
Antimo Marrazzo, Computational Physics Laboratory, UniTS, May 2023

A brief introduction to

high-performance computing:

a computational physicist perspective

Supercomputers for computational physics
•Supercomputers are essentially defined as the most powerful computer available at that time.

These days a supercomputer is essentially “a purpose-built computer that embodies millions of
processors or processor cores” (IBM, https://www.ibm.com/topics/hpc).

•Why do computational physicist need supercomputers?

• Simulate a problem too complex to be even attempted on “regular” computers

• Increase the accuracy of a simulations (e.g. denser grids, more spatial resolution)

• Perform a very large number of simulations (high-throughput computing)

• Exploit high-performance hardware (e.g. GPUs)

• Scale economies (shared centralized resources are more cost efficient to buy and maintain)

More complex simulations

More powerful computers

We simulate more complex systems with higher accuracy in a shorter time thanks to more powerful hardware and
more sophisticated programming paradigms

https://www.ibm.com/topics/hpc

120 years of Moore’s law

“The complexity of devices (number of transistors per square inch in microprocessors) doubles every 18 months”, Gordon Moore, INTEL co-founder, 1965

, Steve Jurvetson (https://www.flickr.com/photos/
jurvetson/31409423572/)

https://www.flickr.com/photos/jurvetson/31409423572/
https://www.flickr.com/photos/jurvetson/31409423572/
https://www.flickr.com/photos/jurvetson/31409423572/

Finally just to show we have come a long
way..

62

8Mb

1965
2015

128Gb

STORAGE

173 Gflops (GPU)

400 Mflops

20151975

PERFORMANCE

1970

PROGRAM HELLO
C

REAL A(10,10)
DO 50 I=1,10

PRINT *,’Hello’50 CONTINUE

CALL DGEMM(N,10,I,J,A)

2015

SOFTWARE

PROGRAM HELLO
C

REAL A(10,10)
DO 50 I=1,10

PRINT *,’Hello’50 CONTINUE

CALL DGEMM(N,10,I,J,A)

Exponentials in actions

Source: Andrew Emerson, Giovanni Erbacci, Introduction to HPC Architectures, CINECA

https://hpc-forge.cineca.it/files/ScuolaCalcoloParallelo_WebDAV/public/anno-2017/26th_Summer_School_on_Parallel_Computing/Bologna/Introduction%20to%20HPC%20Architectures.pdf

• Processor speed

• Memory size

• Bandwidth between processor and memory

• Bandwidth to the I/O system

• Size and bandwidth of the cache

• Latency between processor, memory, and I/O system

What performance means

often crucial for Physics simulations!
more operations per second

Faster processors are
useless if there are

communication bottlenecks!

2 Introduction to High Performance Computing for Scientists and Engineers

Figure 1.1: Stored-program computer ar-
chitectural concept. The “program,” which
feeds the control unit, is stored in memory
together with any data the arithmetic unit
requires.

Memory In
pu
t/O
ut
pu
t

CPU

Control
unit

Arithmetic
logic
unit

which can in principle be done by another program; a compiler is a typical example,
because it translates the constructs of a high-level language like C or Fortran into
instructions that can be stored in memory and then executed by a computer.

This blueprint is the basis for all mainstream computer systems today, and its
inherent problems still prevail:

• Instructions and data must be continuously fed to the control and arithmetic
units, so that the speed of the memory interface poses a limitation on compute
performance. This is often called the von Neumann bottleneck. In the follow-
ing sections and chapters we will show how architectural optimizations and
programming techniques may mitigate the adverse effects of this constriction,
but it should be clear that it remains a most severe limiting factor.

• The architecture is inherently sequential, processing a single instruction with
(possibly) a single operand or a group of operands from memory. The term
SISD (Single Instruction Single Data) has been coined for this concept. How it
can be modified and extended to support parallelism in many different flavors
and how such a parallel machine can be efficiently used is also one of the main
topics of this book.

Despite these drawbacks, no other architectural concept has found similarly
widespread use in nearly 70 years of electronic digital computing.

1.2 General-purpose cache-based microprocessor architecture
Microprocessors are probably the most complicated machinery that man has ever

created; however, they all implement the stored-program digital computer concept
as described in the previous section. Understanding all inner workings of a CPU is
out of the question for the scientist, and also not required. It is helpful, though, to
get a grasp of the high-level features in order to understand potential bottlenecks.
Figure 1.2 shows a very simplified block diagram of a modern cache-based general-
purpose microprocessor. The components that actually do “work” for a running ap-
plication are the arithmetic units for floating-point (FP) and integer (INT) operations

Stored-program computer architectural concept

(source: Introduction to HPC for Scientists and Engineers, Hager & Wellein, CRC press)

 

Beyond clock speed
Modern CPUs are rather sophisticated devices (compared to the
original von Neumann architecture), here some relevant features:

• Pipelined functional units: complex operations are split into simple
components that can be executed using different functional units on
the CPU, so the number of instructions executed per clock cycle
increases.

 

• Vector CPU units and data parallelism through SIMD (Single
Instruction Multiple Data).

• Caches: low-capacity, high-speed memories that are commonly
integrated on the CPU. NB: data transfer rates to main memory are
dramatically slower compared to the CPU’s arithmetics speeds (there
has been increasing gap between processor and memory speeds).

CPU Vector units

• Vectorisation performed by
dedicated hardware on chip.

• Compiler generates vector
instructions, when it can,
from programmer’s code.

• Important optimisation which
can lead to 4x, 8x speedups
according “size” of vector
unit (e.g. 256 bit).

Source: https://en.wikipedia.org/wiki/Instruction_pipelining#/media/File:Pipeline,_4_stage.svg

Source: Andrew Emerson, Giovanni Erbacci, Introduction to HPC Architectures, CINECA1.3. Memory Hierarchies

Figure 1.5: Memory hierarchy of an Intel Sandy Bridge, characterized by speed and size.

Most clusters will also have more than one socket (processor chip) per node, typically 2 or 4, so
some bandwidth is spent on maintaining cache coherence (see section 1.4), again reducing the
bandwidth available for each chip.

On level 1, there are separate caches for instructions and data; the L2 and L3 cache contain both data and
instructions.

You see that the larger caches are increasingly unable to supply data to the processors fast enough. For this
reason it is necessary to code in such a way that data is kept as much as possible in the highest cache level
possible. We will discuss this issue in detail in the rest of this chapter.
Exercise 1.5. The L1 cache is smaller than the L2 cache, and if there is an L3, the L2 is smaller

than the L3. Give a practical and a theoretical reason why this is so.

1.3.4.4 Types of cache misses

There are three types of cache misses.

As you saw in the example above, the first time you reference data you will always incur a cache miss. This
is known as a compulsory cache miss since these are unavoidable. Does that mean that you will always be
waiting for a data item, the first time you need it? Not necessarily: section 1.3.5 explains how the hardware
tries to help you by predicting what data is needed next.

The next type of cache misses is due to the size of your working set: a capacity cache miss is caused by data
having been overwritten because the cache can simply not contain all your problem data. (Section 1.3.4.6
discusses how the processor decides what data to overwrite.) If you want to avoid this type of misses, you
need to partition your problem in chunks that are small enough that data can stay in cache for an appreciable
time. Of course, this presumes that data items are operated on multiple times, so that there is actually a point
in keeping it in cache; this is discussed in section 1.6.1.

Finally, there are conflict misses caused by one data item being mapped to the same cache location as
another, while both are still needed for the computation, and there would have been better candidates to

Victor Eijkhout 27

Source: Introduction to High Performance Scientific Computing, Victor Eijkhout,

https://hpc-forge.cineca.it/files/ScuolaCalcoloParallelo_WebDAV/public/anno-2017/26th_Summer_School_on_Parallel_Computing/Bologna/Introduction%20to%20HPC%20Architectures.pdf
http://www.tacc.utexas.edu/~eijkhout/istc/istc.html

1. Single-processor Computing

The frequency-dependent part of the power a processor needs comes from charging and discharging the
capacitance of the circuit, so

Charge q = CV
Work W = qV = CV 2

Power W/time = WF = CV 2F
(1.1)

This analysis can be used to justify the introduction of multicore processors.

1.8.1.2 Multicore

At the time of this writing (circa 2010), miniaturization of components has almost come to a standstill,
because further lowering of the voltage would give prohibitive leakage. Conversely, the frequency can not
be scaled up since this would raise the heat production of the chip too far. Figure 1.28 gives a dramatic

Figure 1.28: Projected heat dissipation of a CPU if trends had continued – this graph courtesy Pat Helsinger

illustration of the heat that a chip would give off, if single-processor trends had continued.

One conclusion is that computer design is running into a power wall , where the sophistication of a single
core can not be increased any further (so we can for instance no longer increase ILP and pipeline depth)
and the only way to increase performance is to increase the amount of explicitly visible parallelism. This
development has led to the current generation of multicore processors; see section 1.4. It is also the reason
GPUs with their simplified processor design and hence lower energy consumption are attractive; the same
holds for FPGAs. One solution to the power wall problem is introduction of multicore processors. Recall
equation 1.1, and compare a single processor to two processors at half the frequency. That should have the
same computing power, right? Since we lowered the frequency, we can lower the voltage if we stay with
the same process technology.

66 Introduction to High Performance Scientific Computing

Go faster, go parallel
• Since more than ten years miniaturization of components has almost stopped (leakage current problem). In
addition, the frequency can not be increase since this would raise the heat production of the chip too far.

• Power wall: sophistication of a single core can not be increased any further -> increase the amount of
explicit parallalization -> multicore architectures & parallel programming

Projected heat dissipation of a CPU if trends had continued.

 Source: Introduction to High Performance Scientific Computing, Victor Eijkhout,

 (original source Pat Helsinger)

http://www.tacc.utexas.edu/~eijkhout/istc/istc.html

Multi-core and multi-thread processors

• Multi-core processors. The chip is divided
into multiple processing cores, with a mix of
mix of shared and private caches.

• Multi-thread processors. Threads are streams
of parallel instructions. Multiple threads can be
executed on each processing unit.

24 Introduction to High Performance Computing for Scientists and Engineers

P
L1D
L2
L3

P
L1D
L2
L3

Figure 1.15: Dual-core processor chip with
separate L1, L2, and L3 caches (Intel “Mon-
tecito”). Each core constitutes its own cache
group on all levels.

L1D L1D
L2

L1D
L2

L1D

PPPP

Figure 1.16: Quad-core processor chip, con-
sisting of two dual-cores. Each dual-core
has shared L2 and separate L1 caches (Intel
“Harpertown”). There are two dual-core L2
groups.

Each one of those cores has the same transistor count as the single “fast” core, but
we know that Moore’s Law gives us transistors for free. Figure 1.14 shows the re-
quired relative frequency reduction with respect to the number of cores. The overall
performance of the multicore chip,

pm = (1+ εp)pm , (1.9)

should at least match the single-core performance so that

εp >
1
m
−1 (1.10)

is a limit on the performance penalty for a relative clock frequency reduction of ε f
that should be observed for multicore to stay useful.

Of course it is not trivial to grow the CPU die by a factor of m with a given man-
ufacturing technology. Hence, the most simple way to multicore is to place separate
CPU dies in a common package. At some point advances in manufacturing tech-
nology, i.e., smaller structure lengths, will then enable the integration of more cores
on a die. Additionally, some compromises regarding the single-core performance of
a multicore chip with respect to the previous generation will be made so that the
number of transistors per core will go down as will the clock frequency. Some manu-
facturers have even adopted a more radical approach by designing new, much simpler
cores, albeit at the cost of possibly introducing new programming paradigms.

Finally, the over-optimistic assumption (1.9) that m cores show m times the per-
formance of a single core will only be valid in the rarest of cases. Nevertheless,
multicore has by now been adopted by all major processor manufacturers. In order to
avoid any misinterpretation we will always use the terms “core,” “CPU,” and “pro-
cessor” synonymously. A “socket” is the physical package in which multiple cores
(sometimes on multiple chips) are enclosed; it is usually equipped with leads or pins
so it can be used as a replaceable component. Typical desktop PCs have a single
socket, while standard servers use two to four, all sharing the same memory. See
Section 4.2 for an overview of shared-memory parallel computer architectures.

Modern processors 27

L1D
cache

L1I
cacheMemory

L2 cache

Control

Registers

Ex
ec

ut
io

n
un

its

Figure 1.19: Simplified diagram of control/data flow in a (multi-)pipelined microprocessor
without SMT.White boxes in the execution units denote pipeline bubbles (stall cycles). Graph-
ics by courtesy of Intel.

all data, status and control registers, including stack and instruction pointers. Execu-
tion resources like arithmetic units, caches, queues, memory interfaces etc. are not
duplicated. Due to the multiple architectural states, the CPU appears to be composed
of several cores (sometimes called logical processors) and can thus execute multiple
instruction streams, or threads, in parallel, no matter whether they belong to the same
(parallel) program or not. The hardware must keep track of which instruction belongs
to which architectural state. All threads share the same execution resources, so it is
possible to fill bubbles in a pipeline due to stalls in one thread with instructions (or
parts thereof) from another. If there are multiple pipelines that can run in parallel (see
Section 1.2.4), and one thread leaves one or more of them in an idle state, another
thread can use them as well (see Figure 1.20).

It important to know that SMT can be implemented in different ways. A possible
distinction lies in how fine-grained the switching between threads can be performed
on a pipeline. Ideally this would happen on a cycle-by-cycle basis, but there are
designs where the pipeline has to be flushed in order to support a new thread. Of
course, this makes sense only if very long stalls must be bridged.

SMT can enhance instruction throughput (instructions executed per cycle) if
there is potential to intersperse instructions from multiple threads within or across

L1D
cache

L1I
cacheMemory

L2 cache

Registers

Control

Ex
ec

ut
io

n
un

its

Figure 1.20: Simplified diagram of control/data flow in a (multi-)pipelined microprocessor
with fine-grained two-way SMT. Two instruction streams (threads) share resources like caches
and pipelines but retain their respective architectural state (registers, control units). Graphics
by courtesy of Intel.

Sources: Introduction to HPC for Scientists and Engineers, Hager & Wellein, CRC press

High-performance computing (HPC)
Modern HPC solutions are based on these 3 pillars

• [Software]	 Parallel & massively parallel computing. Parallel computing runs multiple tasks simultaneously
on multiple computer servers or processors. Massively parallel computing is parallel computing using tens of
thousands to millions of processors or processor cores. 

• [Hardware]	 Computer clusters (also called HPC clusters). An HPC cluster consists of multiple high-speed
computer servers networked together, with a centralized scheduler that manages the parallel computing
workload. The computers, called nodes, use either high-performance multi-core CPUs or, more likely today,
GPUs (graphical processing units), which are well suited for rigorous mathematical calculations, machine
learning models and graphics-intensive tasks.  

• [Hardware]	 High-performance components. All the other computing resources in an HPC cluster—
networking, memory, storage and file systems—are high-speed, high-throughput and low-latency components
that can keep pace with the nodes and optimize the computing power and performance of the cluster.

adapted from https://www.ibm.com/topics/hpc, IBM

These days, power consumption is becoming ever more critical than pure performance!

https://www.ibm.com/topics/hpc

MPI & OpenMP
PROGRAM hello_world_mpi

include 'mpif.h'

integer process_Rank, size_Of_Cluster, ierror

call MPI_INIT(ierror)

call MPI_COMM_SIZE(MPI_COMM_WORLD, size_Of_Cluster, ierror)

call MPI_COMM_RANK(MPI_COMM_WORLD, process_Rank, ierror)

DO i = 0, 3, 1

 IF(i == process_Rank) THEN

 print *, 'Hello World from process: ', process_Rank, 'of
', size_Of_Cluster

 END IF

 call MPI_BARRIER(MPI_COMM_WORLD, i_error)

END DO

call MPI_FINALIZE(ierror)

END PROGRAM

PROGRAM Parallel_Ordered_Hello

USE OMP_LIB

INTEGER :: thread_id

!$OMP PARALLEL PRIVATE(thread_id)

 thread_id = OMP_GET_THREAD_NUM()

 DO i=0,OMP_GET_MAX_THREADS()

 IF (i == thread_id) THEN

 PRINT *, "Hello from process: ", thread_id

 END IF

 !$OMP BARRIER

 END DO

!$OMP END PARALLEL

END

Source: https://curc.readthedocs.io/en/latest/index.html

• MPI (‘Message Passing Interface’)

• The same program runs on all processes, messages carry data between
processes. Those processes could be running on separate compute nodes,
or different cores inside a node, or even on the same processor core, time-
sharing its resources.

• Implemented as a library

• Inter-node parallelization and distributed-memory

• Most HPC parallel applications use it

• “assembly language of parallel programming”, can also be seen as a
programming model

• OpenMP is an extension to the programming languages C and Fortran.

• Mainly parallel execution of loops

• based on compiler directives, a preprocessor can schedule the parallel
execution of the loop iterations.

• based on threads, it features dynamic parallelism: the number of execution
streams operating in parallel can vary from one part of the code to another

• Shared-memory paradigm

Sources: Introduction to High Performance Scientific Computing, Victor Eijkhout; Introduction to HPC for Scientists and Engineers, Hager & Wellein, CRC press

http://www.tacc.utexas.edu/~eijkhout/istc/istc.html

GPUs
• While modern CPUs are designed to be moderately efficient for

essentially all tasks, co-processors can be designed for specific
tasks to improve performance and/or reduce power consumption.

• Very popular co-processors in HPC are Graphics Processing Units
(GPU)

• GPUs are special purpose processors, designed for fast graphics
processing and gradually evolved to be useful also for non-graphics
computing.

• “Graphics pipeline”: identical operations are performed on many
data elements (data parallelism), and a number of such blocks of
data parallelism can be active at the same time.

• GPUs rely on a large amount of data parallelism and the ability to do
a fast switch of context (data accessed by threads), optimal for
graphics and scientific applications.

• Multiple programming strategies and languages (e.g. NVIDIA
CUDA, OpenACC).

Recent HPC Trends –
accelerators/GPUs

• Co-processors or
accelerators have been
around for a while but it
was only when Nvidia
released CUDA did GPUs
become interesting for
HPC (2006).

• GPGPUs or simply GPUs
work in a different way to
conventional CPUs.
Emphasis on stream
processing.

• Acceleration can be
significant but depends
on application.

Features Tesla K80¹
GPU 2x Kepler GK210

Peak double precision
floating
point performance

2.91 Tflops (GPU Boost
Clocks)
1.87 Tflops (Base
Clocks)

Peak single precision
floating
point performance

8.74 Tflops (GPU Boost
Clocks)
5.6 Tflops (Base Clocks)

Memory bandwidth
(ECC off)²

480 GB/sec (240 GB/sec
per GPU)

Memory size (GDDR5) 24 GB (12GB per GPU)

CUDA cores 4992 (2496 per GPU)

-

Source: NVIDIA

Hybrid parallelizations in QE
Hybrid parallel programming
(example)

MPI: Domain partition

OpenMP: External loop partition

Python: Ensemble simulations

25

OpenMP: External loop partition

CUDA: assign inner loops
Iteration to GPU threads

http://www.qe-forge.org/Quantum ESPRESSO

14/11/2014 Efficient use of Molecular Dynamics for HPC.
HPC software often uses multiple (hybrid) parallelization strategies, which are implemented with different

programming languages.

Benchmarks and scaling tests

with just about 24 A100 GPUs.

Fig. 5: Benchmark for a Quantum ESPRESSO PWScf ground state calculation for a carbon nanotube functionalized with porphyrin molecules,
which consists in 1532 atoms and 5232 electrons per unit cell. The time per iteration in the self-consistent calculation is compared across
different platforms. Not only GPUs drastically reduce the time to solution, but the modern NVIDIA A100 GPUs (similar to those mounted on
LEONARDO) outperforms the older V100 by a factor of four.

Next, we show how our typical QE PWScf calculation dramatically benefits from the use of Nvidia GPUs as accelerators. In Fig. 6 we show the
total time to solution for an SCF ground-state calculation of a VTe2 supercell with 243 atoms performed on 4 nodes on Marconi100.
Remarkably, the inclusion of GPUs allows to reduce the time to solution by an order of magnitude compared to the same calculation performed
on the same number of nodes (four) with optimal parallelization choices (1 k-point pool per node, full MPI parallelization on plane waves).

Fig. 6. Performance comparison for CPU only and GPU accelerated computations. The SCF calculations were both performed on 4 nodes with 4
Nvidia V100 GPUs on CINECA’s Marconi100 using a 3x3x3 supercell with 243 atoms for the VTe2 high temperature 1T structure. In the
calculations 17 irreducible k points were used distributed respectively on 1 and 4 pools in GPU accelerated and CPU only calculations.

Next, in Fig. 7 we show the results of strong scaling tests for the same QE PWscf calculation just discussed and reported in Fig. 6 (243-atom
VTe2 supercell on Marconi100). These supercell calculations are very memory intensive, which implies that they can be run on no less than 4
nodes, which corresponds to 128 CPUs and 16 GPUs. Remarkably, the code scale linearly until 1152 cores and 144 V100 GPUs. The slight
super linear behavior is due to increased availability of memory on more nodes, which enables to adopt the very efficient k-point pool
parallelization. We note that LEONARDO’s A100 GPUs provide 4x times more memory, which will allow us to improve even more the efficiency
of our calculations by potentially fitting the same job on fewer nodes.

Fig. 7. Strong scaling test for a QE PWscf calculation of a VTe2 supercell with 243 atoms performed on Marconi100 with 4 Nvidia V100 GPUs
per node. Every calculation was performed using 1 MPI task and 8 OMP threads per GPU. The super-linear speed up is related to the better
parallelization on reciprocal lattice k points which is allowed by the increase of available memory.

Resource Estimation:
Finally, we estimate the computational resources needed to complete the project by using the results showed in Figs. 6-7, which allow us to
calibrate the time to solution on Leonardo’s A100 GPUs.
-SCF DFT & short Born-Oppenheimer molecular dynamics at high temperature (228’000 GPU hours): a conservative estimate to build the
DeePMD potential capable to discuss the 1T-1T'’ phase transition in VTe2--both for the bulk and for isolated monolayers and
few-layers--requires 6000 uncorrelated configurations and the corresponding total energies, stresses and forces. A single SCF calculation for a
576-atom (4x4x4) VTe2 supercell requires 2 hours on 10 nodes and 40 GPUs on Marconi100, that is 80 GPU hours. As discussed in Fig. 5,
LEONARDO’s A100 GPUs are about 4 times faster, which implies that 80 GPU-hours on Marconi100 will be reduced to only 20 GPU-hours on
LEONARDO. Out of the 6k uncorrelated configurations, we will obtain 600 (10% of the total) of them from BOMD calculation. Based on
previous experience, we estimate that the correlation time of BOMD trajectory is of about 100 timesteps, which means that BOMD trajectories
will cost about 6k SCF calculations (neglecting the small speed up provided by wavefunction interpolation from one step to the other). This
means we will have to run 6k SCF calculations for BOMD and other 5.4k SCF calculations on structures generated with LAMMPS or with random
distortions, for a total amount of 11.4k SCF calculations corresponding to 228’000 GPU hours on LEONARDO’s Booster module.
-Neural-network training with DeepMD and NequIP (10’000 GPU hours): both packages greatly benefit from GPUs, while DeePMD leverages
TensorFlow to optimize the neural-network potential, NequiP is based on Pytorch. The Nequip neural-network architecture is more complex and
require more time to train, but it can deliver more accurate potentials on a reduced training set. Based on previous experience we reserve
10’000 GPU hours for training the interatomic potentials with DeePMD/Tensorflow and NequIP/Pytorch.
In total the project requires 238'000 GPU hours on LEONARDO’s Booster partition.
APPLICATIONS USED
1) Quantum ESPRESSO
License: Open.
Requested library: CUDA; MPI; OPENMP; SCALAPACK; FFTW; HDF5; NETCDF
Website: https://www.quantum-espresso.org/
2) DeePMD
License: Open.
Requested library: numpy, scipy, tensorflow
Website: https://github.com/deepmodeling/deepmd-kit
3) NequiP
License: Open
Requested library: numpy, scipy, pytorch, scikit-learn, e3nn

[Carnimeo2022] https://events.prace-ri.eu/event/1214/contributions/1704/attachments/2023/4171/Carnimeo_2022-03-18.pdf.
[Giannozzi2020] P. Giannozzi et al., J. Chem. Phys. 152, 154105 (2020)
https://iris.sissa.it/retrieve/handle/20.500.11767/116835/143933/5.0005082.pdf
[MaXD1.2]
http://www.max-centre.eu/sites/default/files/D1.2%20First%20release%20of%20MAX%20software_report%20on%20performed%20and%20planned.pdf

[Marcolongo2020] A. Marcolongo, T. Binninger, F. Zipoli, T. Laino, ChemSystemsChem 2, e1900031 (2020)
[Zhang2018] L. Zhang et al., Phys. Rev. Lett. 120, 143001 (2018)
[Batzer2022] S. Batzer et al, Nature Comm. 13, 2453 (2022)
[Fu2022] X. Fu et al, arXiv:2210.07237 (2022)

Specialistic support

Do you need specialistic support? no

Performance comparison for CPU only and GPU accelerated computations. The
SCF calculations were both performed on 4 nodes with 4 Nvidia V100 GPUs on
CINECA’s Marconi100 using a 3x3x3 supercell with 243 atoms for the VTe2 high
temperature 1T structure. In the calculations 17 irreducible k-points were used
distributed respectively on 1 and 4 pools in GPU accelerated and CPU only
calculations.

Strong scaling test for a QE PWscf calculation of a VTe2 supercell with 243 atoms
performed on Marconi100 with 4 Nvidia V100 GPUs per node. Every calculation
was performed using 1 MPI task and 8 OMP threads per GPU. The super-linear
speed up is related to the better parallelization on reciprocal lattice k points which
is allowed by the increase of available memory.

Amdahl’s law

The problem with parallelism

In a massively parallel context, an upper limit for the scalability of
parallel applications is determined by the fraction of the overall
execution time spent in non-scalable operations (Amdahl's law).

27

maximum speedup tends
to

1 / (1 − P)
P= parallel fraction

1000000 core

P = 0.999999

serial fraction= 0.000001

14/11/2014 Efficient use of Molecular Dynamics for HPC.

The upper limit of scalability for parallel applications is set by the fraction of overall execution time spent in the
serial (non-scalable) part of the code

https://www.youtube.com/watch?v=CFSOY3rWwo4

• In order to write efficient scientific software, it is important to understand computer architectures.

• HPC applications often requires parallel programming or automation strategies.

• This is relevant for 1) modern CPUs as you find them on your laptop, 2) even more crucial for HPC systems.

• Some references on HPC and parallel programming

➡ Introduction to High Performance Scientific Computing, Victor Eijkhout

➡ Introduction to HPC for Scientists and Engineers, Hager & Wellein, CRC press

References and outlook

The next generation of computational physicist and computational scientists will use and write massively parallel
code with multiple programming languages on exascale supercomputers (exaflops, 1018 64-bit operations/

second), which will be mostly powered by accelerators (GPUs, FPGAs) and maybe by noisy intermediate-scale
quantum (NISQ) computers.

http://www.tacc.utexas.edu/~eijkhout/istc/istc.html

