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Chapter 2

FOUR IMPORTANT
LINEAR PARTIAL
DIFFERENTIAL
EQUATIONS

2.1 Transport equation
2.2 Laplace’s equation
2.3 Heat equation

2.4 Wave equation

2.5 Problems

2.6 References

In this chapter we introduce four fundamental linear partial differen-
tial equations for which various explicit formulas for solutions are available.
These are

the transport equation  u;+b-Du=20 (§2.1),

Laplace’s equation Au=0 (§2.2),
the heat equation u—Au=0 (§2.3),
the wave equation Uy —Au=20 (§2.4).

Before going further, the reader should review the discussions of in-
equalities, integration by parts, Green's formulas, convolutions, etc. in Ap-
pendices B and C, and later refer back to these as necessary.

17



18 2. FOUR IMPORTANT LINEAR PDE

2.1. TRANSPORT EQUATION

Probably the simplest partial differential equation of all is the transport
equation with constant coeflicients. This is the PDE

(1) ur+b-Du=0 inR" x (0, 00),

where b is a fixed vector in R", b = (b1,... ,bs), and v : R x [0,00) —» R
is the unknown, u = u(z,t). Here z = (z1,... ,z,) € R™ denotes a typical
point in space, and ¢t > 0 denotes a typical time. We write Du = D,u =
(ugy,--.,Us,) for the gradient of u with respect to the spatial variables z.

Which functions u solve (1)? To answer, let us suppose for the moment
we are given some smooth solution u and try to compute it. To do so, we
first must recognize that the partial differential equation (1) asserts that a
particular directional derivative of u vanishes. We exploit this insight by
fixing any point (z,t) € R" x (0,00) and defining

z2(s) :=u(x + sb,t +s) (s €R).

We then calculate

. d
2(s) = Du(z + sb,t + s) - b+ u(z + sb,t +5) =0 ( = E) ,
the second equality holding owing to (1). Thus z(-) is a constant function of
s, and consequently for each point (z,t), u is constant on the line through
(x,t) with the direction (b,1) € R™*!. Hence if we know the value of u at
any point on each such line, we know its value everywhere in R™ x (0, 00).

2.1.1. Initial-value problem.

For definiteness therefore, let us consider the initial-value problem

@) ug+b-Du=0 in R" x (0,00)
u=g onR"x {t=0}.

Here b € R™ and g : R® — R are known, and the problem is to compute
u. Given (z,t) as above, the line through (z,t) with direction (b,1) is
represented parametrically by (z + sb,t + s) (s € R). This line hits the
plane I' := R™ x {t = 0} when s = —t, at the point (z — tb,0). Since u is
constant on the line and u(z — tb,0) = g(z — tb), we deduce

(3) u(z,t) = g(z —th) (¢ €R"t20)

So, if (2) has a sufficiently regular solution u, it must certainly be given
by (3). And conversely, it is easy to check directly that if g is C!, then u
defined by (3) is indeed a solution of (2).
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Remark. If g is not C, then there is obviously no C! solution of (2). But
even in this case formula (3) certainly provides a strong, and in fact the
only reasonable, candidate for a solution. We may thus informally declare
u(z,t) = g(x—tb) (x € R"™, t > 0) to be a weak solution of (2), even should g
not be C!. This all makes sense even if ¢, and thus u, are discontinuous. Such
a notion, that a nonsmooth or even discontinuous function may sometimes
solve a PDE, will come up again later when we study nonlinear transport
phenomena in §3.4. O

2.1.2. Nonhomogeneous problem.

Next let us look at the associated nonhomogeneous problem

(4) ur+b-Du=f inR" x (0,00)
u=g onR"x {t=0}.

As before fix (z,t) € R"*! and, inspired by the calculation above, set z(s) :=
u(x + sb,t + s) for s € R. Then

2(s) = Du(z + sb,t +s) - b+ w(z + sb,t + s) = f(z + sb,t + s).

Consequently

0

u(z,t) — g(x — bt) = 2(0) — 2(—t) = / 2(s)ds

-t

=/jf(m+sb,t+s)ds
:/Otf(a:-%(s—t)b,s)ds;

and so

(5) u(a:,t)=g(a:—tb)+/0tf(x+(s——t)b,s)ds (z €R", t > 0)

solves the initial-value problem (4).

We will later employ this formula to solve the one-dimensional wave
equation, in §2.4.1.

Remark. Observe that we have derived our solutions (3), (5) by in effect
converting the partial differential equations into ordinary differential equa-
tions. This procedure is a special case of the method of characteristics,
developed later in §3.2. a
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2.2. LAPLACE’S EQUATION

Among the most important of all partial differential equations are undoubt-
edly Laplace’s equation

(1) Au=0
and Poisson’s equation

(2) ~Au=f."

In both (1) and (2), z € U and the unknown is u : U — R, u = u(x),
where U C R" is a given open set. In (2) the function f : U — R is also

given. Remember from §A.3 that the Laplacian of u is Au =31 | ug,q;.

DEFINITION. A C? function u satisfying (1) is called a harmonic func-
tion.

Physical interpretation. Laplace’s equation comes up in a wide variety
of physical contexts. In a typical interpretation u denotes the density of
some quantity (e.g. a chemical concentration) in equilibrium. Then if V is
any smooth subregion within U, the net flux of u through 0V is zero:

/ F.-vdS =0,
ov

F denoting the flux density and v the unit outer normal field. In view of
the Gauss—Green Theorem (§C.2), we have

/didemz] F-vdS=0,
V ov

and so
(3) divF=0 inU,

since V was arbitrary. In many instances it is physically reasonable to as-
sume the flux F is proportional to the gradient Du, but points in the opposite
direction (since the flow is from regions of higher to lower concentration).
Thus

(4) F=—-aDu (a>0).

*I prefer to write (2) with the minus sign, to be consistent with the notation for general
second-order elliptic operators in Chapter 6.
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Substituting into (3), we obtain Laplace’s equation

div(Du) = Au = 0.

If u denotes the i )
chemical concentration
temperature

electrostatic potential,
equation (4) is
Fick’s law of diffusion

Fourier’s law of heat conduction

Ohm'’s law of electrical conduction.

See Feynman-Leighton-Sands [F-L-S, Chapter 12] for a discussion of the
ubiquity of Laplace’s equation in mathematical physics. Laplace’s equation
arises as well in the study of analytic functions and the probabilistic inves-
tigation of Brownian motion. O

2.2.1. Fundamental solution.
a. Derivation of fundamental solution.

One good strategy for investigating any partial differential equation is
first to identify some explicit solutions and then, provided the PDE is linear,
to assemble more complicated solutions out of the specific ones previously
noted. Furthermore, in looking for explicit solutions it is often wise to re-
strict attention to classes of functions with certain symmetry properties.
Since Laplace’s equation is invariant under rotations (Problem 2), it conse-
quently seems advisable to search first for radial solutions, that is, functions
of r = |z|.

Let us therefore attempt to find a solution u of Laplace’s equation (1)
in U = R™, having the form
u(z) = v(r),

where r = |z| = (¢ +--- + 22)1/2 and v is to be selected (if possible) so
that Au = 0 holds. First note for : = 1,...,n that
or 1

-1/2 Ly

We thus have

2 2
T; x; 1 z
Uy, = v’(r)}l, Ug;z; = U”('r);;' + v'(r) (; - _z)
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fori=1,...,n, and so
Au = v"(r) + — 1v’(r).
Hence Au = 0 if and only if
(5) v+ n=ly_o
If v/ # 0, we deduce
gy = 2 =121,

and hence v/(r) = 4y for some constant a. Consequently if » > 0, we have
blogr+c¢ (n=2)
v(r) = b
ey +c (n > 3),

where b and ¢ are constants.

These considerations motivate the following

DEFINITION. The function

— 5= log |z| (n=2)
(6) q)(m) = { g 1 1 > 3
mam ez (2 3),

defined for x € R™, = # 0, is the fundamental solution of Laplace’s equation.

The reason for the particular choices of the constants in (6) will be
apparent in a moment. (Recall from §A.2 that a(n) denotes the volume of
the unit ball in R™.)

We will sometimes slightly abuse notation and write ®(z) = ®(|z|) to
emphasize that the fundamental solution is radial. Observe also that we
have the estimates

C

(7) |D®(z)] < P

|D*®(2)| < = (z#0)

C
Jz[m
for some constant C > 0.

b. Poisson’s equation.

By construction the function z — ®(z) is harmonic for = # 0. If we shift
the origin to a new point y, the PDE (1) is unchanged; and so z — ®(z —y)
is also harmonic as a function of z, x # y. Let us now take f : R® — R and
note that the mapping z — ®(z —y) f(y) (z # y) is harmonic for each point
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y € R™, and thus so is the sum of finitely many such expressions built for
different points y.
This reasoning might suggest that the convolution

w(T)= [g. ©(x — ) f(y) dy
(8) ~ { —5 Jrelog(lz —y)f(y)dy (n=2)
e Jre T dy (n23)

will solve Laplace’s equation (1). However, this is wrong: we cannot just
compute

) Bul@) = [ A8 1)f(5)dy =0

Indeed, as intimated by estimate (7), D?®(x — y) is not summable near the
singularity at y = x, and so the differentiation under the integral sign above
is unjustified (and incorrect). We must proceed more carefully in calculating

Au.

Let us for simplicity now assume f € C2(R"); that is, f is twice contin-
uously differentiable, with compact support.

THEOREM 1 (Solving Poisson’s equation). Define u by (8). Then
(i) u € C*R")

and
(ii) —Au=f in R".

We consequently see that (8) provides us with a formula for a solution
of Poisson’s equation (2) in R™.

Proof. 1. We have
u(z) = /]Rn Sz —-y)f(y)dy = /Rn ®(y) f(z — y) dy;

hence

e rhe)—ule) [ g [[ethazy) = femi),

H

h h
where h # 0 and e; = (0,...,1,...,0), the 1 in the :**-slot. But

flx+hei—y)—flz—y) Of
h _)3m~($—y)

7
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uniformly on R™ as h — 0, and thus

g; (z) = /Rn <1’(y)g£(m —y)dy (i=1,...,n).

Similarly

92 0?
00 pop@ = [ Mg Gi=L.m)

As the expression on the right hand side of (10) is continuous in the variable
z, we see u € C2(R™).

2. Since ® blows up at 0, we will need for subsequent calculations to
isolate this singularity inside a small ball. So fix € > 0. Then

Au(z) = [B o, YA ) dy / B(y)Aaf( —v) dy

R"—B(0,¢)

(11)
=:I. + Je.

Now

Ce?|loge| (n=2)
12 I<CD2OO/ <I>d<{
(12)  |Ie| £ C|ID” fll poo (e B(O’E)l Wldy <3 4. (n>3).
An integration by parts (see §C.2) yields

J. = / B(y) Ay f(z — y) dy
R~ —B(0,¢)

(13) - /RMB 08) D3(y) - Dyf(x —y)dy

0
s e 1)dse)
8B(0,e) v
=: K¢ + L,

v denoting the inward pointing unit normal along 8B(0, e). We readily check

Celloge] (n=2)

(14) |Le| < "Df“L“’(R")/a Ce (n 2 3).

8(y)] dS(y) < {

0,e

3. We continue by integrating by parts once again in the term K, to
discover

0P
K= [ sfe-pd- [ @i dse)

__ /a 9% ) f(x — ) dS(),

B(0,c) OV
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since ® is harmonic away from the origin. Now D®(y) = ﬁﬁﬁg (y #0)
and v = ﬁ = —¥ on dB(0,¢). Consequently 22 (y) =v-DO(y) = Wﬁ
on dB(0,¢). Since na(n)e™ ! is the surface area of the sphere dB(0,¢), we

have
1

 na(n)en1

:—f f(y)dS(y) — —f(z) Bse—0.
OB(z,€)

K. = /8 o J@= 1S

(15)

(Remember from §A.3 that a slash through an integral denotes an average.)

4. Combining now (11)-(15) and letting ¢ — 0, we find —Au(z) = f(z),
as asserted. a

Remarks. (i) We sometimes write
—-A®P =6 inR"

8o denoting the Dirac measure on R™ giving unit mass to the point 0. Adopt-
ing this notation, we may formally compute:

—Au(z) = /Rn —A:®(x —y) f(y)dy

- / 6:f(y)dy = f(&) (z€R™),
R

in accordance with Theorem 1. This corrects the erroneous calculation (9).

(i) Theorem 1 is in fact valid under far less stringent smoothness re-
quirements for f: see Gilbarg-Trudinger [G-T]. a

2.2.2. Mean-value formulas.

Consider now an open set U C R™ and suppose u is a harmonic function
within U. We next derive the important mean-value formulas, which declare
that u(z) equals both the average of u over the sphere 0B(z,r) and the
average of u over the entire ball B(z,r), provided B(z,r) C U. These
implicit formulas involving u generate a remarkable number of consequences,
as we will momentarily see.

THEOREM 2 (Mean-value formulas for Laplace’s equation). Ifu € C*(U)
1s harmonic, then

(16) u(z) =][ udS = udy
8B(z,r) B(z,r)

for each ball B(z,r) CU.
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Proof. 1. Set

B(r) = ][BB(w)u(y) dS(y) = ]laB w(z +rz) dS(2).

Then

¢'(r)= ][ Du(z +rz) - 2dS(z2),
8B(0,1)

and consequently, using Green’s formulas from §C.2, we compute

#(r) = ][8 Du(y) - Y=Z ds(y)

B(z,r) r

ou
= —dS(y
fBB(m,r) ov )

= i]l Au(y)dy = 0.
nJ B(zx,r)

Hence ¢ is constant, and so

o) = lma(®) = lim {  u(y) dS(w) = u(z).
- - 8B(z,t)

2. Observe next that our employing polar coordinates, as in §C.3, gives

T
/ udy = / ( / udS) ds
B(z,r) 0 9B(z,s)

= u(x) /Or na(n)s" 1ds = a(n)r"u(z).
d

THEOREM 3 (Converse to mean-value property). If u € C*(U) satisfies

u(z) = ][ udS
8B(z,r)

for each ball B(z,r) C U, then u is harmonic.

Proof. If Au # 0, there exists some ball B(z,r) C U such that, say, Au > 0
within B(z,r). But then for ¢ as above,

0=¢(r)=" ][B( Au(y)dy >0,
z,r

a contradiction. a
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2.2.3. Properties of harmonic functions.

We now present a sequence of interesting deductions about harmonic
functions, all based upon the mean-value formulas. Assume for the following
that U C R" is open and bounded.

a. Strong maximum principle, uniqueness.

THEOREM 4 (Strong maximum principle). Suppose u € C*(U) N C(U)
ts harmonic within U.
(i) Then
max ¥4 = max u.
1 U

(ii) PFurthermore, if U is connected and there exists a point g € U such

that
u(zo) = max u,
U

then

u 18 constant within U.

Assertion (i) is the mazimum principle for Laplace’s equation and (ii) is
the strong mazimum principle. Replacing u by —u, we recover also similar
assertions with “min” replacing “max”.

Proof. Suppose there exists a point 2o € U with u(zg) = M := maxg u.
Then for 0 < r < dist(xg, 0U), the mean-value property asserts

M=u(a:g)=][ udy < M.
B(zo,r)

As equality holds only if v = M within B(z, ), we see u(y) = M for all
y € B(z,r). Hence the set {x € U | u(z) = M} is both open and relatively
closed in U, and thus equals U if U is connected. This proves assertion (ii),
from which (i) follows. a

Remark. The strong maximum principle asserts in particular that if U is
connected and u € C%(U) N C(U) satisfies
Au=0 inU
{ u=g ondU,
where g > 0, then u is positive everywhere in U if g is positive somewhere
on OU. O

An important application of the maximum principle is establishing the
uniqueness of solutions to certain boundary-value problems for Poisson’s
equation.
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THEOREM 5 (Uniqueness). Letg € C(0U), f € C(U). Then there exists
at most one solution u € C*(U) N C(U) of the boundary-value problem

—Au=f U
(17) { u=g ondU.

Proof. If u and % both satisfy (17), apply Theorem 4 to the harmonic
functions w := £(u — u). O

b. Regularity.

Now we prove that if u € C? is harmonic, then necessarily u € C™.
Thus harmonic functions are automatically infinitely differentiable. This
sort of assertion is called a regularity theorem. The interesting point is that
the algebraic structure of Laplace’s equation Au = Y- | Uz,z, = 0 leads to
the analytic deduction that all the partial derivatives of u exist, even those
which do not appear in the PDE.

THEOREM 6 (Smoothness). If u € C(U) satisfies the mean-value prop-
erty (16) for each ball B(z,r) C U, then

u € C(U).
Note carefully that » may not be smooth, or even continuous, up to 8U.

Proof. Let 1 be a standard mollifier, as described in §C.4, and recall that
7 is a radial function. Set u® := 7. *+ u in U, = {z € U | dist(z,0U) > €}.
As shown in §C.4, u® € C*°(U,).

We will prove u is smooth by demonstrating that in fact u = u® on U..
Indeed if z € U, then

u (z) = /U ne(z — yyu(y) dy

1/ (Ix—yl)
= = E2) u(y) dy
po B(mn . (v)

&€
= [[7) (o es5)

= L) /O En (g) na(n)r"ldr by (16)

e'n,

= u(x) /1;2(0,5) ne dy = u(z).

Thus u® = u in U, and so u € C*°(U,) for each € > 0. a
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c. Local estimates for harmonic functions.

Next we employ the mean-value formulas to derive careful estimates on
the various partial derivatives of a harmonic function. The precise structure
of these estimates will be needed below, when we prove analyticity.

THEOREM 7 (Estimates on derivatives). Assume u is harmonic in U.
Then

C
(18) | D%u(wo)| < Tn«]:k lull 2t (B(zo.r))

for each ball B(zo,r) C U and each multiindex @ of order |a| = k.
Here

n+ly, k
(19) C'()=L Ck=£—2—:—(ln)k—) (k=1,...).

Proof. 1. We establish (18), (19) by induction on k, the case k = 0 being
immediate from the mean-value formula (16). For k¥ = 1, we note upon
differentiating Laplace’s equation that u,, (¢ = 1,...,n) is harmonic. Con-
sequently

un (@) = f s, dal
B(mO:T/Q)
2n

(20) = | / wv; dS)|
a(n)rn 8B(zo,r/2)

2n
< TlluNLw(aB(xo,g))-

Now if z € 8B(xg,7/2), then B(z,r/2) C B(zo,r) C U, and so

2 n
lu(z)| < — (—) |/l 1 (B(zo,r)

r
by (18), (19) for k = 0. Combining the inequalities above, we deduce

2n+ln 1

| D%u(zo)| < “a(n) ril lull L2 (B(zo,m)

if ja| = 1. This verifies (18), (19) for k = 1.

2. Assume now k > 2 and (18), (19) is valid for all balls in U and each
multiindex of order less than or equal to k — 1. Fix B(zo,7) C U and let o
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be a multiindex with |a| = k. Then D®u = (DPu),, for some i € {1,...,n},
|8] = k — 1. By calculations similar to those in (20), we establish that

o nk
| D%u(xo)| < T”Dﬁu”L“’(aB(mg,%))-

If € 8B(z0, §), then B(z, £lr) C B(wo,r) C U. Thus (18), (19) for
k — 1 imply
(2+in(k = 1)1

a(n) (k_;_l,r)'rH-k—l

| DPu(z)| < llell L2 (B(o,r)) -

Combining the two previous estimates yields the bound

o 2" Hnk)k
(21) |D%u(z0)| < (Z(W“u”Ll(B(mg,r))'
This confirms (18), (19) for |a| = k. O

d. Liouville’s Theorem.

Next we see that there are no nontrivial bounded harmonic functions on
all of R™.

THEOREM 8 (Liouville’s Theorem). Suppose u : R® — R is harmonic
and bounded. Then u is constant.

Proof. Fix g € R®, r > 0, and apply Theorem 7 on B(zy,r):

Ch

|Dufzo)l < 5 llullei(Bo.r))
Cla n
< D0 ey 0,
as r — 0o. Thus Du = 0, and so u is constant. d

THEOREM 9 (Representation formula). Let f € C2(R"), n > 3. Then
any bounded solution of
—-Au=f nR"

has the form

u(z) = /Rn 3z —y)f@)dy+C (xR

for some constant C'.
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Proof. Since ®(x) — 0 as |z| — oo for n > 3, @(x) := [g. B(z — y)f(y)dy

is a bounded solution of —Au = f in R™. If u is another solution, w := u—1u
is constant, according to Liouville’s Theorem. O
Remark. If n = 2, ®(z) = —5 log|z| is unbounded as |z| — oo, and so
may be [p. ®(x - y)f(y) dy. O

e. Analyticity.
Next we refine Theorem 6:

THEOREM 10 (Analyticity). Assume u is harmonic in U. Then u is
analytic in U.

Proof. 1. Fix any point ¢ € U. We must show u can be represented by a
convergent power series in some neighborhood of zg.

Let r := g dist(zo, 0U). Then M := zrirw l[ull (5 (z0,2r)) < 00

2. Since B(z,r) C B(xp,2r) Cc U for each z € B(xg,r), Theorem 7
provides the bound

2n+1n la|
”DaU”LOO(B(:z:O,r)) < M( " ) |a||a|,

1
Now Stirling’s formula ([RD, §8.22]) asserts limg_, k:,:,f = (2751 5. Hence

lal®l < Cel*l)al!

for some constant C' and all multiindices . Furthermore, the Multinomial
Theorem implies

k_ k _ ]!

|a|=k

whence
lo|! < nlolat,

Combining the previous inequalities now yields

on+1,2, x|
) al.
r

(22) | D%ul| Lo (B(zo,r)) < CM(
3. The Taylor series for u at xg is

Z M(x — x0)%,

a!
o
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the sum taken over all multiindices. We assert this power series converges,
provided

r

To verify this, let us compute for each N the remainder term:

= ®u(xg)(x — x0)*
Ry(z):=u(@) - Y_ > Drul O)OE! 0

k=0 |a|=k

_ Z Du(xo + t(x;! z0))(x — z)®

la}=N

for some 0 <t <1, t depending on x. We establish this formula by writing
out the first N terms and the error in the Taylor expansion about 0 for the
function of one variable g(t) := u(z¢ + t(z — z¢)), at t = 1. Employing (22),
(23), we can estimate

gntlp2e\ N r N
rv@l <o 3 () (gt

la|=N

1 _CM
(2n)N 2N
—0 as N — co.

< CMnV

O

See §4.6.2 for more on analytic functions and partial differential equa-
tions.

f. Harnack’s inequality.

Recall from §A.2 that we write V. cC U tomean V C V C U and V is
compact.

THEOREM 11 (Harnack’s inequality). For each connected open set V
CC U, there exists a positive constant C, depending only on V, such that

supu < Cinfu
\% 14

for all nonnegative harmonic functions u in U.

Thus in particular

Suly) S u@) < Culy)
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for all points z,y € V. These inequalities assert that the values of a non-
negative harmonic function within V' are all comparable: u cannot be very
small (or very large) at any point of V unless u is very small (or very large)
everywhere in V. The intuitive idea is that since V is a positive distance
away from QU there is “room for the averaging effects of Laplace’s equation
to occur”.

Proof. Let r:= 1 dist(V,0U). Choose z,y € V, |t —y| < r. Then

1
u({x) = udz > -—/ udz
( ) fB(:r:,?r) a(n)znrn B(y,r)

-1 udz = iu(y)

2 J By 2n
Thus 2"u(y) > u(z) > su(y) fz,y eV, [z —y[ <.

Since V is connected and V is compact, we can cover V by a chain of
finitely many balls {B;}Y ,, each of which has radius r and B, N B;_; # 0
fori=2,...,N. Then

u(z) > Wu(y)

for all z,y € V. O

2.2.4. Green’s function.

Assume now U C R" is open, bounded, and 8U is C'. We propose
next to obtain a general representation formula for the solution of Poisson’s

equation
—Au=f inU,

subject to the prescribed boundary condition

u=g¢g ondU.

a. Derivation of Green’s function.

Suppose first of all u € C?(U) is an arbitrary function. Fix z € U,
choose ¢ > 0 so small that B(x,e) C U, and apply Green’s formula from
§C.2 on the region V, := U — B(x,¢) to u(y) and ®(y — z). We thereby
compute

/ u(y)A®(y — z) — ®(y — z)Au(y) dy
(24) ) od ou
= /aw U(y)g(y —z)—®(y - w)g(y) dS(y),
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v denoting the outer unit normal vector on 8V;. Recall next A®(x —y) =0
for x # y. We observe also

ou
Oy —x)—(y)dS < Ce™ ! max |®| =0(1
., 20256 ds6) . 9] = o(1)
as € — 0. Furthermore the calculations in the proof of Theorem 1 show
oo
ue) 3 -2 dSw) = {  uly)dSw) - u(z)
OB(z.€) v 0B(z:)

as € — 0. Hence our sending ¢ — 0 in (24) yields the formula:

ou od
u(x) = [ (y—x)=(y) —uw(y)5z=(y — ) dS(y)
(25) /,;U Oov ov

- [ 2 -=)8ut)dy.
U

This identity is valid for any point € U and any function u € C%(U).

Now formula (25) would permit us to solve for u(x) if we knew the
values of Au within U and the values of u,0u/0v along OU. However for
our application to Poisson’s equation with prescribed boundary values for u,
the normal derivative Ou/0v along OU is unknown to us. We must therefore
somehow modify (25) to remove this term.

The idea is now to introduce for fixed = a corrector function ¢* = ¢*(y),
solving the boundary-value problem:

(26) {Aqb”:O in U

¢* =®(y—x) on OU.

Let us apply Green’s formula once more, now to compute

- [ty = | w0 - 650 dSw)
27) .
= [ w0 %) - 2ty - 05, 1)),
8U v v

We introduce next this

DEFINITION. Green’s function for the region U is

G(x,y) =2y —2)—¢°(y) (z,yeU z#y).
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Adopting this terminology and adding (27) to (25), we find
oG
) u@)=- [ wF @9dse) - [ censuy)dy @ev)
U v U

where

20 (@9 = DyGla,y) -w(y)

is the outer normal derivative of G with respect to the variable y. Observe
that the term Ou/0v does not appear in equation (28): we introduced the
corrector ¢® precisely to achieve this.

Suppose now u € C2%(U) solves the boundary-value problem

(29) { —Au=f inU

u=g ondU,

for given continuous functions f, g. Plugging into (28), we obtain

THEOREM 12 (Representation formula using Green’s function). If
u € C%(U) solves problem (29), then

@) ue)=- [ d5@nisw+ [ (6@ @ev).

Here we have a formula for the solution of the boundary-value problem
(29), provided we can construct Green’s function G for the given domain U.
This is in general a difficult matter, and can be done only when U has simple
geometry. Subsequent subsections identify some special cases for which an
explicit calculation of G is possible.

Remark. Fix x € U. Then regarding G as a function of y, we may sym-
bolically write

G=0 ondU,

0, denoting the Dirac measure giving unit mass to the point z. O

{—AGzéz inU

Before moving on to specific examples, let us record the general assertion
that G is symmetric in the variables z and y:

THEOREM 13 (Symmetry of Green’s function). For all z,y €U, z # y,

we have
G(y,z) = G(z,y).
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Proof. Fix z,y € U, x # y. Write
v(2) i= G(z,2), w(z) :=G(y,2) (z€U).

Then Av(z) = 0 (2 # z), Aw(z) = 0 (2 # y) and w = v = 0 on
O0U. Thus our applying Green’s identity on V := U — [B(z,¢) U B(y, €)] for
sufficiently small € > 0 yields

ov Oow ow Ov
31 / —w — —uvdS(z =/ —v — —wdS(2),
(31) 8B(z.¢) Ov ov () 8B(y,€) ov ov (2)

v denoting the inward pointing unit vector field on 0B(z,e)UdB(y,¢). Now
w is smooth near x; whence

f/ B_wv dS| < Ce™' sup |v|=0(1) ase—0.
2B(

x,e) OV OB(z,€)
On the other hand, v(z) = ®(z — z) — ¢*(2), where ¢ is smooth in U. Thus
Ov 0

lim —wdS = lim

z — z2)w(z)dS = w(x),
e—0 JoB(ze) OV €0 J3B(x,e) 51/( Ju(z) (=)

by calculations as in the proof of Theorem 1. Thus the left-hand side of (31)
converges to w(z) as € — 0. Likewise the right hand side converges to v(y).
Consequently

G(y,z) = w(z) = v(y) = G(z,y).

b. Green’s function for a half-space.

In this and the next subsection we will build Green’s functions for two
regions with simple geometry, namely the half-space R”} and the unit ball
B(0,1). Everything depends upon our explicitly solving the corrector prob-
lem (26) in these regions, and this in turn depends upon some clever geo-
metric reflection tricks.

First let us consider the half-space
Y ={r=(z1,...,%,) €R" |z, > 0}.

Although this region is unbounded, and so the calculations in the previous
section do not directly apply, we will attempt nevertheless to build Green’s
function using the ideas developed before. Later of course we must check
directly that the corresponding representation formula is valid.
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DEFINITION. Ifz = (z1,...,Zn-1,%Z,) € R%, its reflection in the plane
OR? is the point
z= (561, cryTp—1, _xn)~

We will solve problem (26) for the half-space by setting
¢*(y) =2y —2) =@(y1 —1,. -, Yn-1 —~ Ta-1,Yn + Tn) (2,y €RY).

The idea is that the corrector ¢* is built from ® by “reflecting the singular-
ity” from x € R} to ¢ R.. We note

¢°(y) = ®(y —z) ifye€IRY,
and thus
Ad® =0 in R
¢* = ®(y —x) on ORY,
as required.

DEFINITION. Green’s function for the half-space R7} is
G(z,y) =2y -=z)-2y—2) (z,yeR}, z#y).

Then

gy%(w,y) L9g(y —z) - Qg(yﬂ:)

_ _1 [yn"xn_yn'f‘xn]
na(n) [y —z* |y - 2|

Consequently if y € OR%,
-2z, 1
~na(n) o —y["

) =~ g (@) =

Suppose now u solves the boundary-value problem
Au=0 inR%
(32) { u=g onJOR7.
Then from (30) we expect

r) = 2Zn 9(y)
) U= e Jogo e @ EF

to be a representation formula for our solution. The function
2z,
na(n) |z —y"

K(z,y) := (x € R}, y € ORY)

is Poisson’s kernel for R}, and (33) is Poisson’s formula.

We must now check directly that formula (33) does indeed provide us
with a solution of the boundary-value problem (32).



38 2. FOUR IMPORTANT LINEAR PDE

THEOREM 14 (Poisson’s formula for half-space). Assume g € C(R*1)n
L>®(R™ 1), and define u by (33). Then

(i) u € C®(R™) N L®(R™?),
(i) Au=0 inR?,

and
(iii) limou(sc) = g(z%)  for each point z° € ORT.
ek

Proof. 1. For each fixed z, the mapping y — G(z,y) is harmonic, except
for y = . As G(z,y) = G(y,z) according to Theorem 13, z — G(z,y) is
harmonic, except for x = y. Thus z —g—f;(x,y) = K(x,y) is harmonic
for z € R, y € OR7.

2. A direct calculation, the details of which we omit, verifies
(34) 1= / K(z,y)dy
oR

for each z € R}. As g is bounded, u defined by (33) is likewise bounded.
Since  +— K(z,y) is smooth for x # y, we easily verify as well u € C*°(R7 ),
with
Mue) = [ AK(@ol)dy=0 (@eRY).
Ry
3. Now fix 2% € OR%, € > 0. Choose § > 0 so small that
(35) l9(y) —g(=") <e if |y—2°| <6, yeIR].

Then if |z — 2% < %, x € RY,

u(z) — 9(a®)| = ’ /8  K(e)lo) - o)l dy

< Kx, — CCO d
- < /BWBW) (,9)l9(y) — 9(z°)| dy
+ / K(z,y)l9(y) — 9(z°)|dy
8R$—B(x°,6)
=14+ J

Now (34), (35) imply
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Furthermore if |z — 2°| < § and |y — 20| > 6, we have
6 1
ly—a’| <ly—al+3 <ly—al+35ly— 2%
and so |y — z| > |y — 2°|. Thus

J < 2llgllz / K(z,y) dy
R —B(z9,5)

2n+2 oo
lolz~2. | 20" dy
na(n) OR? —B(z0,6)

—’0 a:sxn_>0+.

<

Combining this calculation with estimate (36), we deduce |u(z)—g(x%)| < 2e,
provided |z — °| is sufficiently small. O

c. Green’s function for a ball.

To construct Green’s function for the unit ball B(0,1) we will again
employ a kind of reflection, this time through the sphere 0B(0,1).

DEFINITION. Ifz € R™ — {0}, the point

x

N

is called the point dual to = with respect to 0B(0,1). The mapping r — %
is inversion through the unit sphere 8B(0,1).

We now employ inversion through the sphere to compute Green’s func-
tion for the unit ball U = B%(0,1). Fix z € B%(0,1). Remember that we
must find a corrector function ¢* = ¢*(y) solving

(37) {Aqsw =0 in B°(0,1)

¢* = ®(y—z) on 9B(0,1);
then Green’s function will be

(38) G(z,y) = @(y — ) — ¢°(v).

The idea now is to “invert the singularity” from z € B°(0,1) to % ¢
B(0,1). Assume for the moment n > 3. Now the mapping y — ®(y — ) is
harmonic for y # #. Thus y — |z|> "®(y — %) is harmonic for y # %, and so

(39) ¢*(y) == @(|z|(y — 2))
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is harmonic in U. Furthermore, if y € B(0,1) and z # 0,

oPly = 3 = of? (I = 2 + )

=z -2y -z +1=|z—y[*

Thus (|z||ly — #))~™2 = |z — y|~("~2). Consequently
(40) ¢°(y) = 2(y—z) (y€dB(0,1)),
as required.
DEFINITION. Green’s function for the unit ball s
41)  G(z,y) =2y —z) - 2(lz|(y - %)) (z,y € B(0,1), z#y).
The same formula is valid for n = 2 as well.

Assume now u solves the boundary-value problem
Au=0 in B0,1)
(42) { u=g indB(0,1).
Then using (30), we see
oG
(43) @ == [ oG (@) dS)
8B(0,1) v

According to formula (41),

%0 o) = 22y =) ~ - (el(y ~ 9).

But
od 1 zi—wy

" Y e =y

and furthermore
8<I> -1 ylz)®* -z 1 yil|z|? —
oy~ 2)) = ol o 1 _ilel” — &
na(n) (|z|ly — Z) na(n) [T -yl

ifye BB(O, 1). Accordingly

Z—Cj(w,y) Zyz (x y)

2
= e yI"Zy’ ~ ) mull )

-1 1—af?
na(n) [z — y|*’
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Hence formula (43) yields the representation formula

na(n) Japo,a) |z — y*

dS(y).

Suppose now instead of (42) u solves the boundary-value problem

Au =0 in B%0,7)
(44) { u=g on0B(0,r)

for » > 0. Then @(zr) = u(rx) solves (42), with g(z) = g(rz) replacing g.
We change variables to obtain Poisson’s formula

ulr _7-2__19;_|2 9(y) - 00
W) o =T [ REeSE) e BO.)

The function

r?—|z[2 1

na(n)r |z —y|"

K(z,y) := (x € B%0,r), y € 8B(0,r))

is Poisson’s kernel for the ball B(0,r).

We have established (45) under the assumption that a smooth solution
of (44) exists. We next assert that this formula in fact gives a solution:

THEOREM 15 (Poisson’s formula for ball). Assume g € C(8B(0,r)) and
define u by (45). Then

(i) u e C>®(B%0,r)),
(ii) Au=0 in B°(0,r),

and
(iii) lim u(x) = g(z°) for each point z° € HB(0,r).
xeméa(zo,r)

The proof is similar to that for Theorem 14, and is left as an exercise.

2.2.5. Energy methods.

Most of our analysis of harmonic functions thus far has depended upon
fairly explicit representation formulas entailing the fundamental solution,
Green’s functions, etc. In this concluding section we illustrate some “en-
ergy” methods, which is to say techniques involving the L2-norms of various
expressions. These ideas foreshadow latter theoretical developments in Parts

IT and IIL
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a. Uniqueness.
Consider first the boundary-value problem

(46) {—Auzf inU

u=g on JU.

We have already employed the maximum principle in §2.2.3 to show
uniqueness, but now set forth a simple alternative proof. Assume U is open,
bounded, and 8U is C*.

THEOREM 16 (Uniqueness). There exists at most one solution u €
C?(U) of (46).

Proof. Assume 4 is another solution and set w := u — %. Then Aw =0 in
U, and so an integration by parts shows

0=—/wAwdx_—./ | Dw|?dz.
U U

Thus Dw = 0 in U, and, since w = 0 on U, we deduce w = u — 4 = 0 in
U. O

b. Dirichlet’s principle.

Next let us demonstrate that a solution of the boundary-value problem
(46) for Poisson’s equation can be characterized as the minimizer of an
appropriate functional. For this, we define the energy functional

1
Iw] =/ ~|Dw|? — wf dz,
U2
w belonging to the admissible set
A={we C*(U)|w=gondU}.

THEOREM 17 (Dirichlet’s principle). Assume u € C%(U) solves (46).
Then

Iu] = mi .

(47) [u] = min I[w]

Conversely, if u € A satisfies (47), then u solves the boundary-value problem
(46).

In other words if u € A, the PDE —Au = f is equivalent to the statement
that u minimizes the energy I[-].
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Proof. 1. Choose w € A. Then (46) implies
0= /U(—Au — f)(u — w) dx.
An integration by parts yields
0=/UDu‘D(u—w) — f(u—w)dxz,
and there is no boundary term since u — w = ¢ — g = 0 on OU. Hence

/lDu|2—ufdx=/Du~Dw—wfdx
U U

1 1
< / ~|Dul? dx + / ~|Dw|? — wf dx,
U2 U2
where we employed the estimates
1 1
|Du - Dw| < |Dul|Dw| < §|Dui2 + 5|Dw;2,

following from the Cauchy—Schwarz and Cauchy inequalities (§B.2). Rear-
ranging, we conclude

(48) Iu] < Iw] (weA).
Since u € A, (47) follows from (48).
2. Now, conversely, suppose (47) holds. Fix any v € C(U) and write
i(r) :=Ifu+71v] (T €R).

Since u + 7v € A for each 7, the scalar function i(-) has a minimum at zero,

and thus p
/(0) =0 = —
7(0) ( d'r)’

provided this derivative exists. But

1
i(r) = / §|Du + 7Dv|? = (u+T1v)f dx
U

1 2
= / §|Du|2 + 7Du- Dv + 22—|Dv|2 — (u+7v)fdz.
U
Consequently
0=14(0)= / Du-Dv—vfdxr= /(—Au—f)vdsc.
U U

This identity is valid for each function v € C°(U) and so —Au = f in
U. O

Dirichlet’s principle is an instance of the calculus of variations applied
to Laplace’s equation. See Chapter 8 for more.
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2.3. HEAT EQUATION

Next we study the heat equation

(1) u —Au =0
and the nonhomogeneous heat equation

(2) ut — Au = f,

subject to appropriate initial and boundary conditions. Here ¢ > 0 and
z € U, where U C R” is open. The unknown is u : U x [0,00) — R, u =
u(x,t), and the Laplacian A is taken with respect to the spatial variables x =
(Z1,---,Tn): Au= Agu =3 1 | Uzz,. In (2) the function f : Ux[0,00) — R
is given.

A guiding principle is that any assertion about harmonic functions yields
an analogous (but more complicated) statement about solutions of the heat

equation. Accordingly our development will largely parallel the correspond-
ing theory for Laplace’s equation.

Physical interpretation. The heat equation, also known as the diffusion
equation, describes in typical applications the evolution in time of the density
u of some quantity such as heat, chemical concentration, etc. If V C U is
any smooth subregion, the rate of change of the total quantity within V
equals the negative of the net flux through oV

d

— udcc=—-/ F-vdS,
dt Jy oV

F being the flux density. Thus
(3) us = —divF,

as V was arbitrary. In many situations F is proportional to the gradient
of u, but points in the opposite direction (since the flow is from regions of
higher to lower concentration):

F=—-aDu (a>0).
Substituting into (3), we obtain the PDE
us = adiv(Du) = aAu,

which for a = 1 is the heat equation.

The heat equation appears as well in the study of Brownian motion.
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2.3.1. Fundamental solution.
a. Derivation of the fundamental solution.

As noted in §2.2.1 an important first step in studying any PDE is often
to come up with some specific solutions.

We observe that the heat equation involves one derivative with respect
to the time variable ¢, but two derivatives with respect to the space vari-
ables z; (i = 1,...,n). Consequently we see that if u solves (1), then so
does u(Ax, A\?t) for A € R. This scaling indicates the ratio ? (r = |z|) is
important for the heat equation and suggests that we search for a solution
of (1) having the form u(z,t) = v(’—"tz) = v(l%ﬁ) (t >0, z € R"), for some
function v as yet undetermined.

Although this approach eventually leads to what we want (see Problem
11), it is quicker to seek a solution u having the special structure

(@) w(z, t) = tlau(t%) (z€R", t>0),

where the constants «, 3 and the function v : R™ — R must be found. We
come to (4) if we look for a solution u of the heat equation invariant under
the dilation scaling

u(z,t) — Xu(Nz, At).

That is, we ask
u(z,t) = X*u(Nz, At)

for all A > 0, x € R™, ¢t > 0. Setting A = t~1, we derive (4) for v(y) :=
u(y, 1)-
Let us insert (4) into (1), and thereafter compute

(5) at™ @ y(y) + Bt~y . Du(y) + ¢ Av(y) = 0

for y := t~Az. In order to transform (5) into an expression involving the
variable y alone, we take 8 = % Then the terms with ¢ are identical, and
so (5) reduces to

1
(6) av+§y-Dv+Av=0.

We simplify further by guessing v to be radial; that is, v(y) = w(|y|) for
some w : R — R. Thereupon (6) becomes

n-— ’
w =0,

1 / 1t
aw+ —rw +w +
2 r
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forr=|y|,’ = %. Now if we set a = 7, this simplifies to read
1

n—1_ 7/\/
(r ’w)-i—2

(r"w) = 0.
Thus
n—1_ 1 1

r"lw +§r"w=a

for some constant a. Assuming lim, .., w, w' = 0, we conclude a = 0;
whence

But then for some constant b

(7) w=be 7.
lz2
Combining (4), (7) and our choices for o, 3, we conclude that twbge_ 7

solves the heat equation (1).
This computation motivates the following

DEFINITION. The function
_l=2
Mxﬂ:{@#WG“ (z €R, >0)

0 (x R, t<0)
is called the fundamental solution of the heat equation.

Notice that ® is singular at the point (0,0). We will sometimes write
®(z,t) = ®(|z|,t) to emphasize that the fundamental solution is radial in
the variable . The choice of the normalizing constant (47)~"/2 is dictated
by the following

LEMMA (Integral of fundamental solution). For each time t > 0,
/ ®(z,t)dx = 1.

Proof. We calculate
2

1 I
/nQ(x,t)d(F:(—liw—ﬂn—/z/ne it dx
1 2
_ 2]
gy /Rne dz

1 > 2
_ —_—— —%; ]
—ﬂ-n/QII/ e “idz;=1.
i=1

O

A different derivation of the fundamental solution of the heat equation
appears in §4.3.2.




2.3. HEAT EQUATION 47

b. Initial-value problem.

We now employ ® to fashion a solution to the initial-value (or Cauchy)
problem

8)

ug — Au=0 inR" x (0,00)
u=g onR"x {t=0}

Let us note the function (z,t) — ®(x,t) solves the heat equation away
from the singularity at (0,0), and thus so does (z,t) — ®(z — y, t) for each
fixed y € R™. Consequently the convolution

wat)= [ (= v dy

9) 1
- (4mt)n/2 /Rn e” 2 g(y)dy (reR", t>0)

should also be a solution.

THEOREM 1 (Solution of initial-value problem). Assume g € C(R™) N
L>®(R"™), and define u by (9). Then
(i) u € C®°(R" x (0,00)),

(i) ui(z,t) — Au(z,t) =0 (z € R", t>0),

and
(iii) lim u(z,t)= g(a:o) for each point z¥ € R™.
(.’L‘,t __}(1.0,0)
zelR™, >0

. 2
Proof. 1. Since the function 2;17-2—6_% is infinitely differentiable, with uni-

formly bounded derivatives of all orders, on R™ x [§,00) for each § > 0, we
see that u € C°°(R"™ x (0, 00)). Furthermore

w(z,1) — Aulz, t) = /Rn (8 — As®)(z — v, 8)]g(y) dy
=0 (z€R"t>0),

(10)

since ® itself solves the heat equation.

2. Fix 29 € R®, ¢ > 0. Choose § > 0 such that

(11) l9(y) —9(@") <e if |y—2® <6, yeR™
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Then if |z — 29| < g, we have, according to the lemma,
uwt) - 9a)| = | [ 9~ ,0lo0) - o)
<[ . #@-u000) - 9a)dy
B(z9,8)

+ / ®(z — y,t)|g(y) — 9(z°)| dy
Rr—B(29,5)
=1+ J

Now
Igs/ &(x —y,t)dy = ¢,
Rn

owing to (11) and the lemma. Furthermore, if [z — 2% < § and |y — 2| > §,
then 5 )
lv—2%| <ly—al+5 <ly—al +5ly—2°.

Thus |y — z| > %|y — 2°|. Consequently

J < 2llg]z / B(z - y,1) dy

R~ —B(z9,6)

-
< % / e dy
t"/2 JRn_B(20 5)

_20)2
S %/ e_]'y_l'e-t'l"dy
t"/2 JRe_B(20,5)

c [® _2 .
=m/ C_WTn_ dr — 0 ast—+0+
é

Hence if |z — 2°| < £ and ¢ > 0 is small enough, |u(z,t) — g(z°)| < 2. O

Remarks. (i) In view of Theorem 1 we sometimes write

&, — AP =0 inR" x (0,00)
® =6 onR"x{t=0},
0o denoting the Dirac measure on R" giving unit mass to the point 0.
(ii) Notice that if g is bounded, continuous, g > 0, g # 0, then
2

1 _z—y
u(x,t) = W/R"e % g(y)dy

is in fact positive for all points x € R™ and times ¢t > 0. We interpret this
observation by saying the heat equation forces infinite propagation speed
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for disturbances. If the initial temperature is nonnegative and is positive
somewhere, the temperature at any later time (no matter how small) is
everywhere positive. (We will learn in §2.4.3 that the wave equation in
contrast supports finite propagation speed for disturbances.) d

c. Nonhomogeneous problem.

Now let us turn our attention to the nonhomogeneous initial-value prob-
lem
(12) {ut—Au=f in R™ x (0, 00)

u=0 onR"x {t=0}

How can we produce a formula for the solution? If we recall the moti-
vation leading up to (9), we should note further that the mapping (z,t) —
®(x—y,t—s) is a solution of the heat equation (for given y € R, 0 < s < t).
Now for fixed s, the function

u = u(z,t;s) :/]Rn O(x —y,t —3s)f(y,s)dy

solves
(12,) {ut(o;s) — Au(;5) =0 in R™ x (s,00)

s u(;8) = f(-,s) on R™ x {t = s},
which is just an initial-value problem of the form (8), with the starting time
t = 0 replaced by t = s, and g replaced by f(-,s). Thus u(-;s) is certainly
not a solution of (12).

However Duhamel’s principle* asserts that we can build a solution of
(12) out of the solutions of (12,), by integrating with respect to s. The idea
is to consider

t
u(z,t) = / u(z,t;8)ds (zr €R", t>0).
0

Rewriting, we have

u(z, t)—/ /n (x —y,t —8)f(y, s)dyds
X 55 £y, ) dyds,

(13)

_/0 (an(t — s))"/2
forx e R", t > 0.

To confirm that formula (13) works, let us for simplicity assume f €
C%(R" x [0,00)) and f has compact support.

*Duhamel’s principle has wide applicability to linear ODE and PDE, and does not depend
on the specific structure of the heat equation. It yields, for example, the solution of the nonho-
mogeneous transport equation, obtained by different means in §2.1.2. We will invoke Duhamel’s
principle for the wave equation in §2.4.2.
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THEOREM 2 (Solution of nonhomogeneous problem). Define u by (13).
Then

(i) u€ CFR™ x (0,00)),

(11) ’U.t(il', t) - A'U.((]:,t) = f(xa t) (:IJ € Rn’ t> O);

and
(iii) lim  wu(x,t) =0 for each point z° € R™.
(z,)—(2°,0)
zelR™ t>0

Proof. 1. Since ® has a singularity at (0,0), we cannot directly justify
differentiating under the integral sign. We instead proceed somewhat as in
the proof of Theorem 1 in §2.2.1.

First we change variables, to write

w(z, t) = /0 t /Rn B(y,5)f(x — y.t — s) dyds.

As f € C3(R™ x [0,00)) has compact support and & = ®(y, s) is smooth
near s =t > 0, we compute

t
u(x, t) = /0 /Rn ®(y, s) fr(z — y,t — s) dyds
+/ ®(y,t) f(x —y,0)dy
R

and

0%u t 0? ..
6xi(9xj ((L‘,t) - A /R" Q(y’ S)mf(x - y7t - S) dyds (Z,] = la cee )n)'

Thus u;, D2u, and likewise u, Dyu, belong to C(R" x (0, 00)).

2. We then calculate
(14)

w(e )= due) = [ [ @s)liz — A=yt - 9] dyds
+ [ 2 nse=-n0)d
t
= / / <I>(y,6)[(—56~ — Ay f(x —y,t — s)] dyds
e JR® S
e d
+ /0 /Rn &y, 9)[(= 5, — Ay)flz —y,t - s)]dyds

+ /Rn By, ) (@ — ,0) dy.
=: Ie + Je + K'
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Now
£
(15)  |Jel < (I fell + 1D fllzoo) /0 /Rné(y,s)dydssec,

by the lemma. Integrating by parts, we also find
t 0
L= [ [ [ - 809 - vt - ) duds
£ n

4 / B(y,€)f(z -y, t — ) dy

(16) Re

—/ ®(y,t)f(x ~y,0)dy
]Rn

=/ Q(y,e)f(x—y,t—e)dy—K,
Rn
since ® solves the heat equation. Combining (14)-(16), we ascertain
u(z,t) — Au(z,t) = hII(l)/ ®(y,e)f(x —y,t —¢€)dy
E— ]Rn
= f(z,t) (z €R", t>0),

the limit as ¢ — 0 being computed as in the proof of Theorem 1. Finally
note [[u(-, )]z < ¢]fllz — 0. O

Remark. We can of course combine Theorems 1 and 2 to discover that

t
(10 wet) = [ Se-ute@)dy+ [ [ 0@yt - f.5)dyds
Rn 0 JR»
is, under the hypotheses on g and f as above, a solution of

18) w—Au=f inR" x (0,00)
( . u=g onR"x {t=0}.

2.3.2. Mean-value formula.

First we recall some useful notation from §A.2. Assume U C R" is open
and bounded, and fix a time T > 0.

DEFINITIONS.
(i) We define the parabolic cylinder

Ur .=U x (O,T].
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—————

- N

The region Up

(ii) The parabolic boundary of Ur is
I'p:= UT - Ur.

We interpret Ur as being the parabolic interior of U x [0,T)]: note care-
fully that Ur includes the top U x {¢ = T}. The parabolic boundary I'r
comprises the bottom and vertical sides of U x [0, T}, but not the top.

We want next to derive a kind of analogue to the mean-value property for
harmonic functions, as discussed in §2.2.2. There is no such simple formula.
However let us observe that for fixed = the spheres B(x, r) are level sets of
the fundamental solution ®(x —y) for Laplace’s equation. This suggests that
perhaps for fixed (z,t) the level sets of fundamental solution ®(z —y,t — s)
for the heat equation may be relevant.

DEFINITION. For fizxedz € R*, t € R, r > 0, we define
1
cp) +1
Blatr) = {(y’s) ER™ |5 <t, Bz —y,t—s)> ,.—n} |

This is a region in space-time, the boundary of which is a level set of
®(z—y,t—s). Note that the point (z,t) is at the center of the top. E(z,t;r)
is sometimes called a “heat ball”.

THEOREM 3 (A mean-value property for the heat equation). Let u €
C2(Ur) solve the heat equation. Then

1 |z — yl?
1 t) = — — dyd
(19) wet) = g [ w9 Gy duds
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(x,t)

E(x,t;r)

A “heat ball”
for each E(z,t;r) C Ur.

Formula (19) is a sort of analogue for the heat equation of the mean-
value formulas for Laplace’s equation. Observe that the right hand side
involves only u(y, s) for times s < ¢t. This is reasonable, as the value u(z,t)
should not depend upon future times.

Proof. We may as well assume upon translating the space and time coor-
dinates that £ = 0 and ¢ = 0. Write E(r) = E(0,0;r) and set

¢(r) : // |3!|2 dyds
= // u(ry,r s) |y|2 dyds.

in2 Iyl2
¢ (r) = o) 2 Z Uy Yi~ g + 2rus—— dyds

2 2
=r"+1/ Zuyzyzlyl +2usly| dyds

(20)

We compute

E(T) i=1
=: A+ B.
Also, let us introduce the useful function
IyI2
(21) Y= -———log( 4ms) + =— +nlogr,

and observe ¥ = 0 on OE(r), since ®(y, —s) = r~" on OE(r). We utilize
(21) to write

1 n
~ / /E(r) dus 3 yithy, dyds

i=1

1 n
=~ //E( )4nusw +4Zusyiyiw dyds;
r i=1
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there is no boundary term since ¢ = 0 on dE(r). Integrating by parts with
respect to s, we discover

1 n
B= e // —4nugy + 4Zuyiy,-7,bs dyds
E(r) i—1
1 - n_ly?
E( ) =1
1 2n
= —4 - — yidyds — A
e

Consequently, since u solves the heat equation,

¢ (r)=A+B

1 // M —
= — —4nAuy) — — Y uy,y; dyds
pn+l E(r) s ; y: Yi OY
n
1 2n
= Ay, Yy — — Uy, y; dyd
Z pnt+l /L(T) nuyz#’% s Uy, Y; aYas

=0, according to (21).

Thus ¢ is constant, and therefore

2
o(r) = hm ¢(t) = u(0,0) ( hm // h:l dyds) = 4u(0,0),
E(t)
as 2 2
// lyl* W 4y as _// ly* W gys — 4.
E(t) s? E(1) s?
We omit the details of this last computation. O

2.3.3. Properties of solutions.
a. Strong maximum principle, uniqueness.

First we employ the mean-value property to give a quick proof of the
strong maximum principle.

THEOREM 4 (Strong maximum principle for the heat equation). Assume
u € C3(Ur) N C(Ur) solves the heat equation in Ur.
(i) Then

max U = max u.
Ur I'r
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Rn

Strong maximum principle for the heat equation

(ii) Furthermore, if U is connected and there exists a point (zo,to) € Ur
such that
u(zo, to) = maxu,
Ur

then
u is constant in Uy,.

Assertion (i) is the mazimum principle for the heat equation and (ii)
is the strong mazximum principle. Similar assertions are valid with “min”
replacing “max”.

Remark. So if u attains its mazimum (or minimum) at an interior point,
then u is constant at all earlier times. This accords with our strong intuitive
interpretation of the variable ¢ as denoting time: the solution will be constant
on the time interval [0, #o] provided the initial and boundary conditions are
constant. However, the solution may change at times ¢ > fg, provided the
boundary conditions alter after ty. The solution will however not respond
to changes in boundary conditions until these changes happen.

Take note that whereas all this is obvious on intuitive, physical grounds,
such insights do not constitute a proof. The task is to deduce such behavior
from the PDE. O

Proof. 1. Suppose there exists a point (xg,t9) € Ur with u(zo, o) = M :=
maxg,. u. Then for all sufficiently small r > 0, E(xq,to;7) C Ur; and we
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employ the mean-value property to deduce

4rm (t(] — 3)

|zo — y|2
dyds.
//li(zo,to,r) t0 - 3)2

Equality holds only if u is identically equal to M within E(xg,tg;r). Con-
sequently

1 2
M—_"U(xo,to):—//E( s 20V gds <
20,0,1‘

since

u(y,s) =M for all (y,s) € E(zo, to;7).

Draw any line segment L in Ur connecting (zg, to) with some other point
(yo, s0) € Ur, with so < to. Consider

ro := min{s > sg | u(z,t) = M for all points (z,t) € L, s <t < tp}.

Since u is continuous, the minimum is attained. Assume rg > sg. Then
u(20,70) = M for some point (29,79) on LNUr and so u = M on E(zg,70;7)
for all sufficiently small r > 0. Since E(zg,r¢;7) contains LN{rg —o <t <
ro} for some small o > 0, we have a contradiction. Thus g = sg, and hence
w=M on L.

2. Now fix any point £ € U and any time 0 <t < 3. There exist points
{zo,x1,...,Zm = x} such that the line segments in R" connecting z;_; to z;
liein U for ¢ = 1,...,m. (This follows since the set of points in U which can
be so connected to xg by a polygonal path is nonempty, open and relatively
closed in U.) Select times tp > t; > --- > ¢, = ¢t. Then the line segments in
R™*! connecting (z;-1,t-1) to (z;,%) (i = 1,...,m) lie in Ur. According
to Step 1, u = M on each such segment and so u(z,t) = M. a

Remark. The strong maximum principle implies that if U is connected and
u € C2(Ur) N C(Ur) satisfies

—Au=0 inUp
u=0 ondU x [0,T]
u=g onU x {t=0}

where g > 0, then u is positive everywhere within Uz if g is positive some-
where on U. This is another illustration of infinite propagation speed for
disturbances. a

An important application of the maximum principle is the following
uniqueness assertion.
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THEOREM 5 (Uniqueness on bounded domains). Let g € C(I'r), f €
C(Ur). Then there ezists at most one solution u € C¥(Ur) N C(Ur) of the
initial /boundary-value problem

(22) {ut—Au=f in Ur

u=g onlr.

Proof. If u and % are two solutions of (22), apply Theorem 4 to w :=
+(u — ). 0

We next extend our uniqueness assertion to the Cauchy problem, that
is, the initial value problem for U = R™. As we are no longer on a bounded
region, we must introduce some control on the behavior of solutions for large
|-

THEOREM 6 (Maximum principle for the Cauchy problem). Suppose
u € C3R" x (0,T)) NC(R"™ x [0,T]) solves

(23) {ut—Auzo in R™ x (0, T)

u=g onR"x {t=0}
and satisfies the growth estimate

(24) u(z,t) < A (zeR", 0<t<T)
for constants A,a > 0. Then

sup u =supg.

R x[0,T] R~
Proof. 1. First assume
(25) 40T < 1;
in which case
(26) 4a(T +¢) < 1

for some € > 0. Fix y € R?, u > 0, and define

aeyl2
W@ t) = ulet) - E“_ T /Qd—"ﬁ TH-9 (g €R", t > 0).
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A direct calculation (cf. §2.3.1) shows
vy —Av=0 inR" x (0,T].

Fix 7 > 0 and set U := B%y,r), Ur = B%(y,r) x (0,T]. Then according to
Theorem 4,

(27) max v = maxuv.
UT I'r

2. Now if z € R",

z—y|2
v(z,0) = u(z,0) — We@
< u(z,0) = g(x);

and if |z —y| =7r,0< ¢t <T, then

(28)

2

” T
v(z,t) = u(z,t) - (T te- t)n/2em
< Ae?ll® — s T by (24)
- (T+5_t)n/2
2
a( |+ )2 ___,J— F €
< Aellyltr (T+E)n/2ezzm.

Now according to (26), Z’('T1_+s5 = a+y for some v > 0. Thus we may continue
the calculation above to find

(29) v(z,t) < AW _ pid(a + )2+ < supg,
Rn

for r selected sufficiently large. Thus (27)—(29) imply
v(y,t) <supg
Rn

for all y € R®, 0 <t < T, provided (25) is valid. Let  — 0.

3. In the general case that (25) fails, we repeatedly apply the result
above on the time intervals [0, 71, [T1, 271, ], etc., for Ty = 8%. a

THEOREM 7 (Uniqueness for Cauchy problem). Let g € C(R"), f €
C(R"™ x [0,T]). Then there exists at most one solution u € CZ(R" x (0,T}) N
C(R™ x [0,T)) of the initial-value problem

{ut—Afu:f in R* x (0,T)

(30) u=g onR"x {t=0}

satisfying the growth estimate
(31) lu(z,t)| < Al (zeR*, 0<t<T)

for constants A, a > 0.
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Proof. If u and % both satisfy (30), (31), we apply Theorem 6 to w :=
+(u — ). 0O

Remark. There are in fact infinitely many solutions of

(32) up—Au=0 inR"*x(0,T)
u=0 onR"”x {t=0}

see for instance John [J, Chapter 7]. Each of the solutions besides u = 0
grows very rapidly as |z| — oo.

There is an interesting point here: although u = 0 is certainly the “physi-
cally correct” solution of (32), this initial-value problem in fact admits other,
“nonphysical” solutions. Theorem 7 provides a criterion which excludes the
“wrong” solutions. We will encounter somewhat analogous situations in our
study of Hamilton—Jacobi equations and conservation laws, in Chapters 3,
10 and 11. 0O

b. Regularity.

We next demonstrate that solutions of the heat equation are automati-
cally smooth.

THEOREM 8 (Smoothness). Suppose u € C2(Ur) solves the heat equa-

tion in Ur. Then
u € COO(UT)

This regularity assertion is valid even if u attains nonsmooth boundary
values on I'r.

Proof. 1. Recall from §A.2 that we write
Clz,t;r) ={(y,9) ||z —yl<r, t -1 <s <t}

to denote the closed circular cylinder of radius r, height 72, and top center
point (z,t).

Fix (zg,t9) € Ur and choose r > 0 so small that C := C(zo, to;7) C Ur.
Define also the smaller cylinders C' := C(xq,to; 3r), C” := C(zo, to; )
which have the same top center point (g, to).

Choose a smooth cutoff function ¢ = {(z,t) such that

{03(51, (=1lonC,
¢ = 0 near the parabolic boundary of C.

Extend ¢ =0 in (R” x [0,t0]) — C.
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cll

< =

2. Assume temporarily that u € C*°(Ur) and set

v(z,t) .= {(z,)u(z,t) (z€R™, 0<t<ty).

Then
v = Cug + Gu, Av = (Au+ 2D(¢ - Du + uA(.
Consequently
(33) v=0 onR"x {t=0},
and
(34) vy — Av = Gu — 2D( - Du —ulAl =: |

in R™ x (0,%9). Now set
t
w@t)= [ [ #@-ut-9)]09)dds
0 &L
According to Theorem 2
s AF_F i
(35) {'Ut A f in R"® x (0, t())
Since |v|, |0] < A for some constant A, Theorem 7 implies v = ¥; that is,
t
(36) vat)= [ [ #e-yt- T dyds
0 JRr
Now suppose (z,t) € C”. As ( =0 off the cylinder C, (34) and (36) imply

ue,0)= [ /C Bz — y,t — 8)[(Ca(tr 5) — AL(y, 8))u(y, 5)
— 2D{(y, s) - Du(y, s)] dyds.
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Note in this expression that the expression in the square brackets vanishes
in some region near the singularity of ®. Integrate the last term by parts:

uwt) = [[ 196 =1t = 90,5 + A,9)
+2Dy®(z —y,t — s) - D((y, s)|u(y, s) dyds.

(37)

We have proved this formula assuming u € C®°. If u satisfies only the
hypotheses of the theorem, we derive (37) with u® = 7, * u replacing u, 7.
being the standard mollifier in the variables x and ¢, and let ¢ — 0.

3. Formula (37) has the form

(38) u(z, t) = / /C K(z,t,y,s)u(y,s) dyds ((z,¢) € C"),

where
K(z,t,y,s) =0 for all points (y,s) € C’,

since { =1 on C'. Note also K is smooth on C — C’. In view of expression
(38), we see u is C™ within C” = C(xy, to; %r) O

c. Local estimates for solutions of the heat equation.

Next we record some estimates on the derivatives of solutions to the
heat equation, paying attention to the differences between derivatives with
respect to z; (i =1,...,n) and with respect to t.

THEOREM 9 (Estimates on derivatives). There exists for each pair of
integers k,1 = 0,1, ..., a constant Cy; such that

C
k !l Kkl
C(ﬂ?’f/z) | D5 Dyu| < m||U||L1(C(x,t;r))
for all cylinders C(z,t;r/2) C C(z,t;r) C Ur, and all solutions u of the
heat equation in Ur.

Proof. 1. Fix some point in Ur. Upon shifting the coordinates, we may
as well assume the point is (0,0). Suppose first that the cylinder C(1) :=
C(0,0;1) Lies in Ur. Let C’(%) = C(0,0;%). Then, as in the proof of
Theorem 8,

ulxr = T S S S T l
(,1) //C(I)K( 9 uly,s)dyds  ((z,t) € O(3))
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for some smooth function K. Consequently

Dk Dhu(z, £)] < / /C  IDIDEK (e, .5l dyds

< Crillullzrcqy

(39)

for some constant Cl;.

2. Now suppose the cylinder C(r) := C(0,0;7) lies in Up. Let C(r/2) =
C(0,0;7/2). We rescale by defining

v(z,t) = u(rz,r%t).
Then v; — Av = 0 in the cylinder C(1). According to (39),
|DiDju(z,t)| < Cuillvllicqy ((z.6) € C(3))-

But DEDlv(z,t) = r#+*DEDlu(rz,r2t) and ||vllpr ) = mrllullice):
Therefore

k 1l kl
él(qra./};) |D;Du| < m”“”Ll(C(T))'

a

Remark. If u solves the heat equation within Ur, then for each fixed time
0 < t < T, the mapping = — u(z,t) is analytic. (See Mikhailov [M].)
However the mapping ¢ — u(z,t) is not in general analytic. a

2.3.4. Energy methods.
a. Uniqueness.

Let us investigate again the initial/boundary-value problem

u—Au=f inUrp
(40) { u=4g onFT.

We earlier invoked the maximum principle to show uniqueness, and
now—by analogy with §2.2.5—provide an alternative argument based upon
integration by parts. We assume as usual that U C R is open, bounded
and that OU is C'. The terminal time T > 0 is given.

THEOREM 10 (Uniqueness). There ezists at most one solution u
€ C3(Ur) of (40).
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Proof. 1. If 4 is another solution, w := u — @ solves

w; —Aw =0 in Ur
(41) { w=0 onlIyp.
2. Set
e(t) = / Wiz, t)dz (0<t<T).
U
Then
, . d
e(t) = Q/watdx (— E)
22/ wAw dzx
U
= —2/ | Dw|%dz < 0,
U
and so
e(t)<e(0)=0 (0<t<T).
Consequently w = u — @ = 0 in Up. a

Observe that the foregoing is a time-dependent variant of the proof of
Theorem 16 in §2.2.5.

b. Backwards uniqueness.

A rather more subtle question concerns uniqueness backwards in time
for the heat equation. For this, suppose u and % are both smooth solutions
of the heat equation in Up, with the same boundary conditions on 8U:

uy—Au=0 in Ur

(42) { u=g¢g on0U x [0,T],
’fl,t ~At=0 in UT

(43) { &=g onodU x [0,T],

for some function g. Note carefully that we are not supposing u = % at time
t=0.
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THEOREM 11 (Backwards uniqueness). Suppose u,ii € C*(Ur) solve
(42), (43). If
wz,T) =u(z,T) (zel),

then
u=a within Up.

In other words, if two temperature distributions on U agree at some time
T > 0, and have had the same boundary values for times 0 < ¢t < T, then
these temperatures must have been identically equal within U at all earlier
times. This is not at all obvious.

Proof. 1. Write w := u — 4 and, as in the proof of Theorem 10, set

e(t) :=/Uw2(:c,t)dm (0<t<T).

As before
. 2 d

(44) é(t) = -2 | |Dw|“dz =—].

U dt
Furthermore

é(t) = —4/ Dw - Dwi dzx
U

(45) = 4/ Aww, dz

U

=4/U(Aw)2d:c by (41).

Now since w = 0 on 9U,

/U|Dw|2dx=—/UwAwdo:
(o) ()"
Thus (44) and (45) imply
(e()? = 4 ( / |Dw|2dm)2
( 2da:) ( (Aw)zdx)

= e(t)é(t)

IA
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Hence
(46) E(t)e(t) > (e(t))? (0<t<T).

2. Now if e(t) = 0 for all 0 < ¢t < T, we are done. Otherwise there exists
an interval [t1,t2] C [0, T, with

(47) e(t) >0 fort; <t<ty, e(tz) =0.
3. Now write
(48) f(t) :=loge(t) (t1 <t<ts).

Then

e
)=S0 - S5 20 by ()

and so f is convex on the interval (t,t3). Consequently if 0 < 7 < 1,
t1 <t < to, we have

f(A=7)t1 +7t) < (1= 7)f(t2) + 7 (2)-
Recalling (48), we deduce
e((1 = 7)t; + 7t) < e(t1)* " Te(t)7,

and so
0<e((1—7)t1 +7t2) <e(t1) Te(ts)” (0<7<1).

But in view of (47) this inequality implies e(¢) = 0 for all times t; <t < t,,
a contradiction. a

2.4. WAVE EQUATION

In this section we investigate the wave equation
(1) uy — Au=0
and the nonhomogeneous wave equation

(2) uy — A = f,

subject to appropriate initial and boundary conditions. Here ¢ > 0 and
xz € U, where U C R" is open. The unknown is u : U x [0,00) — R,
u = u(x, t), and the Laplacian A is taken with respect to the spatial variables
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z = (z1,...,2n). In (2) the function f : U x[0,00) — R is given. A common
abbreviation is to write
Ou = uy — Au.

We shall discover that solutions of the wave equation behave quite differ-
ently than solutions of Laplace’s equation or the heat equation. For example,
these solutions are generally not C°°, exhibit finite speed of propagation, etc.

Physical interpretation. The wave equation is a simplified model for a
vibrating string (n = 1), membrane (n = 2), or elastic solid (n = 3). In
these physical interpretations u(z,t) represents the displacement in some
direction of the point = at time ¢ > 0.

Let V represent any smooth subregion of U. The acceleration within V

is then 2
E/Vudxz/‘;uttdx

and the net contact force is

—/ F-vdS,
oV

where F denotes the force acting on V through 0V and the mass density
is taken to be unity. Newton’s law asserts the mass times the acceleration

equals the net force:
/ uttdx= —/ F.vdS.
| % ov

This identity obtains for each subregion V and so
uy = —divF.
For elastic bodies, F is a function of the displacement gradient Du; whence
ug + divF(Du) = 0.
For small Du, the linearization F(Du) ~ —aDu is often appropriate; and so
Uy —aldu = 0.

This is the wave equation if a = 1. O

This physical interpretation strongly suggests it will be mathematically
appropriate to specify fwo initial conditions, on the displacement u and the
velocity ug, at time £ = 0.
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2.4.1. Solution by spherical means.

We began §§2.2.1 and 2.3.1 by searching for certain scaling invariant
solutions of Laplace’s equation and the heat equation. For the wave equation
however we will instead present the (reasonably) elegant method of solving
(1) first for n = 1 directly and then for n > 2 by the method of spherical

means.
a. Solution for n = 1, d’Alembert’s formula.

We first focus our attention on the initial-value problem for the one-
dimensional wave equation in all of R:

3) { U — Uzz = 0 in R x (0, 00)

u=g, uu=h onRx {t=0},

where g, h are given. We desire to derive a formula for u in terms of g and

h.
Let us first note the PDE in (3) can be “factored”, to read

o (2+2)(2-2)umsuum=o
Write
(5) v(z,t) = (% - 68_95) u(z, t).

Then (4) says
v(z,t) +vz(z,t) =0 (z€R, t>0).

This is a transport equation with constant coefficients. Applying formula
(3) from §2.1.1 (with n =1, b= 1), we find
(6) v(z,t) = a(z —t)
for a(z) := v(z,0). Combining now (4)—(6), we obtain
u(z,t) — ug(z,t) = a(z —t) in R x (0,00).

This is a nonhomogeneous transport equation; and so formula (5) from §2.1.2
(withn =1, b= -1, f(z,t) = a(z — t)) implies

u(z,t) = /ta(m+ (t —s) —s)ds + b(z + t)
(7) ° T4t

- %/H a(y) dy + bz + 1),
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where we have b(z) := u(z, 0).

We lastly invoke the initial conditions in (3) to compute a and b. The
first initial condition in (3) gives

b(z) = g(z) (z€R);
whereas the second initial condition and (5) imply
a(z) = v(z,0) = u(x,0) — uz(z,0) = h(z) — ¢'(z) (x €R).

Our substituting into (7) now yields

T+t
we)=3 [ ) -dG)dy+oa+ ),

Hence

1 1 [+
® @t =gle+rae-0+; [ hudy ek t20)

This is d’Alembert’s formula.

We have derived formula (8) assuming u is a (sufficiently smooth) solu-
tion of (3). We need to check that this really is a solution.

THEOREM 1 (Solution of wave equation, n = 1). Assume g € C?(R),
h € C}(R), and define u by d’Alembert’s formula (8). Then

(i) u e C?*(R™ x [0, 00)),
(i) ug —uzz =0 in R x (0,00),

and
iii lim  u(z,t)=g(z%), lim wu(z,t) = h(a"
(1) (z,t)—(°,0) (&) =9(z) (z,t)—(z°,0) () =)
>0 >0
for each point z° € R.

The proof is a straightforward calculation.

Remarks. (i) In view of (8), our solution u has the form
u(z,t) = Flz +t) + G(x - t)

for appropriate functions F and G. Conversely any function of this form
solves uy —uz, = 0. Hence the general solution of the one-dimensional wave
equation is a sum of the general solution of u; — u; = 0 and the general
solution of u; + uy = 0. This is a consequence of the factorization (4).
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(ii) We see from (8) that if g € C* and h € C*~1, then u € C¥, but is not
in general smoother. Thus the wave equation does not cause instantaneous
smoothing of the initial data, as does the heat equation. a

A reflection method. To illustrate a further application of d’Alembert’s
formula, let us next consider this initial/boundary-value problem on the
half-line R, = {z > 0}:

9) u=g, wu=h onRy x {t=0}
u=0 on {z =0} x (0,00),

where g, h are given, with g(0) = h(0) =
We convert (9) into the form (3) by extending u, g, h to all of R by odd
reflection. That is, we set

_ [ u(=,t) (x>0,t>0)
WUz, ) := { —u(=z,t) (<0, t>0),
[ 9= (z>0)
o) = { —g(-z) (z<0),
. h(z) (z >0)
@)= { “h(-z) (z<0).
Then (9) becomes
{attzau in R x (0, 00)
=g, is=h onRx {t=0}

Hence d’Alembert’s formula (8) implies

41

ﬁ(:c,t)—i[ gz+t)+g(z—t)] + ;/m_t h(y) dy.

[y

Recalling the definitions of 4, g, h above, we can transform this expression
to read for x > 0, ¢t > 0:

Llg (x+t)+g(x—t]+2f”~”+t (y)dy ifz>t>0

(10) u(z,t) = { ot
slo(z +1¢) - o) +3 [5 hy)dy f0<z<t.

If h = 0, we can understand formula (10) as saying that an initial dis-
placement g splits into two parts, one moving to the right with speed one
and the other to the left with speed one. The latter then reflects off the
point £ = 0, where the vibrating string is held fixed. a
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b. Spherical means.

Now suppose n > 2, m > 2, and u € C™(R"™ x [0, 00)) solves the initial-
value problem

ugp —Au=0 in R" x (0,00
(11) {“ (0,00)

u=g, uu=h onR"x{t=0}

We intend to derive an explicit formula for u in terms of g, h. The plan
will be to study first the average of u over certain spheres. These averages,
taken as functions of the time ¢ and the radius r, turn out to solve the
Euler—Poisson-Darboux equation, a PDE which we can for odd n convert
into the ordinary one-dimensional wave equation. Applying d’Alembert’s
formula, or more precisely its variant (10), eventually leads us to a formula
for the solution.

Notation. (i) Let z € R, ¢t > 0, r > 0. Define

(12) Uint)=f  uly,8)dS()
8B(z,r)
the average of u(-,t) over the sphere 0B(z,r).
(ii) Similarly,

Glz;r) = faB( o(y) dS(y)
(13) o
H(z;r) = faB( r)h(y) dS(y).

For fixed z, we hereafter regard U as a function of r and ¢, and discover
a partial differential equation U solves:

LEMMA 1 (Euler-Poisson-Darboux equation). Fiz z € R", and let u
satisfy (11). Then U € C™(R; x [0,00)) and

(14) { Up — Upr — 22U, =0 in Ry x (0,00)

U=G, Uy=H onRy x{t=0}.

The partial differential equation in (14) is the Fuler—Poisson-Darbouz
equation. (Note that the term U, + "T_IUT is the radial part of the Laplacian
A in polar coordinates.)
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Proof. 1. As in the proof of Theorem 2 in §2.2.2 we compute for r > 0

(15) Ur(a:;r,t)zz][ Auly,t) dy.
n B(z,r)

From this equality we deduce lim,_,o+ Ur(z;7,t) = 0. We next differentiate
(15), to discover after some computations that

(16) Upr(z;T,t) = ]l AudS + (l — 1) ][B Audy.

&B(z,r) n (z,r)

Thus lim, g+ Upr(z;7,t) = L Au(z,t). Using formula (16) we can similarly
compute Uy, etc., and so verify that U € C™ (R4 x [0, 00)).

2. Continuing the calculation above, we see from (15) that

n

1 1 / p
= na(n) 1 Jppa

U, = 1][ ug dy by (11)
B{z,r)

Thus

’f‘n_lUlp = —i—-/ Ut dy,
nao(n) Jpz,r

and so

1
Ut dS
na(n) Jop(,r)

(,,.n—l Ur)r =

= rn—lf Ut dS = anlUtt.
0B(z,r)

c. Solution for n = 3,2, Kirchhoff’s and Poisson’s formulas.

The overall plan in the ensuing subsections will be to transform the
Euler-Poisson-Darboux equation (14) into the usual one-dimensional wave
equation. As the full procedure is rather complicated, we pause here to
handle the simpler cases n = 3,2, in that order.

Solution for n = 3. Let us therefore hereafter take n = 3, and suppose
u € C%(R3 x [0,00)) solves the initial-value problem (11). We recall the
definitions (12), (13) of U, G, H, and then set

(17) U:=rU,
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(18) G :=rG, H :=rH.

We now assert that U solves

Uit —Upr =0 inRy x (0,00)
(19) U=G, Uy=H onRy x{t=0}
U=0 on {r=0}x(0,00).
Indeed

Uy = rUs
—r [U,., + %Ur] by (14), with n = 3

= TU’I”I’ + 2U = (U + rUr)r
= [77'7'-
Applying formula (10) to (19), we find for 0 <r < ¢
- 1 -~ - 1 [t .
(20) U(z;r,t) = -2-[G(7‘+t) -Gt —-r)+ 3 H(y) dy.
—r+t

Since (12) implies u(z,t) = lim,_o+ U(x;r,t), we conclude from (17), (18),
(20) that

u(z,t) = lim ___U(a:;r, )
r—0+t r
. |G+ =Gt—1) | 1 /‘+" :
- Tl_l)r51+ 2r + 2r Ji» H(y) dy
=G'(t) + H(¢).
Owing then to (13), we deduce
a
(21) u(z,t) = — t][ gdsS +t][ hdsS.
ot 8B(z,t) 8B(z,t)
But
f. owdsw) =4 gl ts)dsiy
dB(z,t) 0B(0,1)
and so

d
— . y — x
= %BB(x,t)Dg(y) ( ; ) dS(y).
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Returning to (21), we therefore conclude

(22) ula,t) = ][BB( )+ + Do) (y=2)dSG) (€ RS, ¢>0).
This is Kirchhoff’s formula for the solution of the initial-value problem (11)
in three dimensions.

Solution for n = 2. No transformation like (17) works to convert the
Euler—Poisson—Darboux equation into the one-dimensional wave equation
when n = 2. Instead we will take the initial-value problem (11) for n = 2
and simply regard it as a problem for n = 3, in which the third spatial
variable x3 does not appear.

Indeed, assuming u € C%(R? x [0, 00)) solves (11) for n = 2, let us write
(23) u(xy, T2, x3,t) := u(xy, T2, t).

Then (11) implies

(24) wur — Au=0 in RSX(O,OO)
=g, 44 =h onR3x {t=0},

for

G(x1, T2, 23) := g(1,22), h(z1,z2,23) := h(Z1,T2)-
If we write £ = (21,22) € R? and Z = (x1,72,0) € R3, then (24) and
Kirchhoff’s formula (in the form (21)) imply

u(x,t) = u(Z,t)

2 _ -
(25) = _0_ t][ gdS +t/ hdS,
ot 8B(z,1) 8B(z.1)

where B(Z,t) denotes the ball in R3 with center z, radius ¢ > 0, and dS
denotes two-dimensional surface measure on dB(Z,t). We simplify (25) by
observing

_ 1 _
§dS = — §ds
][ aé(f,t)g 4nt? Jop(z,0)

2
= 1 + |Dy(y)[?)?dy,
s B(m,t)g(y)( |Dy(y)|*) ™/ “dy

where y(y) = (2 — |y — z|*)/? fory € B(x,t). The factor “2” enters
since OB(Z,t) consists of two hemispheres. Observe that (1 + |Dy|?)Y/2 =
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t(t? — |y — z|>)~'/2. Therefore

I | 9(y)
gdS = — d
][BB(:E,t) 21t JB(z,) (82 — |y — z|?)1/2 Y

t 9(y)
= — dy.
2][B(x,t) (t2 — |y — x|?)1/2 Y

Consequently formula (25) becomes

10 (9 9(y)
===t
Uzt =35 ( ][B(z,t) @—ly—zp 7

(26)
L2 ][ h(y) dy
2/ By (2 —ly—z|2)1/2
Bt ) (@ + t2)
tz
tzf 9\y d =t][ _g&tiz) dz,
B(z) (2 — |y — z|?)1/2 Y B(o,1) (1 —|2]%)1/2
and so

0 9(y)
ot (t2][ B(at) (82 — |y — z[?)1/2 dy)

g9(z + t2) f Dg(z +tz) - z
= - dz+t dz
][B(O,l) (1 |2[%)1/2 B, (1—[2[2)}/2

) 9(y) ][ Dg(y) - (y — x)
][B(z,t) @ —ly—z2)2 " B(zyt) (82 — |y — z[?)1/2 Y

Hence we can rewrite (26) and obtain the relation

(27)

1 tg(y) + t2h(y) + tDg(y) - (y — x)
wet)=5f B (& — [y —aP)1/2 ;

for z € R?, ¢ > 0. This is Poisson’s formula for the solution of the initial-
value problem (11) in two dimensions.

This trick of solving the problem for n = 3 first and then dropping to
n = 2 is the method of descent.

d. Solution for odd n.

In this subsection we solve the Euler-Poisson—Darboux PDE for odd
n > 3. We first record some technical facts.



2.4. WAVE EQUATION 75

LEMMA 2 (Some useful identities). Let ¢ : R — R be C**1. Then for
k=1,2,...:

0 (;:)(igr L) = ()" ()

(i) (&) (P2 1g(r) = YTy Brritige(r),
where the constants BJ’?(J = O, ...,k —1) are independent of ¢.

Furthermore,
(iii) ﬂ§=1-3-5 ----- (2k — 1).

The proof by induction is left as an exercise.

Now assume
n > 3 is an odd integer

and set
n=2k+1 (k>1).

Henceforth suppose u € C**1(R™ x [0, 00)) solves the initial-value prob-
lem (11). Then the function U defined by (12) is C*+1.

Notation. We write

O(r,t) = (L 2) 7 (-2 1U(a; 7, 1))

(28) G(r) := (%%)k L r*1G () (r>0,t>0)
E[(r) = (%%)k—l (r%_lH(x; ).

Then

(29) U(r,0) = G(r), U(r,0) = H(r).

Next we combine Lemma 1 and the identities provided by Lemma 2 to
demonstrate that the transformation (28) of U into U in effect converts the
Euler—Poisson-Darboux equation into the wave equation.

LEMMA 3 (U solves the one-dimensional wave equation). We have

Ut — Urr = ) n R+ X (0, OO)
G l{ =H OnR+X{t=O}
U=0 on{r=0}x(0,00).
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Proof. If r > 0,

(r?*U,) by Lemma 2,(i)

r

k-1
) P21 U, + 2k 72U

k-l n—1
[r2k_1 (Uw + ———Ur)] (n=2k+1)

Plo Plo o Pl

k—1 )
) (r*-1Uy) = Uy,

the next-to-last equality holding according to (14). Using Lemma 2,(ii) we
conclude as well that U = 0 on {r = 0}. O

In view of Lemma 3, (29), and formula (10), we conclude for 0 < r < ¢
that

~ 1. -~ - 1 [ttr .
(30) U(r,t) = E[G(r-i-t) —G(t—-r))+ 2 H(y)dy
t—r
for all r € R, t > 0. But recall u(z,t) = lim,_oU(z;r,t). Furthermore
Lemma 2,(ii) asserts

o= (12) " - w@ing)
DY\ or 4 T
k-1
1 P
_ k,j+1 9"
- : /8]7‘] arj U(mir’t))
j=0
and so .
l% Uég,r ) = }En U(z;r,t) = u(z,t).
Thus (30) implies
_ 1 Gt+r)—Gt—-r) 1 [ .
1~ .
= —[G'(t) + H(t)]
Bo
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Finally then, since n = 2k + 1, (30) and Lemma 2,(iii) yield this repre-
sentation formula:

( (o) = ;[(_)(;%) Gngammyw)
(31) \ + (%%) (tn 2faB(x,t;l dS'>]

\ wherenis oddandy,=1-3-5--.-- (n—2),
for x € R", t > 0.

We note that y3 = 1, and so (31) agrees for n = 3 with (21) and thus
with Kirchhoff’s formula (22).

It remains to check that formula (31) really provides a solution of (11).

THEOREM 2 (Solution of wave equation in odd dimensions). Assume n
is an odd integer, n > 3, and suppose also g € C™T1(R"), h € C™(R™), for
m = 1. Define u by (31). Then

(i) u € C*(R™ x [0,00)),
(ll) Ut — Au=0 in R"™ x (0,00),
and
(iii) hmO u(z,t) = g(z0), hm0 us(z,t) = h(z®)
S e
for each point z° € R™.

Proof. 1. Suppose first g = 0; so that

(32) we=2(15)  EHE).

Then Lemma 2,(i) lets us compute

n—=1
(1)

From the calculation in the proof of Theorem 2 in §2.2.2, we see as well that

B(x,t)

) ’ ( Ahdy)
B(z,t)
1 /1d\*F 1 /
-~ (=% z AhdS | .
na(n)yn (t dt) (t 8B(z,t) )

Consequently
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On the other hand,

AH(z;t) = A; h(z +y) dS(y)
BB(0,t)
_ ]l AhdS,
8B (x,t)

Consequently (32) and the calculations above imply u; = Awu in R™ % (0, c0).
A similar computation works if h = 0.

2. We leave it as an exercise to confirm, using Lemma 2,(ii)-(iii}, that u
takes on the correct initial conditions. O

Remarks. (i) Notice that to compute u(z,t) we need only have information
on g, h and their derivatives on the sphere 0B(z,t), and not on the entire
ball B(z,t).

(ii) Comparing formula (31) with d’Alembert’s formula (8) (n = 1), we
observe that the latter does not involve the derivatives of g. This suggests
that for n > 1, a solution of the wave equation (11) need not for times ¢ > 0
be as smooth as its initial value g: irregularities in ¢ may focus at times
t > 0, thereby causing u to be less regular. (We will see later in §2.4.3 that
the “energy norm” of u does not deteriorate for ¢ > 0.)

(iii) Once again (as in the case n = 1) we see the phenomenon of finite
propagation speed of the initial disturbance.

(iv) A completely different derivation of formula (31) (using the heat
equation!) is in §4.3.2. a

e. Solution for even n.

Assume now
n is an even integer.

Suppose u is a C™ solution of (11), m = %2 We want to fashion a rep-
resentation formula like (31) for u. The trick, as above for n = 2, is to
note

(33) u(zxy,...,Tne1,t) ;= u(z1,...,Tn,t)

solves the wave equation in R™*! x (0, co), with the initial conditions

=g, s =h onR"! x {t=0},
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where
9(ry1,...,x =g(z1,...,T
(34) { 9(z1 n+1) 1= g(z1 n)
h(z1,...,2n41) := h(z1,...,Zp).
As n 41 is odd, we may employ (31) (with n + 1 replacing n) to secure

a representation formula for @ in terms of g, h. But then (33) and (34) yield
at once a formula for u in terms of g, h. This is again the method of descent.

To carry out the details, let us fix £ € R”, ¢ > 0, and write Z =
(z1,... ,Zn,0) € R"1. Then (31), with n 4 1 replacing n, gives

n—2
1 0 (18\ 7 _
1) = === t”_l][ gdS
ut) Tn+1 [3t (t(‘?t) ( BB(a‘:,t)g )
19\ _lf L
+|-= t" hdS )|,
(t 575) ( 0B(z 1) )]

B(z,t) denoting the ball in R”“_with center Z and radius ¢, and dS n-
dimensional surface measure on 8B(Z,t). Now

_ 1 )
36 ][ gdS = / gdsS.
(36) BB(a‘c,t)g (n+ Da(n+ 1)t* o I

Note that 8B(z,t) N {y,+1 > 0} is the graph of the function y(y) :=
(t2 — ly — z|?)'/2 for y € B(z,t) C R". Likewise 8B(z,t) N {yny1 < 0}
is the graph of —v. Thus (36) implies

2

37 ][ gdS = / a(y)(1 + | Dy(y)|?) 2y,
(37) - G Daln 3 DE o ()1 + [Dy()[°)

the factor “2” entering because 8B(Z,t) comprises two hemispheres. Note
that (14 |Dvy(y)[?)Y/2 = ¢(t? — |y — £/2)~ /2. Our substituting this into (37)
yields

(35)

_ oz 2 9(y)
dS = / d
][BB(:E,t)g (n+Da(n+1)t"1 Jp,e (82 — |y — z[?)1/2 Y
__ 2ta(n) 9(y)
(n+Da(n+1)/ pey (82 — |y — z[2)1/2

We insert this formula and the similar one with h in place of g into (37),
and find

u(z,t) =

L 2a(n) O (107 (. 9(v)
Yn+1 (N + Da(n + 1) lat (t 3,5) (t ][B(m,t) (2 — |y — $|2)1/2 dy)

lg I h(y)
¢ 8t) (t ][B(a:,t) (2 — ly — z|*)1/2 dy)} |

dy.
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Since Ypr1 = 1-3-5---(n — 1) and a(n) = F“;i , We may compute
2

Yn=2-4---(n—2) n.

Hence the resulting representation formula for even n is:

0= [(%) (i%) N (t][ o) (= R dy)

(38) < 10\ [, h(y)
i (?5) (t ][B(z,t) (2 = |y — z[?)1/? dy)] ’

(|  wherenis evenand v, =2-4---(n—2)-n,

forx € R, t > 0.

Since 7, = 2, this agrees with Poisson’s formula (27) if n = 2.

THEOREM 3 (Solution of wave equation in even dimensions). Assume n
is an even integer, n > 2, and suppose also g € C™*t(R™), h € C™(R"),
for m = %42, Define u by (38). Then

(i) u € C?(R" x [0,0)),

(ll) Ut — Au=0 1inR" x (0, OO),

and

iii li z,t) = g(z?), lim  wu(z,t) = h(z°

) | Jlim, u(w0)=9(), lm, u(@t)=h)
z€R®, t>0 relR™, t>0

for each point z° € R”.
This follows from Theorem 2.

Remarks. (i) Observe, in contrast to formula (31), that to compute u(z, t)
for even n we need information on u = g, u; = h on all of B(z,t), and not
just on 0B(z,t).

(ii) Comparing (31) and (38) we observe that if n is odd and n > 3,
the data g and h at a given point x € R" affect the solution u only on
the boundary {(y,t) | t > 0, |z — y| = t} of the cone C = {(y,t) | t > 0,
|z —y| < t}. On the other hand, if n is even the data g and h affect u within
all of C. In other words, a “disturbance” originating at x propagates along
a sharp wavefront in odd dimensions, but in even dimensions continues to
have effects even after the leading edge of the wavefront passes. This is
Huygens’ principle. a
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2.4.2. Nonhomogeneous problem.

We next investigate the initial-value problem for the nonhomogeneous
wave equation
(39) { Ut — Au = f in R™ x (0, OO)

u=0, uy=0 onR" x {t=0}.
Motivated by Duhamel’s principle (introduced earlier in §2.3.1), we define
u = u(z,t; s) to be the solution of

up(-;8) — Au(-;8) = 0 in R™ x (s,00)
(40) {u(-;s) = 0, u(;s) = f(,s) onR"x{t=s}
Now set
(41) u(z,t) == /t u(z,t;8)ds (z € R*,t>0).
0

Duhamel’s principle asserts this is a solution of

(42) {utt—Au=f in R™ x (0, c0)

u=0, =0 onR"x {t=0}.

THEOREM 4 (Solution of nonhomogeneous wave equation). Assume n >
2 and f € CIP/A+1(R™ x [0,00)). Define u by (41). Then

(i) u € C?*(R™ x [0, 00)),

(ii) ug —Au=f in R" x (0,00),

and
(iii) lim wu(x,t)=0, lim wf(z,t)=0 for each point z° € R™.
(z,t)—(z°,0) (z,t)—(z%,0)
zeR*, t>0 zeR™, t>0

Proof. 1. If n is odd, [%] +1= "T“ According to Theorem 2 u(-,-;s) €
C2(R™ x [0,00)) for each s > 0, and so u € C*(R" x [0,00)). If n is even,
[2] + 1 = 2f2. Hence u € C*(R™ x [0, 00)), according to Theorem 3.

2. We then compute:
¢ t
w(z,t) = u(z, t;t) +/ u(z, t;8)ds = / u(z, t; s) ds,
0 0
t
uge(z,t) = w(x,t;) +/ u(z, t; s) ds
0

t
= f(l'a t) +/(; utt(x,t; S) ds.
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Furthermore
¢ t
Au(w,t)=/ Au(z, t; s)ds=/ ut(x,t; 8) ds.
0 0

Thus
u(z,t) — Au(z,t) = f(z,t) (x €R"t>0),

and clearly u(z,0) = uw(x,0) = 0 for z € R™. a
Remark. The solution of the general nonhomogeneous problem is conse-
quently the sum of the solution of (11) (given by formulas (8), (31) or (38))
and the solution of (42) (given by (41)). O

Examples. (i) Let us work out explicitly how to solve (42) for n = 1. In
this case d’Alembert’s formula (8) gives

1 r+t—8 r+t—s
u(z, t;s) = 5/ fy,s)dy, u(z,t) = / / s) dyds.
r—t+s r—t+8
That is,
1 t pxr+s
(43) u(z,t) = 5/ / fly,t—s)dyds (z €R, t>0).
0 Jxr—s
(ii) For n = 3, Kirchhoff’s formula (22) implies

u(z, t;8) = (t — s)]laB( N )f(y,s) ds

so that
t
u(z, t) =/ (t—s) (][ fy, s)dS) ds
8B(zt s)
OB (z,t— s) (t ~s)
dB(z,r) o
Therefore

—_ >

solves (42) for n = 3. The integrand on the right is called a retarded potential.
O
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2.4.3. Energy methods.

The explicit formulas (31) and (38) demonstrate the necessity of making
more and more smoothness assumptions upon the data g and h to ensure
the existence of a C? solution of the wave equation for larger and larger
n. This suggests that perhaps some other way of measuring the size and
smoothness of functions may be more appropriate. Indeed we will see in this
section that the wave equation is nicely behaved (for all n) with respect to
certain integral “energy” norms.

a. Uniqueness.

Let U C R™ be a bounded, open set with a smooth boundary 0U, and
as usual set Ur = U x (0,T), I'r = Uy — Ur, where T > 0.

We are interested in the initial/boundary-value problem
ug —Au=f inUr

(45) u=g onl7
ut =h OnUX{t=0}.

THEOREM 5 (Uniqueness for wave equation). There ezists at most one
function u € C%(Ur) solving (45).

Proof. If i is another such solution, then w := u — % solves
Wt — Aw =0 in Ur
w=0 onI7r

we=0 onU x {t =0}
Define the “energy”
1
e(t) == 5/ wi(z,t) + |Dw(z, t)?dz (0 <t < T).
U
We compute
. . d
é(t) = / wiwy + Dw - Dw dx ( = _)
U dt
= / wy(wy — Aw)dz = 0.
U

There is no boundary term since w = 0 , and hence w; = 0, on U x [0, T.
Thus for all 0 < ¢ < T, e(t) = e(0) = 0, and so w;, Dw = 0 within Ur. Since
w=0on U x {t =0}, we conclude w=u—% =0 in Ur.
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(xal to)

Cone of dependence

b. Domain of dependence.

As another illustration of energy methods, let us examine again the
domain of dependence of solutions to the wave equation in all of space. For
this, suppose u € C? solves

ug —Au=0 in R" x (0, 00).
Fix zo € R™, tg > 0 and consider the cone

C={($,t)|0§t§t0,|2‘5—$0|§t0—t}.

THEOREM 6 (Finite propagation speed). If u = u; = 0 on B(zo,t),
then u = 0 within the cone C.

In particular, we see that any “disturbance” originating outside B(zy, to)
has no effect on the solution within C, and consequently has finite propaga-
tion speed. We already know this from the representation formulas (31) and
(38), at least assuming g = u and h = u; on R” x {t = 0} are sufficiently
smooth. The point is that energy methods provide a much simpler proof.

Proof. Define

/ W2(z,t) + |Dulz, t)Pdz (0 <t < to).
B(

xo 1t0_t)
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Then
1
ée(t) = / Uy + Du - Dug dx — —/ uf + |Du|2dS’
B(xo,to—t) 2 JoB(zo,to—t)
= / ut(ug — Au) dx
(46) B(zo,to—t) o .
+/ —u dS — —/ u? + |Du|?dS
dB(zo,to—t) ov 2 dB(zo,to—t)
ou 1 1
- / o — zuf — < |Dul’ds.
BB(:EO,t()——t) v
Now
ou 1 1
(47) ‘aut < |u||Dul < =uf + §|Du|2,

by the Cauchy—Schwarz and Cauchy inequalities (§B.2). Inserting (47) into
(46), we find é(t) < 0; and so e(t) < e(0) = 0 for all 0 < ¢ < ¢y. Thus u,,

Du = 0, and consequently u = 0 within the cone C.

A generalization of this proof to more complicated geometry appears

later, in §7.2.4.

2.5. PROBLEMS

In the following exercises, all given functions are assumed smooth, unless

otherwise stated.

1. Write down an explicit formula for a function u solving the initial-

value problem

uy+b-Du+cu=0 inR" x (0,00)
u=g onR"x {t=0}.

Here ¢ € R and b € R" are constants.

2. Prove that Laplace’s equation Au = 0 is rotation invariant; that is, if

O is an orthogonal n X n matrix and we define
v(z) :=u(Oz) (xz € R"),

then Av = 0.

3. Modify the proof of the mean value formulas to show for n > 3 that

1 1 1
u0)= ][ 9dS+ —__/ ( - ) dz,
( ) dB(0,r) n(n - 2)a(n) B(0,r) |$|n—2 rn—2 f
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provided
—Au=f in B%0,r)
u=g ondB(0,r).
4.  We say v € C?(U) is subharmonic if
—Av<0 inU.
(a) Prove for subharmonic v that
v(z) < ][ vdy forall B(z,r) CU.
B(z,r)
(b)  Prove that therefore maxy v = maxsy v.
(c) Let ¢ : R — R be smooth and convex. Assume u is harmonic
and v := ¢(u). Prove v is subharmonic.
(d) Prove v := |Dul? is subharmonic, whenever u is harmonic.
5. Prove that there exists a constant C, depending only on n, such that
<C
max ul < (agl(%ﬁg gl + max 1)
whenever u is a smooth solution of
—Au = f in B%0,1)
u=g on 0B(0,1).
6. Use Poisson’s formula for the ball to prove
n—2 r— |1L'| n—2 T+ |£13|
———u(0) < < ———u(0
" ey O = < e ©)
whenever u is positive and harmonic in B%(0,7). This is an explicit
form of Harnack’s inequality.
7.  Prove Theorem 15 in §2.2.4. (Hint: Since u = 1 solves (44) for g =1,
the theory automatically implies
[ K@yase) =1
8B(0,1)
for each = € B(0,1).)
8. Let u be the solution of

Au=0 inR}
u=g onJR}
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10.

11.

12.

13.

given by Poisson’s formula for the half-space. Assume g is bounded
and g(z) = |z| for z € RY, |z| < 1. Show Du is not bounded near

z = 0. (Hint: Estimate M)

Let U™ denote the open half-ball {z € R" | |z| < 1, z, > 0}. Assume
u € C(UT) is harmonic in U™, with u =0 on 8U™* N {z, = 0}. Set

(@) { u(x) ifzn, >0
v(z) =
"‘U(l’l, .o n ,xn__l, _xn) if xn < O

for x € U = B%(0,1). Prove v is harmonic in U.
Suppose u is smooth and solves u; — Au = 0 in R™ X (0, 00).

(i)  Show wuy(z,t) := u(Az,A?t) also solves the heat equation for
each X € R.

(ii) Use (i) to show v(z,t) := - Du(z,t) + 2tu(x, t) solves the heat
equation as well.

Assume n =1 and u(z,t) = v(m—:)

(a)  Show
Ut = Uz
if and only if
(%) 420" (2) + 2+ 2)0'(2) =0 (2> 0).

(b) Show that the general solution of (*) is

Z
v(z) = c/ e~*/4s71/24s + d.
0

c¢) Differentiate v{Z ) with respect to x and select the constant ¢
t
properly, so as to obtain the fundamental solution ® for n = 1.

Write down an explicit formula for a solution of

u—Au+cu=f inR" x (0,00)
u=g¢ onR"”x {t=0},

where ¢ € R.
Given ¢ : [0,00) — R, with g(0) = 0, derive the formula

T t 1 —_1'25
—_ A(t—s
u(z,t) = 47r,/0 (t—s)3/2e t=2) g(s)ds
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for a solution of the initial/boundary-value problem
Ut —Ugz = 0 in Ry x (0,00)
u= 0 OIIR+X{t=O},
u= g on{z=0}x][0,00).
(Hint: Let v(z,t) := u(z,t) — g(t) and extend v to {z < 0} by odd
reflection.)
14. We say v € C2(Ur) is a subsolution of the heat equation if
—Av <0 inUp.
(a) Prove for a subsolution v that
|z —yf?
v(z,t) _47'”//2” v(y, 8) =) dyds
for all E(z,t;r) C Up.
(b)  Prove that therefore maxy, v = maxr, v.
(c) Let¢:R — R besmooth and convex. Assume u solves the heat
equation and v := ¢(u). Prove v is a subsolution.
(d) Prove v := [Du|? + u? is a subsolution, whenever u solves the
heat equation.
15. (a) Show the general solution of the PDE u;y = 0 is
u(z,y) = F(z) + G(y)
for arbitrary functions F,G.
(b) Using the change of variables £ = z +¢, n = x — t, show
Ut — Uz = 0 if and only if ugy, = 0.
(c) Use (a) and (b) to rederive d’Alembert’s formula.
16. Assume E = (E', E? E3) and B = (B!, B?, B®) solve Maxwell’s equa-
tions (§1.2.2). Show
Ut — Au=0
where u = E* or B® (i =1,2,3).
17.  (Equipartition of energy). Let u € C%(R x [0,00)) solve the initial-

value problem for the wave equation in one dimension:

{utt—umzo in R x (0, 00)
u=g,uu =h onRx {t=0}
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Suppose g, h have compact support. The kinetic energy is k(t) :=
%ffooo u?(z,t) dz and the potential energy is p(t) :== 3 [ u(z,t) dz.

Prove
(i)
(i)

k(t) 4+ p(t) is constant in ¢,
k(t) = p(t) for all large enough times ¢.
18. Let u solve

{utt—Au:O in R3 x (0, 00)
u=g,u=h onR3x {t=0},

where g, h are smooth and have compact support. Show there exists
a constant C such that

lu(z,t)| < C/t (zeR3 t>0).
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