A brief introduction to
high-performance computing:

a computational physicist perspective

Antimo Marrazzo, Computational Physics Laboratory, UniTS, May 2023

Supercomputers for computational physics

eSupercomputers are essentially defined as the most powerful computer available at that time.

hese days a supercomputer is essentially “a purpose-built computer that embodies millions of

processors or processor cores” (IBM, https://www.ibm.com/topics/hpc).

®\\Vhy do computational physicist need supercomputers?

® Simulate a problem too complex to be even attempted on “regular” computers

ncrease the accuracy of a simulations (e.g. denser grids, more spatial resolution)

Perform a very large number of simulations (high-throughput computing)

¢ Exploit high-performance hardware (e.g. GPUs)
® Scale economies (shared centralized resources are more cost efficient to buy and maintain)

More complex simulations

More powerful computers

We simulate more complex systems with higher accuracy in a shorter time thanks to more powertul hardware and

more sophisticated programming paradigms

https://www.ibm.com/topics/hpc

120 years of Moore’s law

MECHANICAL RELAY VATCJ’B%M TRANSISTOR INTEGRATED CIRCUIT
. 7 5,‘0 0 NVIDIA TITAN X
C=U GTX 480 ‘.
@) 7 @d
S o ~
% IBM BLUE GENE
= Ig ©
e *0s POWER o
O
> 3
o 7’000 ° o
S -
© il
§ 70 cray lB&Q PENTIUM PC
S DATA GENERAL APPLE
N NOVA @ ® sunt MACINTOSH
s 0 o O o9
170 0 WHIRLWIND ’ ® ® ®
S ‘0o, = C O ® o
'-g i) ‘ P
© 7 o ' ® o®
=S &0 colossus @ ® o
o 8) ®
& ®
O 7S IBM TABULATOR
o [
7 ANALYTICAL ® Q
&0 0 E:GINE

7900 7905 /_9,0 79,5 7920 1925 7930 7935 /_940 7_945 7950 7955]960]965 /970 79)5 ,980 7985 7990 /995 2000 2005 20,0 20,5 2020

Year Source: Ray KUI'ZWQ”, DFJ Steve Jurvetson (https://www.flickr.com/photos/
jurvetson/31409423572/)

“The complexity of devices (number of transistors per square inch in microprocessors) doubles every 18 months”, Gordon Moore, INTEL co-founder, 1965

https://www.flickr.com/photos/jurvetson/31409423572/
https://www.flickr.com/photos/jurvetson/31409423572/
https://www.flickr.com/photos/jurvetson/31409423572/

Exponentials in actions

1975 2015

128Gb

173 Gflops (GPU)

8Mb

STORAGE

400 Mflops PERFORMANCE

Source: Andrew Emerson, Giovanni Erbacci, Introduction to HPC Architectures, CINECA

https://hpc-forge.cineca.it/files/ScuolaCalcoloParallelo_WebDAV/public/anno-2017/26th_Summer_School_on_Parallel_Computing/Bologna/Introduction%20to%20HPC%20Architectures.pdf

What performance means

® Bandwidth between processor and memory

, Faster processors are
® Bandwidth to the I/O system X

o Size and baﬂdW|dth Of the CaChe communication bottlenecks!

® | atency between processor, memory, and |I/O system

CPU

Arithmetic
logic
unit

Control
unit

Input/Output

Memory

Stored-program computer architectural concept

(source: Introduction to HPC for Scientists and Engineers, Hager & Wellein, CRC press)

Modern CPUs are rather sophisticated devices (compared to the
original von Neumann architecture), here some relevant features:

¢ Pipelined functional units: complex operations are split into simple
components that can be executed using different functional units on
the CPU, so the number of instructions executed per clock cycle
Increases.

® Vector CPU units and data parallelism through SIMD (Single
Instruction Multiple Data).

® Caches: low-capacity, high-speed memories that are commonly
integrated on the CPU. NB: data transfer rates to main memory are
dramatically slower compared to the CPU's arithmetics speeds (there
has been increasing gap between processor and memory speeds).

Beyond clock speed

Clock cycle
1 2 3 4 5 6 7 8

instructions

Stage 1: Fetch

Stage 2: Decode

Stage 3: Execute

Pipeline
A

Stage 4: Write-back

Completed
instructions

Source: https://en.wikipedia.org/wiki/Instruction_pipelining#/media/File:Pipeline,_4_stage.svg

Scalar Processing Vector Processing
1]+ (p1) = (&) a1] (b1

k 2 b2

()) a

a2) + (b2) = (2) S G e

h a3d| + |b3| =
a3/ + (b3 = .

@+@ - @

for i =1 ton c[l:n] = a[l:n] + b[l:n]
c[i] = a[i] + b[1i]
end Source: Andrew Emerson, Giovanni Erbacci, Introduction to HPC Architectures, CINECA
Latency from next Size (bytes)
level (cycles)
4 registers 192
4 L1 cache 32k
12 L2 cache 256k
26 L3 cache 2M
230-360 2G

main memory

Source: Introduction to High Performance Scientific Computing, Victor Eijkhout,

https://hpc-forge.cineca.it/files/ScuolaCalcoloParallelo_WebDAV/public/anno-2017/26th_Summer_School_on_Parallel_Computing/Bologna/Introduction%20to%20HPC%20Architectures.pdf
http://www.tacc.utexas.edu/~eijkhout/istc/istc.html

Go faster, go parallel

® Since more than ten years miniaturization of components has almost stopped (leakage current problem). In
addition, the frequency can not be increase since this would raise the heat production of the chip too far.

 Power wall: sophistication of a single core can not be increased any tfurther -> increase the amount of
explicit parallalization -> multicore architectures & parallel programming

10,000 Sun's Surface
& >
g 1.000 Rocket Nozzle
- >

Nuclear Reactor
o
[" > Pentium®
== B
D
- 8086 Hot Plate
'5 10 #004 8085 >
8008 386

% 286
o .| 8080 486

70 80 ‘90 00 10

Projected heat dissipation of a CPU if trends had continued.

Source: Introduction to High Performance Scientific Computing, Victor Eijkhout,

(original source Pat Helsinger)

http://www.tacc.utexas.edu/~eijkhout/istc/istc.html

Multi-core and multi-thread processors

® Multi-core processors. The chip is divided
into multiple processing cores, with a mix of

mix of shared and private caches.

® Multi-thread processors. Threads are streams
of parallel instructions. Multiple threads can be
executed on each processing unit.

| (T N\ (T 7 |
: :
P P
| |
| |
| |
| |
{L_L1D LiD ||
| L2 L2 |
: L3 L3 |
| :
| |

~ L2 cache

- z

yo VI

7

%

Memory

- Y
G447 L —
— i .
/, L1D _ Registers [
. =
| cache A S
c
— 7 2
3
_ 11 5 ~ :
_ cache 7 L w
v/ <_>|7 Control 7/ | —

Figure 1.20: Simplified diagram of control/data flow in a (multi-)pipelined microprocessor
with fine-grained two-way SMT. Two instruction streams (threads) share resources like caches
and pipelines but retain their respective architectural state (registers, control units). Graphics

by courtesy of Intel.

Sources: Introduction to HPC for Scientists and Engineers, Hager & Wellein, CRC press

High-performance computing (HPC)

Modern HPC solutions are based on these 3 pillars

 [Software] Parallel & massively parallel computing. Parallel computing runs multiple tasks simultaneously
on multiple computer servers or processors. Massively parallel computing is parallel computing using tens of
thousands to millions of processors or processor cores.

 [Hardware] Computer clusters (also called HPC clusters). An HPC cluster consists of multiple high-speed
computer servers networked together, with a centralized scheduler that manages the parallel computing
workload. The computers, called nodes, use either high-performance multi-core CPUs or, more likely today,
GPUs (graphical processing units), which are well suited for rigorous mathematical calculations, machine
learning models and graphics-intensive tasks.

» [Hardware] High-performance components. All the other computing resources in an HPC cluster—
networking, memory, storage and file systems—are high-speed, high-throughput and low-latency components
that can keep pace with the nodes and optimize the computing power and performance of the cluster.

These days, power consumption is becoming ever more critical than pure performance!

adapted from https://www.ibm.com/topics/hpc, IBM

https://www.ibm.com/topics/hpc

MP| & OpenMP

PROGRAM hello_world_mpi
include 'mpif.h'

e MPI (‘“Message Passing Interface’)

integer process_Rank, size_Of_Cluster, ierror
® The same program runs on all processes, messages carry data between

processes. Those processes could be running on separate compute nodes, call MPI_INIT(ierror)

call MPI_COMM_SIZE(MPI_COMM_WORLD, size Of Cluster, ierror)

or different cores inside a node, or even on the same processor core, time- call MPI_COMM_RANK(MPI_COMM_WORLD, process_Rank, ierror)
sharing its resources. DOi=0, 3 1
. IF(i == process_Rank) THEN
® Implemented as a library print %, 'Hello World from process: ', process_Rank, 'of
. . . . ', size_Of_Cluster
¢ Inter-node parallelization and distributed-memory END IF
_ . . call MPI_BARRIER(MPI_COMM_WORLD, i_error)
® Most HPC parallel applications use it END DO
® “assembly language of parallel programming”, can also be seen as a call MPI_FINALIZE(ierror)

END PROGRAM
PROGRAM Parallel Ordered_Hello

programming model

USE OMP_LIB
® OpenMP is an extension to the programming languages C and Fortran. INTEGER :: thread_id
® Mainly parallel execution of loops !$0MP PARALLEL PRIVATE(thread_id)

,] . thread_id = OMP_GET_THREAD_NUM()
® based on compiler directives, a preprocessor can schedule the parallel
execution of the loop iterations. DO 1;2'?TPESEIHTQL(ETTEI)EA%éKl

® based on threads, it features dynamic parallelism: the number of execution PRINT *, "Hello from process: ", thread_id

END IF
streams operating in parallel can vary from one part of the code to another !$0MP BARRIER
END DO
¢ Shared-memory paradigm !$0MP END PARALLEL

END

Sources: Introduction to High Performance Scientific Computing, Victor Eijkhout; Introduction to HPC for Scientists and Engineers, Hager & Wellein, CRC press Source: https://curc.readthedocs.io/en/latest/index.html

http://www.tacc.utexas.edu/~eijkhout/istc/istc.html

GPUs

® \While modern CPUs are designed to be moderately efficient for

essentially all tasks, co-processors can be designed for specitic

tasks to improve performance and/or reduce power consumption.

® \/ery popular co-processors in HPC are Graphics Processing Units
(GPU)

® GPUs are special purpose processors, designed for fast graphics
processing and gradually evolved to be useful also for non-graphics

computing.

® “Graphics pipeline”: identical operations are performed on many
data elements (data parallelism), and a number of such blocks of
data parallelism can be active at the same time.

® GPUs rely on a large amount of data parallelism and the ability to do

a fast switch of context (data accessed by threads), optimal for

graphics and scientific applications.

® Mu
CU

tiple programming strategies and languages (e.g. NVIDIA

DA, OpenACC).

+

CPU GPU
MULTIPLE CORES THOUSANDS OF CORES

A100 TENSOR-CORE GPU)
54 billion transistors in 7nm | . —
' Scale OUT

Multi-Instance GPU

34 gen.

1.56 TB/s HBM2 NVLINK

1.7x bandwidth

Source: NVIDIA

Hybrid parallelizations in QE

Python: Ensemble simulations

MPI: Domain partition

OpenMP: External loop partition

CUDA: assign inner loops
Iteration to GPU threads

1 O Quantum ESPRESSO

HPC software often uses multiple (hybrid) parallelization strategies, which are implemented with different
programming languages.

Benchmarks and scaling tests

Performace comparison on 243 atoms Ve, supercell

40000 10.8x
35000 |
|
30000° 4 nodes ‘4 nodes
—~ _ 128 MPI tasks 16 MPI tasks
j:' 25000 1 omMP/MPIll |8 OMP/MPI
£ 20000- 4 pools k 1 pool
= |
15000- |
|
10000- |
5000+ \
0
No GPU GPU

Performance comparison for CPU only and GPU accelerated computations. The
SCF calculations were both performed on 4 nodes with 4 Nvidia V100 GPUs on
CINECA's Marconi100 using a 3x3x3 supercell with 243 atoms for the VTe2 high
temperature 1T structure. In the calculations 17 irreducible k-points were used
distributed respectively on 1 and 4 pools in GPU accelerated and CPU only
calculations.

10

Strong scaling for 243 atoms VTe, supercell

—e— Speedup
«— Efficiency

o
. ©
Efficiency

o
0o

512 (64) 768 (96) 960 (120)

CPU cores (GPUs)

256 (32)

Strong scaling test for a QE PWscf calculation of a VTeZ2 supercell with 243 atoms
performed on Marconi100 with 4 Nvidia V100 GPUs per node. Every calculation
was performed using 1 MPI task and 8 OMP threads per GPU. The super-linear
speed up is related to the better parallelization on reciprocal lattice k points which
is allowed by the increase of available memory.

11521144?'

5

Amdahl’'s law

The upper limit of scalability for parallel applications is set by the fraction of overall execution time spent in the
serial (non-scalable) part of the code

B Serial
L1 Parallel

Walltime

Ncpus

https://www.youtube.com/watch?v=CFSOY3rWwo4

References and outlook

¢ In order to write efficient scientific software, it is important to understand computer architectures.

e HPC applications often requires parallel programming or automation strategies.

® This is relevant for 1) modern CPUs as you find them on your laptop, 2) even more crucial for HPC systems.
® Some references on HPC and parallel programming

= [ntroduction to High Performance Scientific Computing, Victor Eijkhout

= |ntroduction to HPC tor Scientists and Engineers, Hager & Wellein, CRC press

The next generation of computational physicist and computational scientists will use and write massively parallel
code with multiple programming languages on exascale supercomputers (exaflops, 1018 64-bit operations/
second), which will be mostly powered by accelerators (GPUs, FPGAs) and maybe by noisy intermediate-scale
quantum (NISQ) computers.

http://www.tacc.utexas.edu/~eijkhout/istc/istc.html

