R
et

ic
ul

at
io

n

TrivialRand without Tree Expansion
TrivialRand with Tree Expansion

Figure 6: Number of reticulations output by TrivialRand with and without using

tree expansion. The height of the bars is the average reticulation number over

each group, obtained by selecting the best of 200 runs for each instance.

conducted experiments on both synthetic and real data, comparing the performance

of Rand, TrivialRand, ML and TrivialML, using threshold τ = 0. Similar to the train-

ing data, we generated two synthetic datasets by first growing a binary orchard

network N using [22], and then extracting T as a subset of the exhaustive trees

displayed in N . We provide details on each dataset in Section 5.2.

We start by analysing the usefulness of tree expansion, the heuristic rule described

in Section 3.2. We synthetically generated 112 instances for each tree set size |T | ∈
{5, 10, 20, 50, 100} (560 in total), all consisting of trees with 20 leaves each, and

grouped them by |T |; we then ran TrivialRand 200 times (both with and without

tree expansion) on each instance, selected the best output for each of them, and

finally took the average of these results over each group of instances. The results are

in Figure 6, showing that the use of tree expansion brought the output reticulation

number down by at least 16% (for small instances) and up to 40% for the larger

instances. We consistently chose to use this rule in all the heuristics that detect

trivial cherries, namely, TrivialRand, TrivialML, ML (although ML does not explicitly

favour trivial cherries, it does check whether a selected cherry is trivial using feature

number 2), and the non-learned heuristic that will be introduced in Section 5.3.

5.1 Prediction Model

The random forest is implemented with Python’s scikit-learn [24] package using

default settings. We evaluated the performance of our trained random forest models

on different datasets in a holdout procedure: namely, we removed 10% of the data

from each training dataset, trained the models on the remaining 90% and used the

holdout 10% for testing. The accuracy was assessed by assigning to each test data

point the class with the highest predicted probability and comparing it with the

true class. Before training the models, we balanced each dataset so that each class

had the same number of representatives.

Each training dataset differed in terms of the number M of networks used for

generating it and the number of leaves of the networks. For each dataset, the number

L of leaves of each generated network was uniformly sampled from [2,maxL], where

maxL is the maximum number of leaves per network. We constructed LGT networks

using the LGT generator of [22]. This generator has three parameters: n for the

Bernardini et al. Page 16 of 36

number of steps, α for the probability of lateral gene transfer events, and β for

regulating the size of the biconnected components of the network (called blobs).

The combination of these parameters determines the level (maximum number of

reticulations per blob), the number of reticulations, and the number of leaves of the

output network. In our experiments, α was uniformly sampled from [0.1, 0.5] and

β = 1 (see [22] for more details).

To generate normal networks we used the same generator with the same param-

eters, but before adding a reticulation we check if it respects the normality con-

straints and only add it if it does. Each generated network gave rise to a number

of data points: the total number of data points per dataset is shown in Table 3 in

Appendix B. Each row of Table 3 corresponds to a dataset on which the random

forest can be trained, obtaining as many ML models. We tested all the models on

all the synthetically generated instances: we show these results in Figures 18, 19

and 20 in Appendix C. In Section 5.2 we will report the results obtained for the

best-performing model for each type of instance.

Among the advantages of using a random forest as a prediction model, there is

the ability of computing feature importance, shown in Table 4 in Appendix B. Some

of the most useful features for a cherry (x, y) appear to be ‘Trivial’ (the ratio of the

trees containing both leaves x and y in which (x, y) is a cherry) and ‘Cherry in tree’

(the ratio of trees that contain (x, y)). This was not unexpected, as these features

are well-suited to identify trivial cherries.

‘Leaf distance’ (t,d), ‘LCA distance’ (t) and ‘Depth x/y’ (t) are also important

features. The rationale behind these features was to try to identify reticulated cher-

ries. This was also the idea for the feature ‘Before/after’, but this has, surprisingly,

a very low importance score. In future work, we plan to conduct a thorough analysis

of whether some of the seemingly least important features can be removed without

affecting the quality of the results.

5.2 Experimental Results

We assessed the performance of our heuristics on instances of four types: normal,

LGT, ZODS (binary non-orchard networks), and real data. Normal, LGT and ZODS

data are synthetically generated. We generated the normal instances much as we

did for the training data: we first grew a normal network using the LGT generator

and then extracted all the exhaustive trees displayed in the network. We generated

normal data for different combinations of the following parameters: L ∈ {20, 50, 100}
(number of leaves per tree) and R ∈ {5, 6, 7} (reticulation number of the original

network). Note that, for normal instances, |T | = 2R. For every combination of the

parameters L and R we generated 48 instances: by instance group we indicate the

set of instances generated for one specific parameter pair.

For the LGT instances, we grew the networks using the LGT generator, but unlike

for the normal instances we then extracted only a subset of the exhaustive trees

from each of them, up to a certain amount |T | ∈ {20, 50, 100}. The other parameters

for LGT instances are the number of leaves L ∈ {20, 50, 100} and the number of

reticulations R ∈ {10, 20, 30}. For a fixed pair (L, |T |), we generated 16 instances

for each possible value of R, and analogously, for a fixed pair (L,R) we generated

16 instances for each value of |T |. The 48 instances generated for a fixed pair of

values constitute a LGT instance group.

Bernardini et al. Page 17 of 36

Table 2: Number of real data instances for each group (combination of parameters

L and |T |).
L |T | Tot. Trees

10 20 50 100

20 50 50 50 50 1684

50 20 20 20 20 290

100 5 5 1 0 53

We generated non-orchard binary networks using the ZODS generator [25]. This

generator has two user-defined parameters: λ, which regulates the speciation rate,

and ν, which regulates the hybridization rate. Following [26] we set λ = 1 and

we sampled ν ∈ [0.0001, 0.4] uniformly at random. Like for the LGT instances, we

generated an instance group of size 48 for each pair of values (L, |T |) and (L,R),

with L ∈ {20, 50, 100}, |T | ∈ {20, 50, 100}, R ∈ {10, 20, 30}.
Finally, the real-world dataset consists of gene trees on homologous gene sets

found in bacterial and archaeal genomes, was originally constructed in [27] and made

binary in [3]. We extracted a subset of instances (Table 2) from the binary dataset,

for every combination of parameters L ∈ {20, 50, 100} and |T | ∈ {10, 20, 50, 100}.
For the synthetically generated datasets, we evaluated the performance of each

heuristic in terms of the output number of reticulations, comparing it with the

number of reticulations of the network N from which we extracted T . For the

normal instances, N is the optimal network [23, Theorem 3.1]; this is not true, in

general, for the LGT and ZODS datasets, but even in these cases, r(N) clearly

provides an estimate (from above) of the optimal value, and thus we used it as a

reference value for our experimental evaluation.

For real data, in the absence of the natural estimate on the optimal number of

reticulations provided by the starting network, we evaluated the performance of the

heuristics comparing our results with the ones given by the exact algorithms from [3]

(TreeChild) and from [7] (Hybroscale), using the same datasets that were used to test

the two methods in [3]. These datasets consist of rather small instances (|T | ≤ 8);

for larger instances, we run TrivialRand 1000 times for each instance group, selected

the best result for each group, and used it as a reference value (Figure 10).

We now describe in detail the results we obtained for each type of data and each

of the algorithms we tested.

5.2.1 Experiments on Normal Data

For the experiments in this section we used he ML model trained on 1000 normal

networks with at most 100 leaves per network (see Figure 18 in Appendix C). We

ran the machine-learned heuristics once for each instance and then averaged the

results within each instance group (recall that one instance group consists of the

sets of all the exhaustive trees of 48 normal networks having the same fixed number

of leaves and reticulations). The randomised heuristics Rand and TrivialRand were

run min{x(I), 1000} times for each instance I, where x(I) is the number of runs

that can be executed in the same time as one run of ML on the same instance. We

omitted the results for LowPair because they were at least 44% worse on average

than the worst-performing heuristic we report.

Bernardini et al. Page 18 of 36

(20, 5) (20, 6) (20, 7) (50, 5) (50, 6) (50, 7) (100, 5) (100, 6) (100, 7)
(L, R)

0

2

4

6

8

10

12

R
et

ic
ul

at
io

n
/ R

ef
er

en
ce

ML
TrivialML
Rand Avg.
Rand Best
TrivialRand Avg.
TrivialRand Best

(20,5) (20,6) (20,7) (50,5) (50,6) (50,7) (100,5) (100,6) (100,7)
(L, R)

1

2

3

4

5

6

7

R
et

ic
ul

at
io

n
/ R

ef
er

en
ce

ML
TrivialRand Best

Figure 7: Experimental results for normal data. Each point on the horizontal axis

corresponds to one instance group. In the left graph, the height of each bar gives

the average of the results over all instances of the group, scaled by the optimum

value for the group. The right graph compares the average output of ML within

each instance group and the average of the best output given by TrivialRand for

each instance of a group. The shaded areas represent 95% confidence intervals.

In Figure 7 we summarise the results. Solid bars represent the ratio between

the average reported reticulation number and the optimal value, for each instance

group and for each of the four heuristics. Dashed bars represent the ratio between

the average (over the instances within each group) of the best result among the

min{x(I), 1000} runs for each instance I and the optimum.

The machine-learned heuristics ML and TrivialML seem to perform very similarly,

both leading to solutions close to optimum. The average performance of TrivialRand

is around 4 times worse than the machine-learned heuristics; in contrast, if we only

consider the best solution among the multiple runs for each instance, they are quite

good, having only up to 49% more reticulations than the optimal solution, but

they are still at least 4% worse (29% worse on average) than the machine-learned

heuristics’ solutions: see the right graph of igure 7.

The left graph of Figure 7 shows that the performance of the randomised heuris-

tics seems to be negatively impacted by the number of reticulations of the optimal

solution, while we do not observe a clear trend for the machine-learned heuristics,

whose performance is very close to optimum for all the considered instance groups.

Indeed, the number of existing phylogenetic networks with a certain number of

leaves grows exponentially in the number of reticulations, thus making it less prob-

able to reconstruct a “good” network with random choices. This is consistent with

the existing exact methods being FPT in the number of reticulations [28, 3].

The fully randomised heuristic Rand always performed much worse than all the

others, indicating that identifying the trivial cherries has a great impact on the

effectiveness of the algorithms (recall that ML implicitly identifies trivial cherries).

5.2.2 Experiments on LGT Data

For the experiments on LGT data we used the ML model trained on 1000 LGT

networks with at most 100 leaves per network (see Figure 19 in Appendix C).

The setting of the experiments is the same as for the normal data (we run the

randomised heuristics multiple times and the machine-learned heuristics only once

for each instance), with two important differences. First, for LGT data we only take

proper subsets of the exhaustive trees displayed by the generating networks, and

Bernardini et al. Page 19 of 36

(20, 20) (20, 50) (20, 100) (50, 20) (50, 50) (50, 100) (100, 20) (100, 50) (100, 100)
(L, | |)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

R
et

ic
ul

at
io

n
/ R

ef
er

en
ce

ML
TrivialML
Rand Avg.
Rand Best
TrivialRand Avg.
TrivialRand Best

(20,20) (20,50) (20,100) (50,20) (50,50) (50,100) (100,20) (100,50) (100,100)
(L, | |)

1

2

3

4

5

6

7

R
et

ic
ul

at
io

n
/ R

ef
er

en
ce

ML
TrivialRand Best

Tree size

(20, 10) (20, 20) (20, 30) (50, 10) (50, 20) (50, 30) (100, 10) (100, 20) (100, 30)
(L, R)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

R
et

ic
ul

at
io

n
/ R

ef
er

en
ce

ML
TrivialML
Rand Avg.
Rand Best
TrivialRand Avg.
TrivialRand Best

(20,10) (20,20) (20,30) (50,10) (50,20) (50,30) (100,10) (100,20) (100,30)
(L, R)

1

2

3

4

5

6

7

R
et

ic
ul

at
io

n
/ R

ef
er

en
ce

ML
TrivialRand Best

Reticulation number

Figure 8: Experimental results for LGT data. Each point on the horizontal axis

corresponds to one instance group. For the graphs on the left, there is one group

for each fixed pair (L, |T |) consisting of 16 instances coming from LGT networks

for each value of R ∈ {10, 20, 30}. For the graphs on the right, there is one group

for each fixed pair (L,R) consisting of 16 instances coming from LGT networks

for each value of |T | ∈ {20, 50, 100}. In the top graphs, the height of each bar

gives the average of the results over all instances of the group, each scaled by the

number of reticulations of the generating network. The bottom graphs compare

the average output of ML within each instance group and the average of the best

output given by TrivialRand for each instance group. The shaded areas represent

95% confidence intervals.

thus we have two kinds of instance groups: one where in each group the number of

trees extracted from a network and the number of leaves of the networks are fixed,

but the trees come from networks with different numbers of reticulations; and one

where the number of reticulations of the generating networks and their number of

leaves are fixed, but the number of trees extracted from a network varies.

The second important difference is that the reference value we use for LGT net-

works is not necessarily the optimum, but it is just an upper bound given by the

number of reticulations of the generating networks which we expect to be reasonably

close to the optimum (see Section 4.2).

The results for the LGT datasets are shown in Figure 8. Comparing these results

with those of Figure 7, it is evident that the LGT instances were more difficult than

the normal ones for all the tested heuristics: this could be due to the fact that the

normal instances consisted of all the exhaustive trees of the generating networks,

while the LGT instances only have a subset of them and thus carry less information.

The machine-learned heuristics performed substantially better (up to 80% on av-

erage) than the best randomised heuristic TrivialRand in all instance groups but the

ones with the smallest values for parameters R, |T | and L, for which the perfor-

mances are essentially overlapping. On the contrary, the advantage of the machine-

learned methods is more pronounced when the parameters are set to the highest

Bernardini et al. Page 20 of 36

(20, 20) (20, 50) (20, 100) (50, 20) (50, 50) (50, 100) (100, 20) (100, 50) (100, 100)
(L, | |)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

R
et

ic
ul

at
io

n
/ R

ef
er

en
ce

ML
TrivialML
Rand Avg.
Rand Best
TrivialRand Avg.
TrivialRand Best

(20,20) (20,50) (20,100) (50,20) (50,50) (50,100) (100,20) (100,50) (100,100)
(L, | |)

1

2

3

4

5

6

7

R
et

ic
ul

at
io

n
/ R

ef
er

en
ce

ML
TrivialRand Best

Tree size

(20, 10) (20, 20) (20, 30) (50, 10) (50, 20) (50, 30) (100, 10) (100, 20) (100, 30)
(L, R)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

R
et

ic
ul

at
io

n
/ R

ef
er

en
ce

ML
TrivialML
Rand Avg.
Rand Best
TrivialRand Avg.
TrivialRand Best

(20,10) (20,20) (20,30) (50,10) (50,20) (50,30) (100,10) (100,20) (100,30)
(L, R)

1

2

3

4

5

6

7

R
et

ic
ul

at
io

n
/ R

ef
er

en
ce

ML
TrivialRand Best

Reticulation number

Figure 9: Experimental results for ZODS data. Each point on the horizontal

axis corresponds to one instance group. For the graphs on the left, there is one

group for each fixed pair (L, |T |) consisting of 16 instances coming from ZODS

networks for each value of R ∈ {10, 20, 30}. For the graphs on the right, there is

one group for each fixed pair (L,R) consisting of 16 instances coming from ZODS

networks for each value of |T | ∈ {20, 50, 100}. In the top graphs, the height of

each bar gives the average of the results it represents over all instances of the

group, each scaled by the number of reticulations of the network the instance

originated from. The bottom graphs compare the average output of ML within

each instance group and the average of the best output given by TrivialRand for

each group instance. The shaded areas represent 95% confidence intervals.

values. This is because the larger the parameters, the more the possible different

networks that embed T , thus the less likely for the randomised methods to find a

good solution.

From the graphs on the right of Figure 8, it seems that the number of reticulations

has a negative impact on both machine-learned and randomised heuristics, the effect

being more pronounced for the randomised ones. The effect of the number of trees

|T | on the quality of the solutions is not as clear (Figure 8, left). However, we can

still see that the trend of ML and TrivialRand is the same: the “difficult” instance

groups are so for both heuristics, even if the degradation in the quality of the

solutions for such instance groups is less marked for ML than for TrivialRand.

5.2.3 Experiments on ZODS Data

For the experiments on ZODS data we used the ML model trained on 1000 LGT

networks with at most 100 leaves per network (see Figure 20 in Appendix C). The

setting of the experiments is the same as for the LGT data, and the results are

shown in Figure 9.

At first glance, the performance of the randomised heuristics seems to be bet-

ter for ZODS data than for LGT data (compare figures 8 and 9), which sounds

counterintuitive. Recall, however, that all the graphs show the ratio between the

Bernardini et al. Page 21 of 36

number of reticulations returned by our methods and a reference value, i.e., the

number of reticulations of the generating network: while we expect this reference

to be reasonably close to the optimum for LGT networks, this is not the case for

ZODS networks. In fact, a closer look to ZODS networks shows that they have a

large number of redundant reticulations which could be removed without changing

the set of trees they display, and thus their reticulation number is in general quite

larger than the optimum. This is an inherent effect of the ZODS generator not

having any constraints on the reticulations that can be introduced, and it is more

marked on networks with a small number of leaves.

Having a reference value significantly larger than the optimum makes the ratios

shown in Figure 9 small (close to 1, especially for TrivialRand on small instances)

without implying that the results for the ZODS data are better than the ones for

the LGT data. The graphs of Figures 8 and 9 are thus not directly comparable.

The reference value for the experiments on ZODS data not being realistically

close to the optimum, however, does not invalidate their significance. Indeed, the

scope of such experiments was just to compare the performance of the machine-

learned heuristics on data entirely different from those they were trained on with

the performance of the randomised heuristics, which should not depend on the type

of network that was used to generate the input.

As expected and in contrast with normal and LGT data, the results show that

the machine-learned heuristics perform worse than the randomised ones on ZODS

data, consistent with the ML methods being trained on a completely different class

of networks.

5.2.4 Experiments on Real Data

We conducted two sets of experiments on real data, using the ML model trained

on the dataset trained on 1000 LGT networks with at most 100 leaves each. For

sufficiently small instances, we compared the results of our heuristics with the results

of two existing tools for reconstructing networks from binary trees: TreeChild [3] and

Hybroscale [7]. Hybroscale is an exact method performing an exhaustive search on the

networks displaying the input trees, therefore it can only handle reasonably small

instances in terms of the number of input trees. TreeChild is a fixed-parameter (in

the number of reticulations of the output) exact algorithm that reconstructs the

best tree-child network, a restricted class of phylogenetic networks, and due to its

fast-growing computation time cannot handle large instances either.

We tested ML and TrivialRand against Hybroscale and TreeChild using the same

dataset used in [3], in turn taken from [27]. The dataset consists of ten in-

stances for each possible combination of the parameters |T | ∈ [2, 8] and L ∈
{10, 20, 30, 40, 50, 60, 80, 100, 150}. In Figure 10 we show results only for the in-

stance groups for which Hybroscale or TreeChild could output a solution within 1

hour, consistent with the experiments in [3]. As a consequence of Hybroscale and

TreeChild being exact methods (TreeChild only for a restricted class of networks),

they performed better than both ML and TrivialRand on all instances they could

solve, although the best results of TrivialRand are often close (no worse than 15%)

and sometimes match the optimal value.

The main advantage of our heuristics is that they can handle much larger instances

than the exact methods. In the conference version of this paper [19] we showed the

Bernardini et al. Page 22 of 36

0

5

10

15

20

25

30

Av
er

ag
e

R
et

ic
ul

at
io

n
N

um
be

r

ML
TrivialRand Avg.
TrivialRand Best
Hybroscale
TreeChild

(10, 2) (10, 3) (10, 4) (10, 5) (10, 6) (10, 7) (10, 8) (20, 2) (20, 3) (20, 4) (20, 5) (30, 2) (30, 3) (40, 2) (50, 2) (60, 2) (80, 2)
(L, | |)

0

1

2

3

4

5

R
et

ic
ul

at
io

n
/ R

ef
er

en
ce ML

TrivialRand Best

Figure 10: Comparison of ML, TrivialRand, Hybroscale, and TreeChild on real data.

Each point on the horizontal axis corresponds to one instance group, consisting

of 10 instances for a fixed pair (L, |T |). In the top graph, the height of each bar

gives the average, over all instances of the group, of the number of reticulations

returned by the method. The bottom graphs compare the average output of ML

within each instance group and the average of the best output given by Trivial-

Rand within the group. The shaded areas represent 95% confidence intervals.

results of our heuristics on large real instances, using a ML model trained on 10

networks with at most 100 leaves each. These results demonstrated that consistently

with the simulated data, the machine-learned heuristics gave significantly better

results than the randomised ones for the largest instances. When we first repeated

the experiments with the new models trained on 1000 networks with maxL = 100,

however, we did not obtain similar results: instead, the results of the randomised

heuristics were better or only marginally worse than the machine-learned ones on

almost all the instance groups, including the largest.

Puzzled by these results, we conducted an experiment on the impact of the train-

ing set on real data. The results are reported in Figure 11, and show that the choice

of the networks on which we train our model has a big impact on the quality of

the results for the real datasets. This is in contrast with what we observed for

the synthetic datasets, for which only the class of the training networks was im-

portant, not the specific instances of the networks themselves. According to what

was noted in [3], this is most likely due to the fact that the real phylogenetic data

have substantially more structure than random synthetic datasets, and the ran-

domly generated training networks do not always reflect this structure. By chance,

the networks we used for training the model we used in [19] were similar to real

phylogenetic networks, unlike the 1000 networks in the training set of this paper.

5.2.5 Experiments on Scalability

We conducted experiments to study how the running time of our heuristics scales

with increasing instance size for all datasets. In Figure 12 we report the average of

the running times of ML for the instances within each instance group with a 95%

Bernardini et al. Page 23 of 36

(20, 10) (50, 10) (100, 10) (20, 20) (50, 20) (100, 20) (20, 50) (50, 50) (100, 50) (20, 100) (50, 100)

(L, | |)

0.8

0.9

1.0

1.1

1.2

1.3

R
et

ic
ul

at
io

n/
Tr

iv
ia

lR
an

d
Be

st

ML (M = 10, maxL = 100)
Best ML
ML (M = 1000, maxL = 100)
WABI ML

Figure 11: Ratio between the performance of ML and the best value output by

TrivialRand for different instance groups and different training sets. TrivialRand

is executed min{x(I), 1000} times for each instance I, x(I) being the number

of runs that could be completed in the same time as one run of ML on I. The

results are then averaged within each group. Each blue line represents the results

obtained training the model with a different set of 10 randomly generated LGT

networks with at most 100 leaves each. The green line corresponds to the training

set used in [19]; the orange line represents one of the best-performing sets; the

red line corresponds to the training set we used for the experiments on LGT and

ZODS data in this paper, consisting of 1000 randomly generated LGT networks.

confidence interval, for an increasing number of reticulations (synthetic datasets)

or number of trees (real dataset). The datasets and the instance groups are those

described in the previous sections. Note that we did not report the running times

of the randomised heuristics because they are meant to be executed multiple times

on each instance, and in all the experiments we bounded the number of executions

precisely using the time required for one run of ML.

We also compared the running time of our heuristics with the running times of

the exact methods TreeChild and Hybroscale. The results are shown in Figure 13 and

are consistent with the execution times of the exact methods growing exponentially,

while the running time of our heuristics grows polynomially. Note that networks with

more reticulations are reduced by longer CPS and thus the running time increases

with the number of reticulations.

5.2.6 Experiments on Non-Exhaustive Input Trees

The instances on which we tested our methods so far all consisted of a set of

exhaustive trees, that is, each input tree had the same set of leaves which coincided

with the set of leaves of the network. However, this is not a requirement of our

heuristics, which are able to produce feasible solutions also when the leaf sets of the

input trees are different, that is when their leaves are proper subsets of the leaves

of the optimal networks that display them.

To test their performance on this kind of data, we generated 18 LGT instance

groups starting from the instances we used in Section 5.2.2 and removing a certain

Bernardini et al. Page 24 of 36

5 6 7
R

50

100

150

200

250

R
un

tim
e

(s
ec

)

Leaves per tree
20
50
100

(a) Normal

10 20 30
R

25

50

75

100

125

150

175

200

(b) LGT

10 20 30
R

50

100

150

200

250

(c) ZODS

10 20 50 100
| |

0

100

200

300

400

500

600

(d) Real

Figure 12: The running time (in seconds) of ML for the instance groups described

in Sections 5.2.1, 5.2.2, 5.2.3, 5.2.4. The solid lines represent the average of the

running times for the instances within each instance group. The shaded areas

represent 95% confidence intervals.

0

1000

2000

3000

CPH
Hybroscale
TreeChild

(10
, 2

)

(10
, 3

)

(10
, 4

)

(10
, 5

)

(10
, 6

)

(10
, 7

)

(10
, 8

)

(20
, 2

)

(20
, 3

)

(20
, 4

)

(20
, 5

)

(20
, 6

)

(20
, 7

)

(20
, 8

)

(30
, 2

)

(30
, 3

)

(30
, 4

)

(30
, 5

)

(30
, 6

)

(30
, 7

)

(30
, 8

)

(40
, 2

)

(40
, 3

)

(40
, 4

)

(40
, 5

)

(40
, 6

)

(40
, 7

)

(40
, 8

)

(50
, 2

)

(50
, 3

)

(50
, 4

)

(50
, 5

)

(50
, 6

)

(50
, 7

)

(50
, 8

)

(60
, 2

)

(60
, 3

)

(60
, 4

)

(60
, 5

)

(60
, 6

)

(60
, 7

)

(60
, 8

)

(80
, 2

)

(80
, 3

)

(80
, 4

)

(80
, 5

)

(80
, 6

)

(80
, 7

)

(80
, 8

)

(10
0,

2)

(10
0,

3)

(10
0,

4)

(10
0,

5)

(10
0,

6)

(10
0,

7)

(10
0,

8)

(15
0,

2)

(15
0,

3)

(15
0,

4)

(15
0,

5)

(15
0,

6)

(15
0,

7)

(15
0,

8)

(L, | |)

0

50

100

150

R
un

tim
e

(s
ec

)

Figure 13: The running time of ML on the real dataset described in Section 5.2.4

compared with the running time of the exact methods Hybroscale and TreeChild

on the same dataset. The solid lines represent the average running times within

each instance group. The shaded areas represent 95% confidence intervals.

percentage p of leaves from each tree in each instance uniformly at random. Specif-

ically, we generated an instance group for each value of p ∈ {5, 10, 15, 20, 25, 50}
starting from the LGT instance groups with L = 100 leaves and R ∈ {10, 20, 30}
reticulations. Since the performances of the two machine-learned heuristics were

essentially overlapping for all of the other experiments, and since TrivialRand per-

formed consistently better than the other randomised heuristics, we limited this

test to ML and TrivialRand. The results are shown in Figure 14.

In accordance with intuition, the performance of both methods decreases with

an increasing percentage of removed leaves, as the trees become progressively less

informative. However, the degradation in the quality of the solutions is faster for ML

than for TrivialRand, consistent with the fact that ML was trained on exhaustive trees

only: when the difference between the training data and the input data becomes

too large, the behaviour of the machine-learned heuristic becomes unpredictable.

Bernardini et al. Page 25 of 36

0 5 10 15 20 25 50
Missing leaves (%)

0

5

10

15

20

25

30

35

R
et

ic
ul

at
io

n
/ R

ef
er

en
ce

 Method (L, R)
ML (100,10)
ML (100,20)
ML (100,30)
TrivialRand Best (100,10)
TrivialRand Best (100,20)
TrivialRand Best (100,30)

Figure 14: Ratio between the number of reticulations outputted by ML and

TrivialRand Best and the reference value for an increasing percentage of removed

leaves on LGT data. Each point on the horizontal axis corresponds to a certain

percentage of leaves removed from each tree; each line represents the average,

within the instances of a group (L,R) with a certain percentage of removed

leaves, of the output reticulation number divided by the reference value. The

shaded areas represent 95% confidence intervals.

We demand the design of algorithms better suited for trees with missing leaves for

future work.

5.2.7 Effect of the Threshold on ML.

We tested the effectiveness of adding a threshold τ > 0 to ML on the same datasets

of Sections 5.2.1, 5.2.2 and 5.2.3 (normal, LGT and ZODS). Recall that each in-

stance group consists of 48 instances. We ran ML ten times for each threshold

τ ∈ {0, 0.1, 0.3, 0.5, 0.7} on each instance, took the lowest output reticulation num-

ber and averaged these results within each instance group.

The results are shown in Figure 15. For all types of data, a threshold τ ≤ 0.3 is

beneficial, intuitively indicating that when the probability of a pair being reducible

is small it gives no meaningful indication, and thus random choices among these

pairs are more suited. The seemingly best value for the threshold, though, is different

for different types of instances. The normal instances seem to benefit from quite

high values of τ , the best among the tested values being τ = 0.7. While the optimal

τ value for normal instances could be even higher, we know from Figure 7 that

it must be τ < 1, as the random strategies are less effective than the one based

on machine learning for normal data. For the LGT and the ZODS instances, the

best threshold seems to be around τ = 0.3, while very high values (τ = 0.7) are

counterproductive. This is especially true for the LGT instances, consistent with

the randomised heuristics being less effective for them than for the other types of

data (see Figure 8).

These experiments should be seen as an indication that introducing some random-

ness may improve the performance of the ML heuristics, at the price of running them

multiple times. We defer a more thorough analysis to future work.

Bernardini et al. Page 26 of 36

0 10 30 50 70
Threshold (%)

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

R
et

ic
ul

at
io

n
/ R

ef
er

en
ce

(a) Normal

0 10 30 50 70
Threshold (%)

1.5

2.0

2.5

3.0

3.5

4.0

R
et

ic
ul

at
io

n
/ R

ef
er

en
ce

Leaves per tree
20
50
100

(b) LGT

0 10 30 50 70
Threshold (%)

2.0

2.5

3.0

3.5

4.0

R
et

ic
ul

at
io

n
/ R

ef
er

en
ce

(c) ZODS

Figure 15: The reticulation number when running ML with different thresholds

on the instance groups of Sections 5.2.1, 5.2.2 and 5.2.3. Each instance was run

10 times, and the lowest reticulation value of these runs was selected. The shaded

areas represent 95% confidence intervals.

5.3 A Non-Learned Heuristic Based on Important Features

In this section we propose FeatImp, yet another heuristic in the CPH framework.

Although FeatImp does not rely on a machine learning model, we defined the rules

to choose a cherry on the basis of the features that were found to be the most

relevant according to the model we used for ML and TrivialML.

To identify the most suitable rules, we trained a classification tree using the same

features and training data as the ones used for the ML heuristic (see figure 17 in

Appendix B). We then selected the most relevant features used in such tree and used

them to define the function PickNext listed by Algorithm 3: namely, the features 4,

8t, 11d and 12t of Table 1 (the ratio of trees having both leaves x and y in which

(x, y) is reducible, the average of the topological leaf distance between x and y scaled

by the depth of the trees, the average of the ratios d(x, LCA(x, y))/d(y, LCA(x, y))

and the average of the topological distance from x to the root over the topological

distance from y to the root, respectively).

To compute and update these quantities we proceed as described in Section 4.1

and Appendix A. The general idea of the function PickNext used in FeatImp is

to mimic the first splits of the classification tree by progressively discarding the

candidate reducible pairs that are not among the top α% scoring for each of the

considered features, for some input parameter α.

Algorithm 3 Function PickNext used in FeatImp

INPUT: A set T of phylogenetic trees and a parameter α ∈ (0, 100).
OUTPUT: Next cherry to pick (x, y)

1: if there exists a trivial cherry then
2: Select a trivial cherry (x, y) uniformly at random;
3: else
4: C ← all reducible pairs of T ;
5: C ← the α% cherries of C with the highest value for feature 4;
6: C ← the α% cherries of C with the highest value for feature 8t;
7: C ← the α% cherries of C with the highest value for feature 11d;
8: (x, y)← the pair of C with the highest value for feature 12t;

9: return (x, y);

Bernardini et al. Page 27 of 36

(20
,5)

(20
,6)

(20
,7)

(50
,5)

(50
,6)

(50
,7)

(10
0,5

)

(10
0,6

)

(10
0,7

)

(L, R)

1

2

3

4

5

R
et

ic
ul

at
io

n
/ R

ef
er

en
ce

(d) Normal

(20
,10

)

(20
,20

)

(20
,30

)

(50
,10

)

(50
,20

)

(50
,30

)

(10
0,1

0)

(10
0,2

0)

(10
0,3

0)

(L, R)

2

3

4

5

6

7

8

R
et

ic
ul

at
io

n
/ R

ef
er

en
ce

ML
TrivialRand Avg.
TrivialRand Best
FeatImp

(e) LGT

(20
,10

)

(20
,20

)

(20
,30

)

(50
,10

)

(50
,20

)

(50
,30

)

(10
0,1

0)

(10
0,2

0)

(10
0,3

0)

(L, R)

2

4

6

8

10

12

14

R
et

ic
ul

at
io

n
/ R

ef
er

en
ce

(f) ZODS

Figure 16: Comparison of the results of FeatImp, ML and TrivialRand on the

instance groups described in Sections 5.2.1, 5.2.2 and 5.2.4. Each point on the

horizontal axis corresponds to an instance group; each line represents the average,

within the instance group, of the output reticulation number divided by the

reference value. The shaded areas represent 95% confidence intervals.

We implemented FeatImp and test it on the same instances as sections 5.2.1, 5.2.2

and 5.2.3 with α = 20. The results are shown in Figure 16. As expected, FeatImp

works consistently worse than ML on all the tested datasets, and it also performs

worse than TrivialRand on most instance groups. However, it is on average 12% better

than TrivialRand on the LGT instance group having 50 leaves and 30 reticulations

and on all the LGT instance groups with 100 leaves, which are the most difficult

for the randomised heuristics, as already noticed in Section 5.2.2. The results it

provides for such difficult instances are only on average 20% worse than those of

ML, with the advantage of not having to train a model to apply the heuristic.

These experiments are not intended to be exhaustive, but should rather be seen

as an indication that machine learning can be used as a guide to design smarter

non-learned heuristics. Possible improvements of FeatImp include using different

values of α for different features, introducing some randomness in Line 8, that is,

instead of choosing the single top scoring pair to choose one among the top α% at

random, or to use fewer/more features.

6 Conclusions
Our contributions are twofold: first, we presented the first methods that allow re-

constructing a phylogenetic network from a large set of large binary phylogenetic

trees. Second, we show the promise and the limitation of the use of machine learning

in this context. Our experimental studies indicate that machine-learned strategies,

consistent with intuition, are very effective when the training data have a structure

similar enough to the test data. In this case, the results we obtained with machine

learning were the best among all the tested methods, and the advantage is particu-

larly evident in the most difficult instances. Furthermore, preliminary experiments

indicate that the performance of the machine-learned methods can even be im-

proved by introducing appropriate thresholds, in fact mediating between random

choices and predictions. However, when the training data do not sufficiently reflect

the structure of the test data, repeated runs of the fast randomised heuristics lead

to better results. The non-learned cherry-picking heuristic we designed based on the

Bernardini et al. Page 28 of 36

most relevant features of the input (identified using machine learning) shows yet

another interesting direction.

Our results suggest many interesting directions for future work. First of all, we

have seen that machine learning is an extremely promising tool for this problem since

it can identify cherries and reticulated cherries of a network, from displayed trees,

with very high accuracy. It would be interesting to prove a relationship between the

machine-learned models’ accuracy and the produced networks’ quality. In addition,

do there exist algorithms that exploit the high accuracy of the machine-learned

models even better? Could other machine learning methods than random forests,

or more training data, lead to even better results? Our methods are applicable

to trees with missing leaves but perform well only if the percentage of missing

leaves is small. Can modified sets of features be defined that are more suitable

for input trees with many missing leaves? Moreover, we have seen that combining

randomness with machine learning can lead to better results than either individual

approach. However, we considered only one strategy to achieve this. What are the

best strategies for combining randomness with machine learning for this, and other,

problems? From a practical point of view, it is important to investigate whether our

methods can be extended to deal with nonbinary input trees and to develop efficient

implementations: in fact, we point out that our current implementations are in

Python and not optimised for speed. Faster implementations could make machine-

learned heuristics with nonzero thresholds even more effective. Finally, can the

machine-learning-based approach be adapted to other problems in the phylogenetic

networks research field?

Appendix A: Time Complexity
Lemma 7 Updating features 1-5 for a set T of |T | trees of total size ||T || over a

set of taxa X requires O(|T |(||T ||+ |X|2)) total time and O(||T ||) space.

Proof Let F i
(x,y) denote the current value of the i-th feature for a cherry (x, y).

When reducing a cherry (x, y) in a tree T (thus deleting x and p(x) = p(y) and

then adding a direct edge from p(p(y)) to y), we check whether the other child of

p(p(y)) is a leaf z or not. If not, no new cherry is created in T , thus the features

1-4 remain unaffected for all the cherries of T . Otherwise, (z, y) and (y, z) are new

cherries of T and we can distinguish two cases.

1 (z, y) and (y, z) are already cherries of T . Then, F 1
(y,z) and F 1

(z,y) are in-

creased by 1
|T | ; F

4
(y,z) and F 4

(z,y) are increased by 1
|T y,z| , where |T y,z| is the

number of trees that contain both y and z and is equal to |T |F 5
(y,z). To up-

date features 2 and 3 we use two auxiliary data structures new cherries(y,z)
and new cherries(z,y) to collect the distinct cherries that would originate after

picking (y, z) and (z, y) in each tree, respectively. These structures must al-

low efficient insertions, membership queries, and iteration over the elements[2],

and can be deleted before picking the next cherry in T . If the other child of

p(p(z)) is a leaf w, we add (z, w) and (w, z) to new cherries(y,z) and (y, w) and

(w, y) to new cherries(z,y) (unless they are already present).

[2]For example, hashtables paired with lists.

Bernardini et al. Page 29 of 36

2 (z, y) and (y, z) are new cherries of T . Then we insert them into cherryfeatures.

We initially set F 1
(y,z) = F 1

(z,y) = 1
|T | , and for features 2-3 we create the same

data structures as the previous case. To compute F 5
(y,z) = F 5

(z,y) we first

compute |T y,z| by checking whether y and z are both leaves of T for each

T ∈ T . Then we set F 5
(y,z) = F 5

(z,y) = |T y,z|
|T | and F 4

(y,z) = F 4
(z,y) = 1

|T y,z| .

Once we have reduced (x, y) in all trees, we count the elements of each of the

auxiliary data structures new cherries and update features 2-3 of the corresponding

cherries accordingly. Since picking a cherry can create up to two new cherries in

each tree, and for each new cherry we add up to two elements to an auxiliary data

structure, this step requires O(|T |) time for each iteration.

Feature 5 must be updated for all the cherries corresponding to the unordered

pairs {x,w} with w 6= y. To do so, when we reduce (x, y) in a tree T we go over its

leaves: for each leaf w 6= y we decrease F 5
(x,w) and F 5

(w,x) by 1
|T | (if (x,w) and (w, x)

are currently cherries of T). This requires O(|X|2) total time per tree over all the

iterations, because we scan the leaves of a tree only when we reduce a cherry in

that tree. Computing feature 5 when new cherries of T are created (case 2) requires

constant time per tree per cherry. The total number of cherries created in T over all

the iterations cannot exceed 2||T ||, thus the total time required to update feature

5 is O(|T |(||T ||+ |X|2)). We arrived at the following result.

Lemma 8 The time complexity of ML and TrivialML is O(||T ||2).

Proof Recall that during the initialization phase, we store the depth of each node,

both topological and with respect to the branch lengths, and we preprocess each

tree to allow constant-time LCA queries. Note that reducing cherries in the trees

does not affect the height of the nodes nor their ancestry relations, thus it suffices

to preprocess the tree set only once at the beginning of the algorithm.

When we reduce a cherry (x, y) in a tree T , this may affect the depth of T as a

consequence of the internal node p(x) being deleted. We thus visit T to update its

depth (both topological and with the branch lengths), and after updating the depth

of all trees, we update the maximum value over the whole set T accordingly. In order

to describe how to update the features 6d,t − 12d,t we denote by old deptht(T) the

topological depth of T before reducing (x, y), new deptht(T) its depth after reducing

(x, y), and use analogous notation for the distances old distt and new distt between

two nodes of a tree and for the depth, the max depth, and distances with the branch

lengths.

Whenever the value of the maximum topological depth changes, we update the

value of feature 6t for all the current cherries (z, w) as F 6t
(z,w) =

F
6t
(z,w)

·old max deptht

new max deptht .

Since the maximum topological depth can change O(|X|) times over all the itera-

tions, and the total number of cherries at any moment is O(|T ||X|), these updates

require O(|T ||X|2) total time. We do the same for feature 6d, but since the max-

imum branch-length depth can change once per iteration in the worst case, this

requires O(||T ||2) time overall.

Features 8d,t − 12d,t must be then updated to remove the contribution of T for

the cherries (x,w) and (w, x) for each leaf w 6= x 6= y of T , because x and w will no

Bernardini et al. Page 30 of 36

Table 3: Trained random forest models on different datasets for different combi-

nations of maxL (maximum number of leaves per network) and M (number of

networks). Each row in the table represents one model. For each model, the testing

accuracy is given under “Accuracy”, and the total number of data points retrieved

from all M networks is given under “Num. data”. Each dataset is split for training

and testing (90% − 10%). The training duration for the random forest is given in

column “Training” and the time needed to generate the training data is given in

column “Data gen.”, in hours per core (we used 16 cores in total).

(a) Normal

maxL M Accuracy Num. data Training (min) Data gen. (hour/core)

20 5 1.0 840 00:00 00:00:12
10 0.994 1,804 00:00 00:00:22

100 0.998 17,388 00:03 00:04:19
500 0.994 73,168 00:16 00:15:18

1000 0.993 151,308 00:42 00:29:49
50 5 0.994 3,580 00:00 00:01:21

10 0.997 7,860 00:01 00:02:22
100 0.996 53,988 00:11 00:18:07
500 0.997 268,552 01:04 01:31:18

1000 0.998 535,624 04:01 02:56:21
100 5 1.0 4,944 00:00 00:01:13

10 0.999 12,444 00:01 00:04:05
100 0.999 128,824 00:25 00:41:54
500 0.999 676,768 04:21 04:15:49

1000 0.999 1,362,220 12:10 08:08:58

(b) LGT

maxL M Accuracy Num. data Training (min) Data gen. (hour/core)

20 5 0.974 768 00:01 00:00:19
10 0.994 1,548 00:02 00:00:41

100 0.976 12,244 00:09 00:04:20
500 0.975 58,900 00:24 00:19:13

1000 0.975 118,104 00:27 00:35:38
50 5 0.997 2,952 00:01 00:00:43

10 0.995 3,796 00:03 00:01:01
100 0.995 44,116 00:23 00:14:01
500 0.994 219,472 01:39 01:06:45

1000 0.994 421,204 02:45 02:10:45
100 5 0.996 5,080 00:06 00:01:23

10 0.996 7,540 00:05 00:01:58
100 0.998 114,900 00:31 00:34:25
500 0.998 605,652 04:44 02:54:15

1000 0.998 1,175,628 10:23 05:31:13

longer appear together in T . These updates require O(1) time per leaf and can be

done as follows. We set

F 8t
(x,w) =

F 8t
(x,w) · |T

x,w| − old distt(x,w)
old deptht(T)

|T x,w| − 1
(1)

and use analogous formulas to update F 8d
(x,w) and features 9d,t− 12d,t for (x,w) and

(w, x).

We finally need to further update all the features 6d,t−12d,t for all the cherries of

a tree T in which (x, y) has been reduced and whose depth has changed, including

the newly created ones. This can be done in O(1) time per cherry per tree with

opportune formulas of the form of Equation 1. We have obtained the stated bound.

Appendix B: Random Forest Models

B
ern

ard
in

i
et

a
l.

P
a

g
e

3
1

o
f

3
6

15.7%
[0.0, 0.02, 0.03, 0.95]

Not a cherry

0.1%
[0.0, 0.92, 0.0, 0.08]

Ret. cherry

2.0%
[0.0, 0.0, 0.0, 1.0]

Not a cherry

2.3%
[0.0, 0.34, 0.34, 0.31]

(y, x) ret. cherry

23.3%
[0.0, 0.33, 0.67, 0.01]

(y, x) ret. cherry

24.5%
[0.0, 0.66, 0.33, 0.01]

Ret. cherry

Depth x/y (t) <= 1.33
15.8%

[0.0, 0.03, 0.03, 0.95]
Not a cherry

Cherry in tree <= 0.38
4.3%

[0.0, 0.19, 0.19, 0.63]
Not a cherry

7.1%
[0.0, 0.0, 0.0, 1.0]

Not a cherry

Depth x/y (d) <= 1.0
47.8%

[0.0, 0.5, 0.5, 0.01]
(y, x) ret. cherry

Leaf distance (t) <= 0.08
20.1%

[0.0, 0.06, 0.06, 0.88]
Not a cherry

Cherry in tree <= 0.38
54.9%

[0.0, 0.43, 0.43, 0.13]
(y, x) ret. cherry

Leaf distance (t) <= 0.13
75.0%

[0.0, 0.33, 0.33, 0.33]
Ret. cherry

25.0%
[1.0, 0.0, 0.0, 0.0]

Cherry

Trivial <= 0.75
samples = 100.0%

value = [0.25, 0.25, 0.25, 0.25]
class = Ret. cherry

(a) Normal ML. Test accuracy = 0.815

0.5%
[0.0, 0.13, 0.12, 0.75]

Not a cherry

15.0%
[0.0, 0.03, 0.03, 0.93]

Not a cherry

1.1%
[0.0, 0.0, 0.0, 1.0]

Not a cherry

1.3%
[0.0, 0.31, 0.32, 0.37]

Not a cherry

8.0%
[0.0, 0.0, 0.0, 1.0]

Not a cherry

0.4%
[0.0, 0.06, 0.06, 0.87]

Not a cherry

23.8%
[0.0, 0.35, 0.64, 0.01]

(y, x) ret. cherry

24.9%
[0.0, 0.63, 0.35, 0.02]

Ret. cherry

0.0%
[0.37, 0.31, 0.31, 0.01]

Cherry

0.0%
[0.95, 0.02, 0.02, 0.0]

Cherry

0.0%
[0.42, 0.32, 0.24, 0.02]

Cherry

0.0%
[0.9, 0.05, 0.05, 0.0]

Cherry

0.0%
[0.61, 0.0, 0.0, 0.39]

Cherry

24.9%
[1.0, 0.0, 0.0, 0.0]

Cherry

0.0%
[0.41, 0.0, 0.0, 0.59]

Not a cherry

0.0%
[0.98, 0.0, 0.0, 0.02]

Cherry

Before/after <= 0.89
15.5%

[0.0, 0.04, 0.04, 0.93]
Not a cherry

Cherry in tree <= 0.48
2.4%

[0.0, 0.17, 0.17, 0.66]
Not a cherry

Trivial <= 0.28
8.4%

[0.0, 0.0, 0.0, 0.99]
Not a cherry

LCA distance (d) <= 0.5
48.7%

[0.0, 0.49, 0.49, 0.01]
(y, x) ret. cherry

Leaf distance (t) <= 2.31
0.0%

[0.53, 0.23, 0.23, 0.0]
Cherry

Tree depth (d) <= 0.42
0.0%

[0.86, 0.07, 0.07, 0.0]
Cherry

Leaf distance (t) <= -0.0
24.9%

[1.0, 0.0, 0.0, 0.0]
Cherry

New cherries <= 0.84
0.0%

[0.72, 0.0, 0.0, 0.28]
Cherry

Leaf distance (t) <= 0.08
18.0%

[0.0, 0.05, 0.05, 0.89]
Not a cherry

Trivial <= 0.44
57.0%

[0.0, 0.42, 0.42, 0.16]
(y, x) ret. cherry

Cherry depth (t) <= 0.95
0.1%

[0.71, 0.15, 0.14, 0.0]
Cherry

Leaf distance (d) <= 2.39
24.9%

[1.0, 0.0, 0.0, 0.0]
Cherry

Leaf distance (t) <= 0.11
75.0%

[0.0, 0.33, 0.33, 0.33]
Not a cherry

Leaves in tree <= 0.3
25.0%

[1.0, 0.0, 0.0, 0.0]
Cherry

Trivial <= 0.98
samples = 100.0%

value = [0.25, 0.25, 0.25, 0.25]
class = Cherry

(b) LGT ML. Test accuracy = 0.802

Figure 17: Classification tree with depth 4 of (a) the normal data set and (b) the LGT data set. For each node in the trees, except for the terminal

ones, the first line is the feature condition. If this condition is met by a data point, it traverses to the left child node, otherwise to the right one. In the

terminal nodes this line is omitted as there is no condition given. In each node, as also indicated with labels in the root node, the second line ‘samples’

is the proportional number of samples that follow the YES/NO conditions from the root to the parent of that node during the training process. The

‘value’ list gives the proportion of data points in each class, compared to the sample of that node. The last line indicates the most dominant class of

that node. If a data point reaches a terminal node, the observation will be classified as the indicated class.

Bernardini et al. Page 32 of 36

Table 4: Feature importances of random forest trained on the biggest dataset (M =

1000 and maxL = 100) based on normal (a) and LGT (b) network data. Higher

importance indicates that a feature has more effect on the trained model. The values

sum up to one. The descriptions of the features are given in Table 1.

(a) Normal

Features Importance

Leaf distance (t) 0.190
Trivial 0.155
Cherry in tree 0.143
Leaf distance (d) 0.122
LCA distance (t) 0.068
Depth x/y (t) 0.050
Cherry depth (t) 0.047
Depth x/y (d) 0.043
LCA distance (d) 0.028
Leaf depth x (t) 0.023
Leaf depth y (t) 0.023
Cherry depth (d) 0.020
Leaf depth x (d) 0.020
Leaf depth y (d) 0.020
Before/after 0.015
Tree depth (d) 0.012
Tree depth (t) 0.011
New cherries 0.006
Leaves in tree 0.004

(b) LGT

Features Importance

Trivial 0.184
Leaf distance (t) 0.162
Cherry in tree 0.146
Leaf distance (d) 0.114
Depth x/y (t) 0.058
LCA distance (t) 0.056
Cherry depth (t) 0.045
Depth x/y (d) 0.038
LCA distance (d) 0.032
Leaf depth y (t) 0.024
Leaf depth x (t) 0.023
Cherry depth (d) 0.023
Leaf depth y (d) 0.022
Leaf depth x (d) 0.022
Before/after 0.016
Tree depth (d) 0.013
Tree depth (t) 0.011
New cherries 0.006
Leaves in tree 0.003

Appendix C: Heuristic Performance of ML Models

Bernardini et al. Page 33 of 36

(20
, 5

)
(20

, 6
)

(20
, 7

)
(50

, 5
)

(50
, 6

)
(50

, 7
)

(10
0,

5)

(10
0,

6)

(10
0,

7)

Normal instances (L, R)

(20, 5)
(20, 10)

(20, 100)
(20, 500)

(20, 1000)
(50, 5)

(50, 10)
(50, 100)
(50, 500)

(50, 1000)
(100, 5)

(100, 10)
(100, 100)
(100, 500)

(100, 1000)

M
L

m
od

el
 tr

ai
ne

d
on

 (m
ax

L,
 M

) d
at

as
et

1.6 1.6 1.62 2.02 1.58 1.8 1.66 1.69 1.87
1.6 1.32 1.18 1.66 1.38 1.59 1.84 1.48 1.51
1.02 1.45 1.04 1.31 1.14 1.11 1.21 1.19 1.14
1.02 1.01 1.03 1.07 1.05 1.06 1.17 1.08 1.09

1 1.04 1.02 1.05 1.04 1.04 1.09 1.15 1.06
1.47 1.52 1.2 1.22 1.32 1.43 1.36 1.2 1.19
1.49 1.81 1.54 1.29 1.32 1.47 1.36 1.39 1.38
1.05 1.45 1.12 1.11 1.16 1.09 1.11 1.12 1.19
1.01 1.14 1.12 1.07 1.06 1.1 1.04 1.06 1.19

1 1.12 1.08 1.01 1.19 1.05 1.07 1.21 1.14
1.41 1.42 1.45 1.32 1.71 1.36 1.3 1.52 1.3
1.2 1.15 1.33 1.14 1.39 1.35 1.34 1.23 1.29
1.14 1.17 1.13 1.1 1.16 1.23 1.14 1.3 1.33
1.01 1.17 1.21 1.29 1.09 1.09 1.1 1.1 1.17

1 1.11 1.09 1.21 1.05 1.08 1.1 1.06 1.16
1.0

1.2

1.4

1.6

1.8

2.0

(a) Normal ML

(20
, 5

)
(20

, 6
)

(20
, 7

)
(50

, 5
)

(50
, 6

)
(50

, 7
)

(10
0,

5)

(10
0,

6)

(10
0,

7)

Normal instances (L, R)

(20, 5)
(20, 10)

(20, 100)
(20, 500)

(20, 1000)
(50, 5)

(50, 10)
(50, 100)
(50, 500)

(50, 1000)
(100, 5)

(100, 10)
(100, 100)
(100, 500)

(100, 1000)

M
L

m
od

el
 tr

ai
ne

d
on

 (m
ax

L,
 M

) d
at

as
et

2.35 2.19 3.27 2.7 2.55 2.46 2.7 1.99 3.04
1.76 1.55 1.61 1.39 1.76 1.52 1.35 1.51 1.56
1.3 1.2 1.32 1.21 1.39 1.28 1.21 1.34 1.35
1.17 1.18 1.24 1.27 1.11 1.21 1.19 1.24 1.21
1.11 1.1 1.23 1.15 1.12 1.25 1.18 1.25 1.2
1.41 1.32 1.44 1.45 1.48 1.37 1.49 1.47 1.38
1.56 1.48 1.47 1.27 1.46 1.49 1.45 1.54 1.57
1.21 1.24 1.25 1.11 1.18 1.2 1.07 1.2 1.16
1.16 1.19 1.2 1.21 1.09 1.12 1.17 1.06 1.26
1.07 1.24 1.32 1.15 1.09 1.14 1.12 1.07 1.21
1.88 1.76 2.27 2.06 2.11 2.28 2.6 2.25 2.25
1.34 1.61 1.56 1.64 1.57 1.51 1.47 1.54 1.46
1.14 1.23 1.33 1.14 1.16 1.19 1.12 1.19 1.12
1.05 1.17 1.37 1.15 1.14 1.21 1.06 1.18 1.15
1.07 1.24 1.21 1.12 1.1 1.18 1.11 1.08 1.14

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

(b) LGT ML

Figure 18: Results for ML on normal instances with the random forest model

trained on each of the datasets given in Table 3, where (a) gives the results

when the ML model is trained on normal data, and (b) gives the results when

the model is trained on LGT data. For each training dataset, identified by the

parameter pair (maxL,M), the value shown in the heatmap is the average,

within each instance group, of the reticulation number found by ML divided by

the reference value. We used a group of 16 instances for each combination of

parameters L ∈ {20, 50, 100} and R ∈ {5, 6, 7}.

(20
, 1

0,
20

)

(20
, 1

0,
50

)

(20
, 1

0,
10

0)

(20
, 2

0,
20

)

(20
, 2

0,
50

)

(20
, 2

0,
10

0)

(20
, 3

0,
20

)

(20
, 3

0,
50

)

(20
, 3

0,
10

0)

(50
, 1

0,
20

)

(50
, 1

0,
50

)

(50
, 1

0,
10

0)

(50
, 2

0,
20

)

(50
, 2

0,
50

)

(50
, 2

0,
10

0)

(50
, 3

0,
20

)

(50
, 3

0,
50

)

(50
, 3

0,
10

0)

(10
0,

10
, 2

0)

(10
0,

10
, 5

0)

(10
0,

10
, 1

00
)

(10
0,

20
, 2

0)

(10
0,

20
, 5

0)

(10
0,

20
, 1

00
)

(10
0,

30
, 2

0)

(10
0,

30
, 5

0)

(10
0,

30
, 1

00
)

LGT instances (L, R, T)

(20, 5)
(20, 10)

(20, 100)
(20, 500)

(20, 1000)
(50, 5)

(50, 10)
(50, 100)
(50, 500)

(50, 1000)
(100, 5)

(100, 10)
(100, 100)
(100, 500)

(100, 1000)

M
L

m
od

el
 tr

ai
ne

d
on

 (m
ax

L,
 M

) d
at

as
et

3.26 3.04 3.22 3.22 4.37 5.44 2.65 4.08 4.96 3.32 3.06 2.76 4.39 5.56 6.88 4.47 6.31 8.71 3.43 2.6 1.92 4.3 4.39 4.72 4.91 7.03 6.35
2.57 3.07 3.32 2.66 4.07 4.49 2.51 3.59 4.38 3.12 2.61 2.74 3.73 4.74 5.54 4.02 5.72 7.09 3.11 2.54 1.81 3.53 3.27 3.72 4.12 4.96 5.02
2.41 2.86 2.96 2.49 3.91 4.79 2.44 3.76 4.44 2.29 2.28 2.19 3.23 4.53 4.55 3.69 5.05 6.64 2.37 2.21 1.58 3 2.93 2.87 3.66 3.93 4.23
2.46 2.66 2.86 2.63 3.79 4.68 2.6 3.94 4.48 2.28 2.1 2.27 3.33 4.81 4.56 3.82 5.22 6.86 2.43 2.14 1.46 2.96 3.01 2.58 4.11 4.17 3.75
2.53 2.71 2.76 2.73 3.87 5.33 2.73 4.07 4.8 2.34 2.16 2.14 3.48 4.49 5.03 3.96 5.78 7.7 2.71 1.98 1.48 3.02 3.35 2.74 3.86 3.97 3.88
2.41 2.97 2.9 2.59 3.73 4.43 2.52 3.73 4.37 2.16 2.12 2.24 3.71 4.35 5 3.84 5.56 7.37 2.42 1.89 1.53 2.92 3.05 2.9 3.78 4.3 4.61
2.19 2.38 2.85 2.71 3.87 4.48 2.53 3.81 4.17 2.04 2.54 2.06 3.2 3.78 4.23 3.8 5.03 6.07 2.02 1.93 1.5 2.78 2.92 2.62 3.44 4.15 4.44
2.41 2.8 2.41 2.63 3.66 4.45 2.52 3.67 4.26 2.36 1.89 2.15 3.24 4.35 4.54 3.61 5.36 6.87 2.38 1.71 1.41 2.84 2.59 2.82 3.55 3.87 3.99
2.34 2.74 2.84 2.78 4.03 5.34 2.6 3.98 4.81 2.22 2.08 2.34 3.32 4.11 3.97 3.5 5.5 6.17 2.27 1.79 1.44 2.78 2.92 2.88 3.63 3.74 4.15
2.3 2.68 2.73 2.62 4.01 5.06 2.59 3.62 4.83 1.95 1.85 2.18 3.34 4.11 4.27 3.84 5.14 6.09 2.21 1.71 1.31 2.72 2.28 2.68 3.58 4.07 4
2.39 2.78 2.8 2.38 4.01 4.33 2.63 4.06 4.44 2.19 2.53 2.08 3.62 4.22 4.73 3.88 5.52 6.2 2.67 2.01 1.56 3.13 3.09 2.81 3.57 4.17 3.95
2.36 2.77 2.75 2.49 3.58 4.4 2.62 3.83 4.05 1.96 2.21 2.01 3.32 4.25 4.25 3.73 5.3 6.64 2.38 2.14 1.33 2.97 3.05 3.31 3.45 4.72 3.78
2.43 2.75 2.69 2.77 3.84 4.94 2.56 3.91 4.87 2.18 2.09 2.08 3.05 4.1 4.32 3.79 5.56 6.7 2.19 1.94 1.43 2.73 3.01 2.64 3.63 3.8 4.12
2.54 2.69 2.57 2.84 4.11 4.92 2.72 3.75 4.05 2.12 1.9 2.26 3.27 4.02 4.78 3.73 5.3 6.42 2.31 1.7 1.36 2.69 2.74 2.73 3.45 4.12 4.15
2.48 2.71 2.69 2.62 3.93 4.63 2.72 3.92 4.76 2 1.91 2.11 3.46 4.21 4.59 3.65 5.41 7.11 2.16 1.63 1.36 2.88 2.48 2.56 3.61 4.3 3.86

2

3

4

5

6

7

8

(a) Normal ML

(20
, 1

0,
20

)

(20
, 1

0,
50

)

(20
, 1

0,
10

0)

(20
, 2

0,
20

)

(20
, 2

0,
50

)

(20
, 2

0,
10

0)

(20
, 3

0,
20

)

(20
, 3

0,
50

)

(20
, 3

0,
10

0)

(50
, 1

0,
20

)

(50
, 1

0,
50

)

(50
, 1

0,
10

0)

(50
, 2

0,
20

)

(50
, 2

0,
50

)

(50
, 2

0,
10

0)

(50
, 3

0,
20

)

(50
, 3

0,
50

)

(50
, 3

0,
10

0)

(10
0,

10
, 2

0)

(10
0,

10
, 5

0)

(10
0,

10
, 1

00
)

(10
0,

20
, 2

0)

(10
0,

20
, 5

0)

(10
0,

20
, 1

00
)

(10
0,

30
, 2

0)

(10
0,

30
, 5

0)

(10
0,

30
, 1

00
)

LGT instances (L, R, T)

(20, 5)
(20, 10)

(20, 100)
(20, 500)

(20, 1000)
(50, 5)

(50, 10)
(50, 100)
(50, 500)

(50, 1000)
(100, 5)

(100, 10)
(100, 100)
(100, 500)

(100, 1000)

M
L

m
od

el
 tr

ai
ne

d
on

 (m
ax

L,
 M

) d
at

as
et

2.35 2.71 2.8 2.42 3.75 4.61 2.4 3.5 3.79 2.91 2.89 3.31 3.49 4.02 4.25 3.6 4.77 5.55 2.91 3.51 2.86 3.07 3.23 3.97 3.5 3.88 3.94
1.9 2.36 2.01 2.13 2.95 3.4 2.06 3.25 3.26 1.88 2.11 1.6 2.62 2.57 2.54 2.71 3.5 4.13 1.79 1.81 1.57 2.14 2.01 2.22 2.47 2.27 2.51
1.94 2.23 2.23 2.07 3.26 3.77 2.27 3.45 3.56 2.1 2.06 1.67 2.74 3.17 3.02 3.24 4.61 5.24 2.08 1.74 1.52 2.51 2.31 2.16 3.35 3.32 3.33
1.9 1.99 1.91 1.92 3.03 3.39 2.09 3.42 3.19 1.75 1.58 1.66 2.64 3.27 3.46 3.23 4.35 5.03 1.76 1.7 1.38 2.08 2.14 2.24 3.07 3.04 2.59
1.71 1.64 2.11 1.92 3.08 3.41 2.15 3.22 3.49 1.87 1.52 1.54 2.53 2.91 2.91 2.89 4.14 4.56 1.68 1.42 1.44 1.96 2.01 2.03 2.87 3.04 2.2
1.82 2.07 2.17 2.15 3.13 3.41 2.25 3.23 3.26 2.04 2.03 1.74 2.58 3.05 3.05 3.12 3.66 4.72 1.99 1.83 1.46 2.16 2.34 1.95 2.75 2.8 2.51
1.93 2.14 2.27 2.05 3.02 3.42 2.07 3.11 3.28 1.92 1.98 1.68 2.62 3.06 3.08 2.77 3.67 4.69 2 2.03 1.62 2.16 2.19 1.97 2.67 3.01 2.28
1.77 1.83 1.94 1.99 3.14 3.15 2.19 3.15 3.08 1.77 1.86 1.78 2.58 3.05 2.88 2.91 3.56 4.17 1.89 1.82 1.44 2.11 1.99 1.99 2.81 2.99 2.54
1.83 2.08 2.17 1.97 3.09 3.51 2.36 3.41 3.5 1.79 1.89 1.55 2.76 3.07 3.12 3.06 4.24 4.53 1.6 1.46 1.41 1.93 2.17 1.97 2.8 3.47 3.04
1.93 1.66 1.97 2.1 3.12 3.13 2.18 3.43 3.35 1.66 1.69 1.59 2.7 2.93 2.65 2.96 3.83 4.61 1.67 1.52 1.34 1.85 1.72 1.98 2.69 2.89 2.49
2.07 2.62 3.07 2.16 3.71 3.97 2.31 3.6 3.83 2.44 2.64 2.7 3.78 4.12 4.45 3.65 4.55 6.27 3.28 2.84 2.22 3.45 3.17 4.08 4.16 4.91 4.61
2.36 2.29 2.38 2.24 3.12 3.87 2.3 3.59 3.88 2.02 1.92 1.85 2.92 3.69 3.69 3.51 4.4 5.75 2.44 2.07 1.76 2.42 2.52 2.55 3.29 3.85 3.44
1.85 1.79 2.09 2.03 3.36 3.36 2.23 3.34 3.38 1.84 1.76 1.37 2.59 3.54 2.65 3.11 4 4.71 1.58 1.49 1.44 2.12 2 1.98 2.88 2.94 2.37
1.72 1.77 1.89 1.89 3.02 2.91 2.08 3.01 3.15 1.63 1.7 1.42 2.49 2.65 2.98 2.72 3.89 4.04 1.37 1.56 1.18 1.88 1.71 1.76 2.52 2.41 2.01
1.76 1.82 1.96 1.93 3.19 2.86 2.31 3.37 3.23 1.53 1.89 1.37 2.18 3.04 2.38 3.15 4.11 4.15 1.46 1.45 1.24 1.77 1.77 1.64 2.34 2.87 2.2

2

3

4

5

6

(b) LGT ML

Figure 19: Results for ML on LGT instances for different training datasets, similar

as description of Fig. 18, with L ∈ {20, 50, 100}, R ∈ {10, 20, 30} and |T | ∈
{20, 50, 100}.

Bernardini et al. Page 34 of 36

(20
, 1

0,
20

)

(20
, 1

0,
50

)

(20
, 1

0,
10

0)

(20
, 2

0,
20

)

(20
, 2

0,
50

)

(20
, 2

0,
10

0)

(20
, 3

0,
20

)

(20
, 3

0,
50

)

(20
, 3

0,
10

0)

(50
, 1

0,
20

)

(50
, 1

0,
50

)

(50
, 1

0,
10

0)

(50
, 2

0,
20

)

(50
, 2

0,
50

)

(50
, 2

0,
10

0)

(50
, 3

0,
20

)

(50
, 3

0,
50

)

(50
, 3

0,
10

0)

(10
0,

10
, 2

0)

(10
0,

10
, 5

0)

(10
0,

10
, 1

00
)

(10
0,

20
, 2

0)

(10
0,

20
, 5

0)

(10
0,

20
, 1

00
)

(10
0,

30
, 2

0)

(10
0,

30
, 5

0)

(10
0,

30
, 1

00
)

ZODS instances (L, R, T)

(20, 5)
(20, 10)

(20, 100)
(20, 500)

(20, 1000)
(50, 5)

(50, 10)
(50, 100)
(50, 500)

(50, 1000)
(100, 5)

(100, 10)
(100, 100)
(100, 500)

(100, 1000)

M
L

m
od

el
 tr

ai
ne

d
on

 (m
ax

L,
 M

) d
at

as
et

2.57 2.79 3.93 2.01 2.76 3.3 1.5 2.14 2.68 3.1 4.09 3.82 4.78 5.89 6.12 4.41 7.01 8.7 3.29 3.02 3.03 4.68 4.1 4.34 5.47 7.24 7.23
2.29 2.61 3.09 1.77 2.18 2.88 1.35 1.88 2.45 2.96 2.59 3.25 4.11 5.12 5.17 3.71 5.49 6.57 2.96 2.51 2.21 4.04 3.67 3.55 4.49 5.18 5.72
2.2 2.69 3.41 1.77 2.31 3.13 1.37 1.98 2.56 2.79 2.31 2.7 3.9 5.01 4.28 3.64 5.55 6.62 2.37 2.53 2.08 3.94 3.23 3.63 4.22 5.31 5.27
2.16 2.71 3.07 1.89 2.42 3.14 1.43 1.95 2.53 2.67 2.51 2.8 3.92 4.77 4.43 3.76 5.71 6.92 3.18 2.53 1.98 4.04 3.49 3.39 4.65 4.94 5.58
2.21 2.51 3.37 1.78 2.31 3.13 1.44 2.16 2.73 2.92 2.53 2.79 4.33 5.04 5.04 4.02 6.31 8.16 3.04 2.5 2.24 4.38 3.73 3.63 4.49 5.75 7.06
2.08 2.42 3 1.78 2.29 3.18 1.53 1.8 2.48 2.62 2.34 2.67 4.03 4.85 4.84 3.67 5.39 6.26 2.22 2.47 1.78 4.07 2.97 3.35 4.11 5.41 5.98
2.34 2.77 3.66 1.89 2.58 3.29 1.44 2.03 2.61 2.61 2.4 2.84 4.29 5.77 4.99 3.91 6.18 7.07 2.82 2.52 2.02 3.97 3.59 3.98 5.05 5.99 7.06
2.31 2.59 3.51 1.9 2.29 3.25 1.58 2.16 2.51 3.01 2.54 2.91 4.34 6.07 5.36 4.16 6.7 7.47 2.74 2.76 2.01 4.58 4 4.15 4.88 6.69 7.01
2.52 2.86 3.56 1.99 2.47 3.45 1.58 2.13 2.82 3.16 2.75 3.06 4.38 5.93 5.35 4.11 6.3 8.15 2.99 2.44 1.99 4.3 3.32 3.73 4.8 6.23 7.61
2.23 2.31 3.26 1.94 2.49 3.38 1.47 2.04 2.75 2.61 2.8 3.1 4.33 5.44 4.7 4.19 6.33 8.03 2.55 2.56 1.94 4.18 3.6 3.51 4.58 5.8 6.4
2.56 2.78 3.58 1.82 2.54 3.19 1.63 2.23 2.74 3.21 3.12 3.54 4.57 5.63 5.87 4.25 6.41 8 3.41 3.4 2.87 5.12 4.85 4.64 5.77 7.09 8.38
2.73 2.94 4.08 1.85 2.59 3.16 1.55 2.26 2.77 3.33 3.94 3.34 4.85 6.08 6.43 4.18 7.06 9.04 3.83 4.12 2.84 5.33 5.18 6 6.15 7.25 8.3
2.34 2.79 3.63 1.82 2.36 3.13 1.4 2.14 2.48 2.87 2.71 3.26 4.47 5.83 6.05 4.1 6.52 7.79 2.88 2.4 1.9 4.41 3.83 4.04 5.29 6.42 6.91
2.2 2.74 3.66 2.07 2.44 3.39 1.57 1.97 2.61 2.79 2.54 2.78 4.1 5.52 4.64 4.18 6.23 7.78 2.74 2.49 1.83 3.98 3.24 3.62 5.03 6.21 7.04
2.51 2.73 3.43 1.93 2.36 3.14 1.6 2.15 2.68 3.13 2.23 2.81 4.29 5.78 5.67 4.35 7.14 8.16 2.67 2.48 2 4.29 3.7 4.12 5.28 6.8 7.45

2

3

4

5

6

7

8

9

(a) Normal ML

(20
, 1

0,
20

)

(20
, 1

0,
50

)

(20
, 1

0,
10

0)

(20
, 2

0,
20

)

(20
, 2

0,
50

)

(20
, 2

0,
10

0)

(20
, 3

0,
20

)

(20
, 3

0,
50

)

(20
, 3

0,
10

0)

(50
, 1

0,
20

)

(50
, 1

0,
50

)

(50
, 1

0,
10

0)

(50
, 2

0,
20

)

(50
, 2

0,
50

)

(50
, 2

0,
10

0)

(50
, 3

0,
20

)

(50
, 3

0,
50

)

(50
, 3

0,
10

0)

(10
0,

10
, 2

0)

(10
0,

10
, 5

0)

(10
0,

10
, 1

00
)

(10
0,

20
, 2

0)

(10
0,

20
, 5

0)

(10
0,

20
, 1

00
)

(10
0,

30
, 2

0)

(10
0,

30
, 5

0)

(10
0,

30
, 1

00
)

ZODS instances (L, R, T)

(20, 5)
(20, 10)

(20, 100)
(20, 500)

(20, 1000)
(50, 5)

(50, 10)
(50, 100)
(50, 500)

(50, 1000)
(100, 5)

(100, 10)
(100, 100)
(100, 500)

(100, 1000)

M
L

m
od

el
 tr

ai
ne

d
on

 (m
ax

L,
 M

) d
at

as
et

2.31 2.39 2.48 1.78 2.4 2.92 1.36 2.11 2.51 2.15 2.22 2.34 3.22 4.87 3.72 3.27 4.86 5.69 1.88 2.58 1.82 3.28 2.84 2.57 3.6 3.83 4.46
2.31 2.66 3.58 1.92 2.52 3.28 1.5 2.01 2.69 2.74 2.52 3.02 3.73 5.22 5.41 3.72 5.95 7.14 2.88 2.73 2.43 3.64 3.83 3.78 4.76 5.14 5.1
2.01 2.02 2.71 1.82 2.34 2.95 1.41 1.95 2.32 2.49 2.75 3.09 4.6 5.01 5.09 3.86 5.39 7.49 2.98 2.46 2.53 4.29 3.28 3.39 4.96 6.54 5.98
1.94 2.03 2.69 1.86 2.13 2.81 1.37 2.02 2.69 2.23 2.38 2.13 4.18 4.43 4.68 3.69 5.85 7.76 2.26 2.12 1.78 3.68 3.56 2.99 4.73 5.87 5.3
1.82 1.98 2.63 1.65 2.14 2.72 1.31 1.81 2.4 2.22 2.07 2.22 4.08 4.79 4.38 3.74 5.64 6.6 2.13 2.22 1.69 3.22 3.14 3.01 4 5.29 4.59
2.59 2.67 3.41 1.82 2.64 3.18 1.35 2.2 2.71 3.65 4.34 4.32 4.54 5.95 6 3.84 5.92 7.06 3.98 4.27 3.86 4.66 5.33 4.4 5.42 6.72 6.4
2.1 2.28 3.11 1.75 2.2 3.2 1.36 1.83 2.39 2.88 3.75 3.57 4.43 4.41 5.41 3.69 5.59 6.91 3.33 3.62 3.69 3.86 4.77 3.83 4.91 5.93 6.32
2.02 1.98 2.7 1.67 2.13 2.8 1.32 1.82 2.19 1.91 2.12 2.22 3.57 3.75 3.89 3.4 4.8 6.1 2.17 2.36 2.2 3.04 2.85 2.71 3.87 4.14 4.4
1.86 1.79 2.93 1.77 2.03 2.82 1.3 1.91 2.3 2.13 1.71 2.04 3.57 3.8 3.65 3.34 5.11 6.7 2.12 2.31 1.9 3.06 2.92 2.7 3.77 4.42 4.7
2.05 1.92 2.79 1.72 2.13 2.88 1.34 1.82 2.2 1.91 2.14 2.56 3.53 4.79 4.69 3.53 4.75 6.88 2.31 2.15 2.04 3.23 2.88 3.07 4 5.03 4.92
2.02 2.18 2.33 1.78 2.11 2.9 1.37 1.99 2.65 1.81 2.11 2.23 3.09 4.37 4.14 3.26 4.71 5.45 2 2.12 1.7 2.79 2.61 2.44 3.11 3.82 4.25
1.99 1.94 2.67 1.73 2.32 2.8 1.34 1.97 2.42 2.05 2.11 2.02 3.4 4.18 4.1 3.11 4.8 5.52 1.84 1.89 1.79 2.78 2.73 2.43 3.29 3.68 3.73
1.99 2.42 2.79 1.76 2.29 2.95 1.3 1.97 2.35 2.23 2.78 2.5 3.51 4.85 4.43 3.46 5.32 6.04 1.91 2.34 1.81 3.39 3.26 3 3.8 4.97 5.33
2.19 2.16 3.12 1.69 2.23 2.96 1.27 1.95 2.28 2.05 2.13 2.3 3.7 4.34 3.7 3.45 5.38 6.46 2.12 2.26 1.92 3 2.98 2.77 3.69 4.79 4.87
2.01 2.32 3.11 1.67 2.29 2.9 1.41 2.01 2.29 1.92 2.06 2.39 3.71 4.21 4.11 3.74 5.66 6.81 1.84 1.95 1.5 3.19 3.14 2.75 3.9 5.45 5

2

3

4

5

6

7

(b) LGT ML

Figure 20: Results for ML on ZODS instances for different training datasets,

similar as description of Fig. 18, with L ∈ {20, 50, 100}, R ∈ {10, 20, 30} and

|T | ∈ {20, 50, 100}.

Bernardini et al. Page 35 of 36

Acknowledgements

The authors thank Remie Janssen for providing ideas and preliminary code for the randomised heuristics, and

Yukihiro Murakami for the inspiring discussions.

Funding

This paper received funding from the Netherlands Organisation for Scientific Research (NWO) under project

OCENW.GROOT.2019.015 “Optimization for and with Machine Learning (OPTIMAL)”, from the MUR - FSE

REACT EU - PON R&I 2014-2020 and from the PANGAIA and ALPACA projects that have received funding from

the European Union’s Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant

agreements No 872539 and 956229, respectively.

Availability of data and materials

The source code used in the experimental study of this article is available on

https://github.com/estherjulien/learn2cherrypick and

https://doi.org/10.4121/c679cd3c-0815-4021-a727-bcb8b9174b27.v1. This code is written in Python.

Competing interests

The authors declare that they have no competing interests.

Author details
1University of Trieste, Trieste, Italy. 2Delft Institute of Applied Mathematics, Delft, The Netherlands. 3CWI,

Amsterdam, The Netherlands. 4Vrije Universiteit, Amsterdam, The Netherlands. 5Erable, France.

References
1. Bordewich, M., Semple, C.: Computing the minimum number of hybridization events for a consistent

evolutionary history. Discrete Applied Mathematics 155(8), 914–928 (2007)

2. Linz, S., Semple, C.: Attaching leaves and picking cherries to characterise the hybridisation number for a set of

phylogenies. Advances in Applied Mathematics 105, 102–129 (2019)

3. van Iersel, L., Janssen, R., Jones, M., Murakami, Y., Zeh, N.: A practical fixed-parameter algorithm for

constructing tree-child networks from multiple binary trees. Algorithmica 84, 917–960 (2022)

4. Pardi, F., Scornavacca, C.: Reconstructible phylogenetic networks: do not distinguish the indistinguishable.

PLoS computational biology 11(4), 1004135 (2015)

5. Yu, Y., Than, C., Degnan, J.H., Nakhleh, L.: Coalescent histories on phylogenetic networks and detection of

hybridization despite incomplete lineage sorting. Systematic Biology 60(2), 138–149 (2011)

6. van Iersel, L., Janssen, R., Jones, M., Murakami, Y.: Orchard networks are trees with additional horizontal arcs.

Bulletin of Mathematical Biology 84(8), 76 (2022)

7. Albrecht, B.: Computing all hybridization networks for multiple binary phylogenetic input trees. BMC

bioinformatics 16(1), 1–15 (2015)

8. Wu, Y.: Close lower and upper bounds for the minimum reticulate network of multiple phylogenetic trees.

Bioinformatics 26(12), 140–148 (2010)

9. Mirzaei, S., Wu, Y.: Fast construction of near parsimonious hybridization networks for multiple phylogenetic

trees. IEEE/ACM Transactions on Computational Biology and Bioinformatics 13(3), 565–570 (2015)

10. Wen, D., Yu, Y., Zhu, J., Nakhleh, L.: Inferring phylogenetic networks using phylonet. Systematic biology

67(4), 735–740 (2018)

11. Soĺıs-Lemus, C., Bastide, P., Ané, C.: Phylonetworks: a package for phylogenetic networks. Molecular biology

and evolution 34(12), 3292–3298 (2017)

12. Humphries, P.J., Linz, S., Semple, C.: Cherry picking: a characterization of the temporal hybridization number

for a set of phylogenies. Bulletin of mathematical biology 75(10), 1879–1890 (2013)

13. Borst, S., van Iersel, L., Jones, M., Kelk, S.: New FPT algorithms for finding the temporal hybridization

number for sets of phylogenetic trees. Algorithmica (2022)

14. Semple, C., Toft, G.: Trinets encode orchard phylogenetic networks. Journal of Mathematical Biology 83(3),

1–20 (2021)

15. Janssen, R., Murakami, Y.: On cherry-picking and network containment. Theoretical Computer Science 856,

121–150 (2021)

16. Azouri, D., Abadi, S., Mansour, Y., Mayrose, I., Pupko, T.: Harnessing machine learning to guide

phylogenetic-tree search algorithms. Nature communications 12(1), 1–9 (2021)

17. Zhu, T., Cai, Y.: Applying neural network to reconstruction of phylogenetic tree. In: 2021 13th International

Conference on Machine Learning and Computing. ICMLC 2021, pp. 146–152. Association for Computing

Machinery, New York, NY, USA (2021). doi:10.1145/3457682.3457704

18. Kumar, S., Sharma, S.: Evolutionary sparse learning for phylogenomics. Molecular Biology and Evolution

38(11), 4674–4682 (2021)

19. Bernardini, G., van Iersel, L., Julien, E., Stougie, L.: Reconstructing Phylogenetic Networks via Cherry Picking

and Machine Learning. In: 22nd International Workshop on Algorithms in Bioinformatics (WABI 2022). Leibniz

International Proceedings in Informatics (LIPIcs), vol. 242, pp. 16–11622. Schloss Dagstuhl – Leibniz-Zentrum

für Informatik, Dagstuhl, Germany (2022). doi:10.4230/LIPIcs.WABI.2022.16

20. van Iersel, L., Janssen, R., Jones, M., Murakami, Y., Zeh, N.: A unifying characterization of tree-based

networks and orchard networks using cherry covers. Advances in Applied Mathematics 129, 102222 (2021).

doi:10.1016/j.aam.2021.102222

21. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM J. Comput. 13(2),

338–355 (1984). doi:10.1137/0213024

22. Pons, J.C., Scornavacca, C., Cardona, G.: Generation of level-k LGT networks. IEEE/ACM transactions on

computational biology and bioinformatics 17(1), 158–164 (2019)

Bernardini et al. Page 36 of 36

23. Willson, S.: Regular networks can be uniquely constructed from their trees. IEEE/ACM Transactions on

Computational Biology and Bioinformatics 8(3), 785–796 (2010)

24. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,

Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.:

Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

25. Zhang, C., Ogilvie, H.A., Drummond, A.J., Stadler, T.: Bayesian inference of species networks from multilocus

sequence data. Molecular biology and evolution 35(2), 504–517 (2018)

26. Janssen, R., Liu, P.: Comparing the topology of phylogenetic network generators. Journal of Bioinformatics and

Computational Biology 19(06), 2140012 (2021)

27. Beiko, R.G.: Telling the whole story in a 10,000-genome world. Biology Direct 6(1), 1–36 (2011)

28. Whidden, C., Beiko, R.G., Zeh, N.: Fixed-parameter algorithms for maximum agreement forests. SIAM J.

Comput. 42(4), 1431–1466 (2013). doi:10.1137/110845045

