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Ontological Engineering

* Representing abstract concepts, such as events, time, physical objects
and beliefs

* Leave placeholders where new knowledge for any domain can fit in
- define what it means to be a physical object, details of different
types can be filled in later

* Upper ontology = general framework of concepts to make simplifying
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Ontological Engineering

* General-purpose ontologies:

» Applicable in (more or less) any special-purpose domain = no
representational issue can be finessed

* In any sufficiently demanding domain, different areas of knowledge must be
unified
* None of the top Al applications make use of a general ontology
(special-purpose knowledge and machine learning)

* Google Knowledge Graph uses semistructured content from Wikipedia,
combining it with other content gathered from across the web under human
curation



Categories and Objects

* Organization of objects into categories
 Much reasoning takes place at the level of categories
* Serve to make predictions about objects once they are classified (using category
information)

* Two choices for representing categories in first-order logic: predicates
Basketball(b) and objects Basketballs

 Member(b, Basketballs) or b € Basketballs: b is member of category of basketballs
» Subset(Basketballs, Balls) or Basketballs c Balls: Basketballs is subcategory of Balls

* Organize knowledge through inheritance

e Subclass relations organize categories into a taxonomy

* Largest taxonomy organizes 10 million living and extinct species into a single
hierarchy



Categories and Objects

* First-order logic to relate objects to categories or quantify over their
members:

Object is member of category: BB, € Basketballs
Category is subclass of another category: Basketballs < Balls
All members of category have some properties: (x € Basketballs) = Spherical(x)

Members of category can be recognized by some properties: Orange(x) A Round(x)
A Diameter(x) = 9.5“ A x €Balls = x € Basketballs

Category as a whole has some properties: Dogs € DomesticatedSpecies

Categories are disjoint if they have no members in common:
Disjoint({Animals,Vegetables})

ExhaustiveDecomposition({Americans,Canadians,Mexicans}, NorthAmericans)

Exhaustive decomposition of disjoint sets is partition:
Partition({Animals,Plants,Fungi,Protista,Monera}, LivingThings)



Physical Composition

* Objects can be grouped into PartOf hierarchies, reminiscent of Subset
hierarchy: PartOf(Bucharest,Romania); PartOf(EasternEurope,Europe)

* Transitive and reflexive

* Composite objects are often characterized by structural relations among
parts: a biped is an object with exactly two legs attached to a body

Biped(a) = 3l}ly,b Leg(ly) N Leg(ly) A Body(b) A
PartOf(ly,a) A PartOf(ly,a) A PartOf(b,a) A
Attached(l,,b) N\ Attached(ly,b) A
Iy #13 AN|VI3 Leg(l3) A PartOf(l3,a) = (I3 = LV = b).

* Object is composed of parts in its PartPartition relation

* Define composite objects with definite parts but no particular structure;
“the apples in this bag weigh two pounds” = need bunch as albeit object:

BunchOf({Apple,,Apple,,Apple;)}



Physical Composition

* BunchOf(Apples) is composite object consisting of all apples - not
Apples, the category or set of all apples

* Define BunchOf in terms of PartOf relation:
Vx: x €s = PartOf(x,BunchOf(s))

* BunchOf is the smallest object satisfying this condition, it must be
part of any object that has all the elements of s as parts:
Vy: [Vx: x €Es = PartOf(x,y)] = PartOf(BunchOf(s),y)

* Logical minimization



Measurements

* Values we assign for properties of objects: height, mass, cost, etc.

* Universe includes abstract measure objects, such as length that can
have different names in language, f.ex. 1.5 inches or 3.81 centimeters

* Units function represent measures and take number as argument:
Length(L,) = Inches(1.5) = Centimeters(3.81)

* Conversion is done by multiplication: Centimeters(2.54 * d) = Inches(d)

* Used to describe objects:
* Diameter(Basketball,,) = Inches(9.5)
* Weight(BunchOf({Apple, Apple,,Apples})) = Pounds(2)



Measurements

* Measures that cannot be quantified can be compared if they can be
ordered
* Norvig’s exercises are tougher than Russell’s:

e1 € Exercises A\ es € Exercises \ Wrote (Norvig,e1) AN Wrote (Russell, e3) =
Dif ficulty(e,) > Difficulty (es) .

* Monotonic relationships among measures form basis for field of
gualitative physics
» Subfield of Al that investigates how to reason about physical systems without
detailed equations and numerical simulations



Natural Kinds

* Some categories have strict definitions, but natural kind categories
don’t
* Tomatoes have variations: some are yellow or orange, unripe ones are green,
some smaller or larger than average, etc.

* Problem for a logical agent that cannot be sure that an object it has perceived
is a tomato and which of the properties of typical tomatoes this one has 2>
inevitable consequence of partially observable environments

* Useful approach: separate what is true of all instances of a category from
what is true only of typical instances
* Typical(Tomatoes) maps category to subclass that contains only typical instances
* Most knowledge about natural kinds will be about their typical instances
x € Typical(Tomatoes) = Red(x) A Round(x)



Things and Stuft

* Real world consists of primitive objects and composite objects built from
them

e Significant portion of reality that seems to defy any obvious individuation
(division into distinct objects): stuff

 Distinction between stuff and things (count nouns and mass nouns)

* Representation of stuff

* Recognize a lump of butter as the one left on the table and can pick it up, sell it,
whatever = object Butter,

* Define category Butter: its elements will be all those things of which one might say
it’s butter, also Butter;,

* Any part of a butter-object is also a butter-object: b € Butter A PartOf(p,b) =p €
Butter



Things and Stuft

e Can define properties, f.ex. Butter melts at 30 degrees centigrade:
b € Butter = MeltingPoint(b,Centigrade(30))

* Intrinsic properties: belong to very substance of object, rather than object
as a whole (density, flavor, color, etc.)

 Extrinsic properties: not retained under subdivision (weight, length, shape,
etc.)

* A category of objects that includes in its definition only intrinsic properties:
substance, or mass noun

* A class that includes any extrinsic properties in its definition: count noun

 Stuff and thing are the most general substance and object categories,
respectively



Events/Actions

* Event calculus to consider continuous actions
* Objects of event calculus are events, fluents and time points
* Reify events to add any amount of arbitrary information about them

T (f,t1,t2) Fluent f is true for all times between ¢, and t,
Happens (e, tq,ts) Event estarts at time ¢; and ends at ¢,
Initiates (e, f,t) Event e causes fluent f to becometrue at time ¢

Terminates (e, f,t)  Event e causesfluent fto cease to be true at time ¢
Initiated (f,t1,t5) Fluent f become true at some point between ¢; and £,
Terminated (f,t;,t;) Fluent f ceaseto be true at some point between ¢; and ¢,

t) <t Time point ¢; occurs before time ¢,

* Extend to represent simultaneous, exogengeous, continuous, and
nondeterministic events



Time

* Time intervals: moments and extended intervals, only moments have
O duration

* Invent arbitrary time scale and associate points on scale with
moments to get absolute times: measure in seconds, moment at
midnight on January 1, 1900 has time O

* Begin and End: pick out earliest and latest moments in an interval
* Time: delivers point on time scale for a moment
* Duration: gives difference between end and start time

» Date: takes 6 arguments (hours, minutes, second, day, month, year) and
returns time point



Time Interval Relations

Meet (i, 7) < End (i) = Begin (j)
Before(i,j) < End(i) < Begin (j)
After (j,1) <  Before (i,7)
During(i,j) < Begin(j) < Begin (i) < End (i) < End (j)
Overlap (i,j) < Begin(i) < Begin(j) < End (i) < End (j)
Starts (1, 7) < Begin (1) = Begin (j)
Finishes (i,7) < End(i) = End(j)
Equals (i,j) < Begin (i) = Begin(j) A End (i) = End (j)
Figure 10.2
Meet(i, j) i j
Starts(i, j)
Before(i, j) - :
After(j,i) : J
- Finishes(i, j)
i
During(i, j)
J
; Equals(i, j)
Overlap(i, j) _
J

Predicates on time intervals.



Fluents and Objects

* Physical objects can be viewed as generalized events: chunk of
space-time
* F.ex.: USA as an event that began in 1776 as a union of 13 states and is still in

progress today as a union of 50
* Describe changing properties using state fluents, such as Population(USA)
* President(USA) denotes single object that consists of different people at different times:

T(Equals(President(USA),GeorgeWashington),Begin(AD1790),End(AD1790)): George
Washington was president throughout 1790




Mental Objects and Modal Logic

* Agents have beliefs and can deduce new beliefs, but don’t have any
knowledge about beliefs or about deduction

* Knowledge about reasoning process is useful for controlling inference

* Model of mental objects that are in someone’s head (or something’s
knowledge base) and of mental processes that manipulate those
objects

e Agent can have propositional attitudes towards mental objects:
Believes, Knows, Wants, and Informs

* Behave differently from “normal” predicates



Mental Objects and Modal Logic

* Ex.: Lois knows that Superman can fly: Knows(Lois, CanFly(Superman))

* We normally think of CanFly(Superman) as a sentence, but here it appears
as a term =2 reifying CanFly(Superman); making it a fluent

* Problem: If it is true that Superman is Clark, then we must conclude that
Lois knows that Clark can fly, which is wrong because Lois does not know
that Carl is Superman

(Superman = Clark) A Knows(Lois, CanFly(Superman))
= Knows(Lois, CanFly(Clark))

* Referential transparency: it doesn’t matter that term a logic uses to refer
to an object, what matters is the object that the term names

* For propositional attitudes we would like to have referential opacity: terms
used do matter, because not all agents know which terms are co-referential



Mental Objects and Modal Logic

* Modal Logic includes special modal operators that take sentences (rather
than terms) as arguments

* ,Aknows P“=K,P, Kis modal operator for knowledge, A an agent, P a
sentence

* More comﬁlicated model of semantics: consists of collection of possible
worlds rather than just one true world

* Worlds are connected in a graph by accessibility relations, one relation for
each modal operator

* World w;, is accessible from world w, wrt. modal operator K, if everything
in w, is consistent with what A knows in wy

* K P is true in world w if and only if Pis true in every world accessible from
W



Mental Objects and Modal Logic

* Truth of more complex sentences is derived by recursive application
of this rule and the normal rules of first-order logic

* Modal logic can be used to reason about nested knowledge
sentences: what one agent knows about another agent’s knowledge

e AXioms:

* Agents can draw conclusions: (K,P /1K, (P = Q)) = K,Q
* K,(P V-P) is a tautology
* (K,P) V(K, -P) is not a tautology
* If you know something, it must be true: K,P =P
* Agents can introspect on their own knowledge: K,P = K (K ,P)



Mental Objects and Modal Logic

e Similar axioms for belief and other modalities

* Problem: assumes logical omniscience on the part of agents

* If an agent knows a set of axioms, then it knows all consequences of those
axioms

* Other modal logics
* Add operators for possibility and necessity
* Linear temporal logic: next, finally, globally, until

* Deriving additional operators from these makes the logic more complex, but
allows to state certain facts in more succinct form



Reasoning System for Categories

* Semantic networks:
e Graphical aids for visualizing a knowledge base

 Efficient algorithms for inferring properties of an object on the basis of its
category membership

* Description logics:

* Formal language for constructing and combining category definitions

 Efficient algorithms for deciding subset and superset relationships between
categories



Semantic Networks

* Represent individual objects, categories of objects, and relations
among objects

* Network with 4 objects (John, Mary, 1, 2) and 4 categories:

SubsetOf

Cpersons y—2
SubsetOf SubsetOf
Female Male
Persons Persons

MemberOf

HasMother

MemberOf

SisterOf




Semantic Networks

* Convenient to perform inheritance reasoning = simplicity and
efficiency

* Multiple inheritance more complicated: object can belong to more
than one category or a category can be a subset of more than one
other category

* Algorithm might find 2 or more conflicting values answering the query
* Banned in some object-oriented programming languages



Semantic Networks

* Drawback: only binary relations between bubbles

e Obtain effect on n-ary assertions by reifying proposition as an event
belonging to an appropriate event category

MemberOf

During

Destination



Semantic Networks

* Negation, disjunction, nested function symbols, and existential
quantification are still missing

* Possible to extend notion to make it equivalent to first-oder logic, but
this negates one of main advantages of semantic networks —
simplicity and transparency of inference

* When expressive power proves to be too limiting, many semantic
network systems provide for procedural attachment to fill in the gaps

* A query about a certain relation results in a call to a special procedure
designed for that relation rather than a general inference algorithm



Semantic Networks

 Ability to represent default values for categories
* F.ex.:John has 1 leg, despite the fact he is a person and all persons have 2 legs
e Contradiction in a strictly logical KB

e Default semantics is enforced naturally by the inheritance algorithm,
follows links upwards from the object itself and stops as soon as it
finds a value

* Default is overridden by the more specific value



Description Logics

* Notations to easily describe definitions and properties of categories

* Principial inference task:

* Subsumption: checking if one category is a subset of another by comparing
their definitions

* Classification: checking whether an object belongs to a category

* Consistency: checking whether the membership criteria are logically
satisfiable



Description Logics

* CLASSIC Language

* Syntax of descriptions in a subset:
» Algebra of operations on predicates
* Any description can be translated into an equivalent first-order sentence

Concept —
|
|
|
|
|
|
|

Path —
ConceptName —

RoleName —

Thing | ConceptName
And(Concept,...)
All(RoleName,Concept)
AtLeast(/nteger,RoleName)
AtMost(Integer.RoleName)
Fills(RoleName, IndividualName, . . .)
SameAs( Path, Path)
OneOf(IndividualName,. . .)
[RoleName, . ..]

Adult | Female | Male | ...
Spouse | Daughter | Son | ...



Description Logics

* Emphasis on tractability of inference: problem instance is solved by
describing it and then asking if it is subsumed by one of several
possible solution categories

* Ensure that subsumption-testing can be solved in time polynomial in the size
of the descriptions

* Either hard problems cannot be stated at all, or they require
exponentially large descriptions

* Tractability results shed lights on what sorts of constructs cause problems
and helps user to understand how different representations behave



Reasoning with Default Information

Reasoning processes can violate the monotonicity property of logic

Simple introspection suggests that these failures are widespread in
commonsense reasoning

Nonmor&otonicity: if new evidence arrives, the default conclusion can be
retracte

Circumscription: more powerful and precise version of closed-world assumption

. Sgecify particular predicates that are assumed to be “as false as possible” — false for every
object except those for which they are known to be true

Bird(x) A -Abnormal,(x) = Flies(x)
* Abnormal, is to be circumscribed = circumscriptive reasoner assumes -Abnormal,(x) unless
Abnormal,(x) is known to be true

. Eﬁ(anlggle of model preference logic: sentence is entailed if it is true in all preferred models of
the

* Model is preferred if it has fewer abnormal objects



Reasoning with Default Information

* Default logic: formalism in which default rules can be written to
generate contingent, nonmonotic conclusions: Bird(x):Flies(x)/Flies(x)

 If Bird(x) is true, and if Flies(x) is consistent with knowledge base, then Flies(x)
may be concluded by default

e Defaultrule: P:J, ..., J./C, where P is the prerequisite, C the conclusion and J;
the justifications (if any of them can be proven false, the conclusion cannot be
drawn)

* Any variable that appears in J; or C must also appear in P

* Extension of a default theory: maximal set of consequences of the theory

* Extension S consists of the original known facts and a set of conclusions from the default
rules, such that no additional conclusions can be drawn from S, and the justifications of
every default conclusion in S are consistent with S



Reasoning with Default Information

* Truth maintenance systems (TMS)

* Belief revision: inferred facts turn out to be wrong and will have to be
retracted in the face of new information

* Suppose KB contains a sentence P, perhaps a default conclusion recorded by
forward-chaining algorithm, and we want to execute TELL(KB, —P)
* To avoid creating a contradiction, first execute RETRACT(KB, P)
* Problems arise if any additional sentences were inferred from P and asserted in the KB

* P = Q might have been used to add Q

* Obvious solution: retract all sentences inferred from P - fails because such sentences may
have other justifications besides P (if R and R = Q are also in KB, then Q does not have to be
removed)

* TMS are designed to handle these kinds of complications



Reasoning with Default Information

* Approach: Keep track of the order in which sentences are told to KB by numbering them
from P, to P,

When call RETRACT(KB, P;) is made, the system reverts to the state just before P; was added -
removing P; and any inferences that were derived from P;

Sentences P;,; through P, can then be added again

Simple, guarantees KB will be consistent, but requires retracting and reasserting n-i sentences &
undoing and redoing all inferences from these sentences = impractical

* More efficient: justification-based truth maintenance system (JTMS)

Each sentence in KB is annotated with justification consisting of set of sentences from which it
was inferred

If KB already contains P = Q, then TELL(P) will cause Q to be added with the justification
{PP=Q}
Justification makes retraction efficient
Retract(P): JTMS will delete exactly those sentences for which P is a member of every justification
When sentence loses all justifications, it is marked as being out of KB

* |f subsequent assertion restores one of the justifications, it is marked as being back in

* Retains all inference chains



Reasoning with Default Information

e Assumption-based truth maintenance system (ATMS)
 Efficient context-switching between hypothetical worlds
* Represents all states that have ever been considered at the same time

* Keeps track, for each sentence, which assumptions would cause the sentence
to be true = label that consists of a set of assumption sets, sentence is true
only when all the assumptions in one of the assumption sets are true

* TMS provide mechanism for generating explanations: explanation of
sentence P is a set of sentences E such that E entails P

* |f sentences in E are already known to be true, then E simply provides a
sufficient basis for proving that P must be the case

e Can also include assumptions: sentences that are not known to be true, but
would suffice to prove P if they were true



