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5.1 General Concepts

5.1.1 Types of waves

Our dayly experience deals with sound waves, electromagnetic waves (as radio or
light waves), deep or surface water waves, elastic waves in solid materials. Oscil-
latory phenomena manifest themselves also in contexts and ways less macroscopic
and known. This is the case, for instance, of rarefaction and shock waves in traffic
dynamics or of electrochemical waves in human nervous system and in the regula-
tion of the heart beat. In quantum physics, everything can be described in terms
of wave functions, at a sufficiently small scale.
Although the above phenomena share many similarities, they show several dif-

ferences as well. For example, progressive water waves propagate a disturbance,
while standing waves do not. Sound waves need a supporting medium, while elec-
tromagnetic waves do not. Electrochemical waves interact with the supporting
medium, in general modifying it, while water waves do not.
Thus, it seems too hard to give a general definition of wave, capable of covering

all the above cases, so that we limit ourselves to introducing some terminology and
general concepts, related to specific types of waves. We start with one-dimensional
waves.

a. Progressive or travelling waves are disturbances described by a function
of the following form:

u (x, t) = g (x− ct) .
For t = 0, we have u (x, 0) = g (x), which is the “initial”profile of the perturbation.
This profile propagates without change of shape with speed |c|, in the positive
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222 5 Waves and Vibrations

(negative) x−direction if c > 0 (c < 0). We have already met this kind of waves in
Chapters 2 and 4.

b. Harmonic waves are particular progressive waves of the form

u (x, t) = A exp {i (kx− ωt)} , A, k,ω ∈ R. (5.1)

It is understood that only the real part (or the imaginary part)

A cos (kx− ωt)

is of interest, but the complex notation may often simplify the computations. In
(5.1) we distinguish, considering for simplicity ω and k positive:

• The wave amplitude |A|;

• The wave number k, which is the number of complete oscillations in the space
interval [0, 2π], and the wavelength

λ =
2π

k

which is the distance between successive maxima (crest) or minima (troughs)
of the waveform;

• The angular frequency ω, and the frequency

f =
ω

2π

which is the number of complete oscillations in one second (Hertz) at a fixed
space position;

• The wave or phase speed
cp =

ω

k

which is the crests (or troughs) speed;

Fig. 5.1. Sinusoidal wave
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c. Standing waves are of the form

u (x, t) = B cos kx cosωt.

In these disturbances, the basic sinusoidal wave, cos kx, is modulated by the time
dependent oscillationB cosωt. A standing wave may be generated, for instance, by
superposing two harmonic waves with the same amplitude, propagating in opposite
directions:

A cos(kx− ωt) + A cos(kx+ ωt) = 2A cos kx cosωt. (5.2)

Consider now waves in dimension n > 1.

d. Plane waves. Scalar plane waves are of the form

u (x,t) = f (k · x−ωt) .

The disturbance propagates in the direction of k with speed cp = ω/ |k|. The
planes of equation

θ (x,t) = k · x−ωt = constant

constitute the wave-fronts.
Harmonic or monochromatic plane waves have the form

u (x, t) = A exp {i (k · x−ωt)} .

Here k is the wave number vector and ω is the angular frequency. The vector k
is orthogonal to the wave front and |k| /2π gives the number of waves per unit
length. The scalar ω/2π still gives the number of complete oscillations in one
second (Hertz) at a fixed space position.

e. Spherical waves are of the form

u (x,t) = v (r, t)

where r = |x− x0| and x0 ∈ Rn is a fixed point. In particular u (x,t) = eiωtv (r)
represents a stationary spherical wave, while u (x,t) = v (r − ct) is a progressive
wave whose wavefronts are the spheres r − ct = constant, moving with speed |c|
(outgoing if c > 0, incoming if c < 0).

5.1.2 Group velocity and dispersion relation

Many oscillatory phenomena can be modelled by linear equations whose solutions
are superpositions of harmonic waves with angular frequency depending on the
wave number:

ω = ω (k) . (5.3)

A typical example is the wave system produced by dropping a stone in a pond.
If ω is linear, e.g. ω (k) = ck, c > 0, the crests move with speed c, independent

of the wave number. However, if ω (k) is not proportional to k, the crests move with
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speed cp = ω (k) /k, that depends on the wave number. In other words, the crests
move at different speeds for different wavelengths. As a consequence, the various
components in a wave packet given by the superposition of harmonic waves of
different wavelengths will eventually separate or disperse. For this reason, (5.3) is
called dispersion relation.
In the theory of dispersive waves, the group velocity, given by

cg = ω
′ (k)

is a central notion, mainly for the following three reasons.

1. It is the speed at which an isolated wave packet moves as a whole. A wave
packet may be obtained by the superposition of dispersive harmonic waves, for
instance through a Fourier integral of the form

u (x, t) =

∫ +∞

−∞
a (k) ei[kx−ω(k)t]dk (5.4)

where the real part only has a physical meaning. Consider a localized wave packet,
with wave number k ≈ k0, almost constant, and with amplitude slowly varying
with x. Then, the packet contains a large number of crests and the amplitudes
|a (k)| of the various Fourier components are negligible except that in a small
neighborhood of k0, (k0 − δ, k0 + δ), say.
Figure 5.2 shows the initial profile of a Gaussian packet,

Reu (x, 0) =
3√
2
exp

{
−x

2

32

}
cos 14x,

slowly varying with x, with k0 = 14, and its Fourier transform:

a (k) = 6 exp{−8 (k − 14)2}.

As we can see, the amplitudes |a (k)| of the various Fourier components are negli-
gible except when k is near k0.

Fig. 5.2. Wave packet and its Fourier transform

Then we may write

ω (k) ≈ ω (k0) + ω′ (k0) (k − k0) = ω (k0) + cg (k − k0)
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and

u (x, t) ≈ ei{k0x−ω(k0)t}
∫ k0+δ

k0−δ
a (k) ei(k−k0)(x−cgt)dk. (5.5)

Thus, u turns out to be well approximated by the product of two waves. The first
one is a pure harmonic wave with relatively short wavelength 2π/k0 and phase
speed ω (k0) /k0. The second one depends on x, t through the combination x− cgt,
and is a superposition of waves of very small wavenumbers k−k0, which correspond
to very large wavelengths. We may interpret the second factor as a sort of envelope
of the short waves of the packet, that is the packet as a whole, which therefore
moves with the group speed.

2. An observer that travels at the group velocity sees constantly waves of the
same wavelength 2π/k, after the transitory effects due to a localized initial per-
turbation (e.g. a stone thrown into a pond). In other words, cg is the propagation
speed of the wave numbers.
Imagine dropping a stone into a pond. At the beginning, the water pertur-

bation looks complicated, but after a sufficiently long time, the various Fourier
components will be quite dispersed and the perturbation will appear as a slowly
modulated wave train, almost sinusoidal near every point, with a local wave num-
ber k (x, t) and a local frequency ω (x, t). If the water is deep enough, we expect
that, at each fixed time t, the wavelength increases with the distance from the
stone (longer waves move faster, see subsection 5.10.4) and that, at each fixed
point x, the wavelength tends to decrease with time.
Thus, the essential features of the wave system can be observed at a relatively

long distance from the location of the initial disturbance and after some time has
elapsed.
Let us assume that the free surface displacement u is given by a Fourier integral

of the form (5.4). We are interested on the behavior of u for t ≫ 1. An impor-
tant tool comes from the method of stationary phase1 which gives an asymptotic
formula for integrals of the form

I (t) =

∫ +∞

−∞
f (k) eitϕ(k)dk (5.6)

as t→ +∞. We can put u into the form (5.6) by writing

u (x, t) =

∫ +∞

−∞
a (k) eit[k

x
t −ω(k)]dk,

then by moving from the origin at a fixed speed V (thus x = V t) and defining

ϕ (k) = kV − ω (k) .

Assume for simplicity that ϕ has only one stationary point k0, that is

ω′ (k0) = V ,

1 See subsection 5.10.6
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and that ω′′ (k0) ̸= 0. Then, according to the method of stationary phase, we can
write

u (V t, t) =
√

π

|ω′′(k0)|
a(k0)√
t
exp {it [k0V − ω (k0)]}+O

(
t−1
)
. (5.7)

Thus, if we allow errors of order t−1, moving with speed V = ω′ (k0) = cg, the
same wave number k0 always appears at the position x = cgt. Note that the
amplitude decreases like t−1/2 as t→ +∞. This is an important attenuation effect
of dispersion.

3. Energy is transported at the group velocity by waves of wavelength 2π/k.
In a wave packet like (5.5), the energy is proportional to2

∫ k0+δ

k0−δ
|a (k)|2 dk ≃ 2δ |a (k0)|2

so that it moves at the same speed of k0, that is cg.
Since the energy travels at the group velocity, there are significant differences

in the wave system according to the sign of cg − cp, as we will see in Section 10.

5.2 Transversal Waves in a String

5.2.1 The model

We derive a classical model for the small transversal vibrations of a tightly
stretched horizontal string (e.g. a string of a guitar). We assume the following
hypotheses:

1. Vibrations of the string have small amplitude. This entails that the changes in
the slope of the string from the horizontal equilibrium position are very small.

2. Each point of the string undergoes vertical displacements only. Horizontal dis-
placements can be neglected, according to 1.

3. The vertical displacement of a point depends on time and on its position on
the string. If we denote by u the vertical displacement of a point located at
x when the string is at rest, then we have u = u (x, t) and, according to 1,
|ux (x, t)|≪ 1.

4. The string is perfectly flexible. This means that it offers no resistance to bend-
ing. In particular, the stress at any point on the string can be modelled by
a tangential3 force T of magnitude τ , called tension. Figure 5.3 shows how
the forces due to the tension acts at the end points of a small segment of the
string.

5. Friction is negligible.

Under the above assumptions, the equation of motion of the string can be
derived from conservation of mass and Newton law.

2 See A. Segel, 1987.
3 Consequence of absence of distributed moments along the string.
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5.10.5 Asymptotic behavior

As we have already observed, the behavior of a wave packet is dominated for short
times by the initial conditions and only after a relatively long time it is possible
to observe the intrinsic features of the perturbation. For this reason, information
about the asymptotic behavior of the packet as t→ +∞ are important. Thus, we
need a good asymptotic formula for the integral in (5.149) when t≫ 1.
For simplicity, consider gravity waves only, for which

ω (k) =
√
g |k|.

Let us follow a particle x = x (t) moving along the positive x−direction with
constant speed v > 0, so that x = vt. Inserting x = vt into (5.149) we find

h (vt, t) =
1

4π

∫

R
eit(kv−ω(k))ĥ0 (k) dk +

1

4π

∫

R
eit(kv+ω(k))ĥ0 (k) dk

≡ h1 (vt, t) + h2 (vt, t) .

According to Theorem 5.6 in the next subsection (see also Remark 5.10), with

ϕ (k) = kv − ω (k) ,

if there exists exactly one stationary point for ϕ, i.e. only one point k0 such that

ω′ (k0) = v and ϕ′′ (k0) = −ω′′ (k0) ̸= 0,

we may estimate h1 for t≫ 1 by the following formula:

h1 (vt, t) =
A (k0)

t
exp {it[k0v − ω (k0)]}+ O

(
t−1
)

(5.151)

where

A (k0) = ĥ0 (k0)

√
1

8π |ω′′ (k0)|
exp i

{
−π
4
sign ω′′(k0)

}
.

We have

ω′ (k) =
1

2

√
g |k|−1/2 sign (k)

and

ω′′ (k) = −
√
g

4
|k|−3/2 .

Since v > 0, equation ω′ (k0) = v gives the unique point of stationary phase

k0 =
g

4v2
=
gt2

4x2
.

Moreover,

k0v − ω (k0) = −
g

4v
= − gt
4x
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and

ω′′(k0) = −
2v3

g
= −2x

3

gt3
< 0

so that from (5.151) we find

h1 (vt, t) =
1

4
ĥ0
( g
4v2

)√ g

πtv3
exp i

{
− gt
4v
+
π

4

}
+O

(
t−1
)

Similarly, since
ĥ0 (k0) = ĥ0 (−k0) ,

we find

h2 (vt, t) =
1

4
ĥ0
( g
4v2

)√ g

πtv3
exp i

{
gt

4v
− π

4

}
+O

(
t−1
)
.

Finally,

h (vt, t) = h1 (vt, t) + h2 (vt, t)

= ĥ0
( g
4v2

)√ g

4πv3t
cos

{
gt

4v
− π

4

}
+O

(
t−1
)
.

This formula shows that, for large x and t, with x/t = v, constant, the wave packet
is locally sinusoidal with wave number

k (x, t) =
gt

4vx
=
gt2

4x2
.

In other words, an observer moving at the constant speed v = x/t sees a domi-
nant wavelength 2π/k0, where k0 is the solution of ω′ (k0) = x/t. The amplitude
decreases as t−1/2. This is due to the dispersion of the various Fourier components
of the initial configuration, after a sufficiently long time.

5.10.6 The method of stationary phase

The method of stationary phase, essentially due to Laplace, gives an asymptotic
formula for integrals of the form

I (t) =

∫ b

a

f (k) eitϕ(k)dk (−∞ ≤ a < b ≤ ∞)

as t → +∞. Actually, only the real part of I (t), in which the factor cos[tϕ (k)]
appears, is of interest. Now, as t increases and ϕ (k) varies, cos[tϕ (k)] oscillates
more and more and eventually much more than f . For this reason, the contributions
of the intervals where cos[tϕ (k)] > 0 will balance those in which cos[tϕ (k)] < 0,
so that we expect that I (t)→ 0 as t→ +∞, just as the Fourier coefficients of an
integrable function tend to zero as the frequency goes to infinity.
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To obtain information on the vanishing speed, assume ϕ is constant on a certain
interval J . On this interval cos[tϕ (k)] is constant as well and hence there are neither
oscillations nor cancellations. Thus, it is reasonable that, for t ≫ 1, the relevant
contributions to I (t) come from intervals where ϕ is constant or at least almost
constant. The same argument suggests that eventually, a however small interval,
containing a stationary point k0 for ϕ, will contribute to the integral much more
than any other interval without stationary points.
The method of stationary phase makes the above argument precise through

the following theorem.

Theorem 5.6. Let f and ϕ belong to C2 ([a, b]). Assume that

ϕ′ (k0) = 0,ϕ
′′(k0) ̸= 0 and ϕ′ (k) ̸= 0 for k ̸= k0.

Then, as t→ +∞
∫ b

a

f (k) eitϕ(k)dk =

√
2π

|ϕ′′(k0)|
f(k0)√
t
exp

{
i
[
tϕ(k0) +

π

4
signϕ′′(k0)

]}
+O

(
t−1
)

First a lemma.

Lemma 5.3. Let f,ϕ as in Theorem 5.6. Let [c, d] ⊆ [a, b] and assume that
|ϕ′ (k)| ≥ C > 0 in (c, d). Then

∫ d

c

f (k) eitϕ(k)dk = O
(
t−1
)

t→ +∞. (5.152)

Proof. Integrating by parts we get (multiplying and dividing by ϕ′):

∫ d

c

f

ϕ′
ϕ′eitϕdk =

1

it

{
f (d) eitϕ(d)

ϕ′ (d)
− f (c) e

itϕ(c)

ϕ′ (c)
−
∫ d

c

f ′ϕ′ − fϕ′′

(ϕ′)2
eitϕdk

}

.

Thus, from
∣∣eitϕ(k)

∣∣ ≤ 1 and our hypotheses, we have
∣∣∣∣∣

∫ d

c

f eitϕdk

∣∣∣∣∣ ≤
1

Ct

{

|f (d)|+ |f (c)|+ 1
C

∫ d

c

|f ′ϕ′ − fϕ′′| dk
}

≤ K
t

which gives (5.152). !
Proof of Theorem 5.6. Without loss of generality, we may assume k0 = 0, so

that ϕ′ (0) = 0, ϕ′′ (0) ̸= 0. From Lemma 5.3, it is enough to consider the integral
∫ ε

−ε
f (k) eitϕ(k)dk

where ε > 0 is as small as we wish. We distinguish two cases.
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Case 1: ϕ is a quadratic polynomial, that is

ϕ (k) = ϕ (0) +Ak2, A =
1

2
ϕ′′ (0) .

Then, write

f (k) = f (0) +
f (k)− f (0)

k
k ≡ f (0) + q (k) k,

and observe that, since f ∈ C2 ([−ε, ε]), q′ (k) is bounded in [−ε, ε]. Then, we have:
∫ ε

−ε
f (k) eitϕ(k)dk = 2f(0)eitϕ(0)

∫ ε

0
eitAk

2

dk + eitϕ(0)
∫ ε

−ε
q (k) keitAk

2

dk.

Now, an integration by parts shows that the second integral is O (1/t) as t → ∞
(the reader should check the details).
In the first integral, if A > 0, let

tAk2 = y2 .

Then ∫ ε

0
eitAk

2

dk =
1√
tA

∫ ε
√
tA

0
eiy

2

dy.

Since38 ∫ ε
√
tA

0
eiy

2

dy =

√
π

2
ei
π
4 +O

(
1

ε
√
tA

)
,

we get

∫ ε

0
f (k) eitϕ(k)dk =

√
2π

|ϕ′′(0)|
f(0)√
t
exp

{
i
[
ϕ(0)t+

π

4

]}
+ O

(
1

t

)
,

which proves the theorem when A > 0. The proof is similar if A < 0.
Case 2. General ϕ. By a suitable change of variable we reduce case 2 to case 1.

First we write

ϕ (k) = ϕ (0) +
1

2
a (k) k2 (5.153)

where

a (k) = 2

∫ 1

0
(1− r)ϕ′′ (rk)dr.

38 Recall that eiπ/4 =
(√
2 + i

√
2
)
/2. Moreover, the following formulas hold:

∣∣∣∣

√
π

2
√
2
−
∫ λ

0

cos(y2)dy

∣∣∣∣ ≤
√
π

λ
∣∣∣∣

√
π

2
√
2
−
∫ λ

0

sin(y2)dy

∣∣∣∣ ≤
√
π

λ
.



296 5 Waves and Vibrations

Equation (5.153) follows by applying to ψ (s) = ϕ (sk) the following Taylor for-
mula:

ψ (1) = ψ (0) + ψ′ (0) s+
1

2

∫ 1

0
(1− r)ψ′′ (r) dr.

Note that a (0) = ϕ′′ (0). Consider the function

p (k) = k
√
a (k) /ϕ′′ (0).

We have p (0) = 0 and p′ (0) = 1. Therefore, p is invertible near zero. Let

k = p−1 (y) .

Then, since

ϕ (k) = ϕ (0) +
ϕ′′ (0)

2
[p (k)]2 ,

we have,

ϕ̃ (y) ≡ ϕ
(
p−1 (y)

)

= ϕ (0) +
ϕ′′ (0)

2

[
p
(
p−1 (y)

)]2

= ϕ (0) +
ϕ′′ (0)

2
y2

and ∫ ε

−ε
f (k) eitϕ(k)dk =

∫ p−1(ε)

p−1(−ε)
F (y) eitϕ̃(y)dy

where

F (y) =
f
(
p−1 (y)

)

p′ (p−1 (y))
.

Since F (0) = f (0) and ϕ̃ is a quadratic polynomial with ϕ̃ (0) = ϕ (0), ϕ̃′′ (0) =
ϕ′′ (0), case 2 follows from case 1. !

Remark 5.7. Theorem 5.6 holds for integrals extended over the whole real axis as
well (actually this is the most interesting case) as long as, in addition, f is bounded,
|ϕ′ (±∞)| ≥ C > 0, and

∫
R |f

′ϕ′ − fϕ′′| (ϕ′)−2 dk <∞. Indeed, it is easy to check
that Lemma 5.3 is true under these hypotheses and then the proof of Theorem 5.6
is exactly the same.

Problems

5.1. The chord of a guitar of length L is plucked at its middle point and then
released. Write the mathematical model which governs the vibrations and solve it.
Compute the energy E (t).


