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1 Fourier series and Fourier transform

1.1 Fourier series

Let us consider a periodic function f: R — C, with period L > 0:
fx+ L) = f(x) VreR. (1.1)

An elementary example of such functions is the complex exponential, e?**, for k € %’rZ. The goal
of this section is to show that, under suitable regularity assumptions, periodic functions can be
represented as linear combinations of such elementary periodic functions. This observation will
be particularly useful when solving concrete partial differential equations.

Definition 1 (Fourier series.). Given an L-periodic function f, we define its Fourier series as:

Z ekzey (1.2)

keZrz,

where the k-th Fourier coefficient is defined as:

1k :
c = f dz e * f(z) . (1.3)
L Jo
So far, the expression in ([1.2)) is purely formal: we do not know whether the series is con-
vergent. As we shall see, whenever it is convergent, the Fourier series allows to reconstruct the
function f. Let us start by discussing a sufficient criterion for convergence.

Theorem 1.1 (Convergence of the Fourier series for C! functions.). Let f € C*(R), L-periodic.
Let S, be the partial Fourier series of f:

Sp(x) := Z ek . (1.4)
ke2r7,
|k|<2fn

Then, the following limit exists, uniformly in x:

f(z) = lim S,(z) . (1.5)

n—0o0

Remark 1.2. The assumptions on the function f are by no means optimal. It is possible to
show that the Fourier transform also converges for Hélder continuous function. Furthermore,
almost-everywhere convergence of the Fourier transform is known to hold for square-summable
functions f on [0,L]. We will not discuss such improvements, for which we refer the reader to

e.g. [1].
The proof of Theorem relies on a number of simple but important ideas.

Scalar product. Given a complex vector space V', a scalar product (-, -) is a bilinear map from
V x V to C such that the following properties hold true:

(i) (9,f) = (£, 9)
(ii) (g9,0ft + Bf2) = alg, f1) + Blg, fo) for all a, e C
(iii) (f,f)=0and (f,f) =0 if and only if f = 0.



The first and the second property imply that (-,-) is antilinear in the first entry:

(afi + Bf29) = alfi,9) + B(f2,9) - (1.6)

Given a scalar product, we define its associated norm as:

IF1:=~/(F 1) (1.7)

It is left to the reader to check that this operation really defines a norm (triangle inequality;
homogeneity; positive definiteness). We say that V is a Hilbert space if it is complete with
respect to the norm defined by the above scalar product. An example of Hilbert space is

L*(A) = {f:A—>(C|Lda:f(x)|2<oo} (1.8)

with A a measurable subset of R. The scalar product is the natural one,
(F.9) = | do F@lao). (19)

Approximation of continuous functions by trigonometric polynomials. Consider now
as a vector space V' the space of continuous L-periodic functions on R:

Cper(R) :={f e CR) | f(x+ L) = f(x) VYVreR}. (1.10)
On this vector space, let us define the scalar product:

L
(f.9) = J dz TD)g(z) (1.11)

0

An orthonormal system with respect to this scalar product is provided by the plane waves e?*?,

appropriately normalized. Let:

eikac
ex(x) := . 1.12
Then, one can easily check that:
(6k,€j) = 5jk . (1.13)

with d.. the Kronecker symbol. With this definition, we can rewrite the partial Fourier series of
f as:
Su)(@) = D el@(enf)= ), er(@)ds (1.14)

kik|<2En kik|<2En

Comparing with 1' we see that ¢, = L~1/2d;,. This rewriting shows that the partial
Fourier transform is simply the orthogonal projection of the function f over the following finite
dimensional vector space:

Vo = span{ek}wg%n . (1.15)

The elements of this vector space are called trigonometric polynomials:

P,(z) = Z ape’*® ar € C. (1.16)

kik|<2En

Trigonometric polynomials can be used to approximate continuous periodic functions, to arbi-
trary precision. This is the content of the following theorem.



Theorem 1.3 (Weierstrass theorem.). Let f be continuous and L-periodic. For any e > 0,
there exists a trigonometric polynomial Py, of some order n such that:

sup |f(z) — Po(z)| <e. (1.17)
z€[0,L]

Proof. Consider the partial Fourier transform of f. We rewrite it in the following convenient
way:

271' 1
kx k r—
Sn(a:) = E cpe' T = LL dyf E e (z=y)

keZ:|k|<n k |k|<n (1.18)

L 1
= [ v ) Pule - /D).

0

The function D,,(z — y) is called the Dirichlet kernel. A straightforward computation giveﬂ
Dn(ﬂj‘ o y) _ Z €i27rk(x—y)
k:|k|<n
sin((2n + 1)w(z —y))
sin(m(z — y)) '

(1.20)

In general, S, (x) does not converge pointwise to f as n — oo, if only assume that f is continuous.
We shall now find a better approximation of continuous functions in terms of trigonometric
polynomials. Let us consider the Cesaro mean of the partial Fourier series:

Sn(z) (1.21)

L n—1
oule) = | dy S g 3 Dulle— v)/L)

. k=0 (1.22)
= [ "y s Falz = w/m)
0
where F,,(z — y) is the Fejér kernel:
Falr —y) = % > Dz —y) . (1.23)
k=0

A straightforward computation gives:

1 /sin(mn(z — y)))2

—y)=—(—-75-7T7—"") . 1.24
Falz—y) ( sinm(z — y) (124)

The function o, (x) is still a trigonometric polynomial, as manifest from (1.21]), since S, is a
trigonometric polynomial. We claim that o, (x) converges uniformly to f(z) as n — 0. To
prove this, we shall use the following two properties of the Fejér kernel:

1Use that:

n 2n P27 —
Z ei?wk(:t—y) _ e—i?wn(x—y) Z ei?wk(:t—y) _ e—ian(x—y) 1- 612 (Zn+1)(=—v)
1 — ei2m(z—y)

(1.19)

k=—n k=0



(i) §,dzFu(z) =1
(i) g_é dzx Fp(x) — 0 as n — oo, for all § > 0.

The proof of the first property follows from:

fl dxDy(x)=1. (1.25)
0

The proof of the second property follows from the explicit expression ([1.24]), using that in the
integral sin(7x) is bounded away from zero.
Let € > 0, and let § > 0 such that:

[f(x) = f(y)l <e/2 Vye Bs(x) . (1.26)

We write, using property (i):
L 1
@)= oula) = |y (@) = 1) Fulla =)/ D)

:j ()+J (---)EI+II.
lz—y|<6/L |[z—y[>6/L

Consider the first term. It is bounded as, using the positivity of the Fejér kernel and property

(4):

(1.27)

L
U< [ Al -n/n =5 (1.28)

Consider the second term. Continuous periodic functions are in particular bounded. Hence:

1
| <c dy —Fn((z —y)/L)
lo—y|>s/L L (1.29)

<e/2,

where the last inequality follows after taking n large enough, using property (ii) above. This
concludes the proof. =

Convergence of the Fourier series. The above discussion allowed us to find an explicit
approximation of continuous periodic functions in terms of trigonometric polynomials. We now
turn to the problem of proving convergence of the Fourier series.

As discussed above, S, can be viewed as the orthogonal projection of the function f over
V.. With this geometric interpretation at hand, the next lemma is not particularly surprising.

Lemma 1.4 (Bessel’s inequality.). The following inequality holds true, for all L-periodic func-
tions f, such that ||f|| < oo:
[Snl < 11 - (1.30)

Proof. By positivity of the norm, we have:

|f=Sul =0. (1.31)



Explicitly,
Hf - SnH2 = (f — S, f— Sn)

:<f— doerdr, f— ) ejdj)

kik|<2En jiljI<2En
=(LH+ D] Do didi(enes) = DL dilen )= D) di(f.ej)
k:|k|<2En j:j|<2En k:|k|<2En Jilil<ZEn
=L+ D ldlP= Y e )= D dilfiey),
jilil<ZEn k:|k|<2En jilil<®n

(1.32)

where in the last step we used the orthonormality of the plane waves. Finally, by definition of

di’s, we see that the sum of the last two terms is simply =23, |d;]?. Hence, we get:

0<(fiN)= D ldl?, (1.33)

k:|k|<2Tn
which implies the claim. ]

Corollary 1.1. The following inequality holds true:

Dldl? < IfI (1.34)
k
Proof. The inequality immediately follows from ([1.33)), taking the limit n — oo. n

The partial Fourier series S, is an element of the space of trigonometric polynomials V,,,
defined in (|1.15]). It turns out that S, provides the best approximation of f within V,,, in the
L? sense.

Lemma 1.5. Let P,(z) be a trigonometric polynomial, P, € V,,. Then, the following inequality
holds true:

Proof. The starting point is the following identity:
(f = Sn, Pn) =0 (1.36)
Next, we write:

|f = Po|® = || f — Sn + Sn — Pal?

9 9 (1.37)
= f = Snl* + [Sn — Pu|* + 2Re(f — S, Sn — P) -
The last term is zero, thanks to ((1.36). Hence,
If = Pal? = |1 f = Sl (1.38)
and equality holds if and only if ||.S,, — P,| = 0. n

Remark 1.6. (i) Lemma combined with Theoremprove the convergence of the Fourier
series in the L* sense.



(i) Using that continuous functions are dense in L%, and using that (ey) is an orthonormal
family, the above result also proves that (ex) is an orthonormal basis for L*(S}), with
Sl = R/LZ the circle of length L. The arqgument is as follows. Let f € L*(S1), and let
f- € C(S}) such that

If = fell <e/3. (1.39)
Let S, be the partial Fourier series of f.. By what we just proved:

I fe = Snel <e/3 (1.40)
for n large enough. Also, let S, be the partial Fourier series of f. Then, by Bessel’s
inequality:

IS0 = Snel < If = fel <€/3. (1.41)
Hence:

I = Sull < If = fell + [lfe = Sne

This proves that any function f € L2(S£) can be approrimated arbitrarily well, in the L?-
sense, by its orthogonal projection over V. In other words, (ex) is an orthonormal basis

for L*(S}).

+[Sne = Sl <e. (1.42)

The next lemma plays the role of Pythagora’s theorem, on an infinite dimensional vector
space.

Lemma 1.7 (Parseval’s identity). For any continuous, L-periodic function f, the following
holds true:

Dol = [1F17 - (1.43)
k
Proof. By Theorem we know that for any € > 0 there exists P, of some order n such that:
|f— Pl <e. (1.44)
Also, by (|L.5)):
If =Snl <|f = Pull <e. (1.45)
Furthermore, from ((1.32)), (1.33]) we have:
(D Y e B VL (1.46)
kik|<2En
By the arbitrariness of ¢, this concludes the proof. u

Remark 1.8. By the above mentioned density of continuous functions on LQ(S}J), Parseval’s
theorem actually applies to all functions f € L*(S}).

The following is an immediate corollary of Parseval’s theorem.

Corollary 1.2. Let f and g be two functions in LQ(SE). Suppose that their Fourier coefficients
coincide. Then, f =g.

Proof. The function f — g is continuous and L-periodic, and has zero Fourier coefficients. Then,
by Parseval’s identity, |f — g|| = 0 and hence f — g = 0. m



We are now ready to prove Theorem
Proof of Theorem . [Pointwise convergence of the Fourier series.| We start by writing:

S
dk:Ll/ZJO dx e " f(x)

L .
- L}QL o (0 1 (2) (1.47)

1 L i —ikx
= —Ti% . dx%e O f(z) ,

where the last identity follows integrating by parts (the boundary terms cancel thanks to the
periodicity of the function). Therefore, we just proved that:

1
| < 1dil (1.48)

where d), are the Fourier coefficients of f’(x), a function in Cper(R). Therefore,

. 1 1\z 3
Z e’kxck‘ < ¢+ Z ‘*C%‘ < ¢+ (Z —2)2 (2|c§€|2)2 , (1.49)
k k
k k#0 k#0 k

and the last step follows from Cauchy-Schwarz inequality. Applying Parseval’s theorem to the
function f’, we get:

k

which proves absolute convergence of the Fourier series. Then, we notice that by construction
the functions

ey < o+ CIf P (1.50)

f(z), S(z) = Eckeim (1.51)
k

have the same Fourier coefficients. Therefore, by Lemma they coincide: f(z) = S(x).
Uniform convergence follows from:

f@-s@i< Y lal<( Y %) (X ke (1.52)

ki|k|=2En ki|k|=2En k>2Tp

D=

which tends to zero as N — oo, uniformly in z. =
Before concluding this section, let us discuss some further properties of the Fourier series.

The Fourier series of real functions. Suppose that f(x) € R. Then,
2 e, — Z eikze, — Z etk = Z eFre (1.53)
k k k k

Since the Fourier coefficients uniquely determine the function, we immediately get

cp=C_p . (1.54)

In particular, the coefficient ¢y is real. Real-valued periodic functions can be conveniently
expanded in terms of sine and cosine:

flx) = Z e*e = co + Z (e“mck + efik"”c_k)

k k>0

co+ 2. (e* ey + e hoTy) (1.55)
k>0

_ %o Z cos(kx)ay, + sin(kx)by, ,

2 k>0



where we set:
ak = ¢, + ¢ , by = i(Ck —@) . (1.56)
Derivatives. The main application of the Fourier series to differential equations is that it allows

to convert derivatives into multiplication operators. Let ¢/, be the Fourier coefficients of f’. In
the proof of Theorem [I.1] we have seen that:

O f(z) = 2 ike® ey, . (1.57)
k

More generally, provided the sum makes sense:

o f(x) =D (ik)"e* ey, . (1.58)

k

These simple properties allow to turn differential equations for periodic functions into algebraic
equations.

Higher dimensions. The previous discussion generalizes to periodic functions in R%:
f(x) = f(z +vnL) . (1.59)
with v; the standard basis of R? and n; € Z. The Fourier series of f is defined as:

Z eF e (1.60)
ke%ﬂzd

with Fourier coefficients: )

k= 7d dre ®f(z) . (1.61)

[0,L]¢
All the results proved above for functions on R extends to functions on R¢, and we leave the
details to the reader.

Simple application. Before concluding the section, let us discuss a simple application of the
Fourier series. Let u(x,t) be the temperature profile of a conducting ring, of length L; x € Si is
the position on the ring, while ¢ is time. Let u(x) be the temperature distribution at the time
t = 0. At later times, the evolution of the temperature profile satisfies the heat equation:

dvu(z,t) = 02u(x,t) , u(z,0) = u(x) . (1.62)

Later, we will discuss the heat equation in much greater generality. For the sake of the present
discussion, let us show how to use the Fourier series to solve this PDE. Suppose that u(x) is a
smooth initial datum. We are looking for a smooth function u(x, t), such that u(x,t) = u(x+L,t)
for all times, satisfying . It is convenient to represent the function in terms of its Fourier
series:

u(z,t) = Z ek (t) . (1.63)

2
ke T Z

By what we discussed above, the series converges pointwise. Also, being u(z,t), the functions
dwu(z,t) and 02u(z,t) can also be represented in terms of the Fourier series. We have:

du(z,t) = > e ocn(t),  Bu(zt) = . eF(—k?)ex(t) . (1.64)

2 2
kef’rZ kefﬂZ

The equation (|1.62)) reads:
0= > ™ (3 +k)er(t) . (1.65)

ke2IN



By Plancherel’s theorem, this equation holds if and only if the Fourier coefficients in the right-
hand side are identically zero:

I :
(0 + EHex(t) = 0, cx(0) = LJ dz ey () . (1.66)
0
The solution to this ODE is simply:
cu(t) = e e (0) . (1.67)
That is, the solution to the original PDE is:
u(z,t) = Z eikxe*thck(O) . (1.68)

In particular, as t — o0, the solution converges pointwise to:

L
o () = €0(0) = ifa dou(x) . (1.69)

Thus, the temperature gradient converges to the average initial temperature.

1.2 Fourier transform

As mentioned at the end of the previous section, the main application of the Fourier series to
partial differential equations is that it allows to turn differential operators into multiplication
operators. Not all interesting PDEs however involve unknown functions which are spatially
periodic: we would like to have a similar tools for nonperiodic functions as well. Here we will
introduce such tool, the Fourier transform; we will follow [2], Section 4.3.1.

In order to introduce the right functional setting for the Fourier transform, recall the defini-
tion of LP spaces, for 0 < p < oo,

LP(RY) = {f R C | de ()P < oo} . (1.70)

The definition of course applies to continuous functions, with { being the Riemann integral.
More generally, it applied to measurable functions, in which case § has to be understood as the
Lebesgue integral. The two notions coincide, whenever the f is continuous. We also define the
L™ space as:

LP(RY) := {f 'R C | sup |f(2)| < oo} . (1.71)

zeRd
The definition extends to measurable functions, and in that case the supremum is replaced by
the essential supremum ess sup,cgpa. We refer to [6], Chapter 2, for an introduction to LP spaces.

Definition 2 (Fourier transform of L' functions.). Let f € L'(RY). We define the Fourier
transform of f as:

f(k) = j (;fr) e f () (1.72)

Let us spell out some basic properties of the Fourier transform.

Basic properties.

(i) The function f(k) is bounded:

1
(2r)?

due to the fact that the function f isin L'.

) < f dr|f ()] < o0 (1.73)

10



(i)

(iii)

The function f(k) is continuous:

. ¢ T dx —ik-x _ dx . —ik-x _ 7
fn 106 = Jim, [ e o) = | g I = fw

The second equality follows from dominated convergence theorem, which we can apply
since the function k +— e~ f(z) is continuous in k, and the function x > e~ f(z) is
absolutely integrable, uniformly in k.

The function f (k) decays at infinity. At first, suppose that f is in C' n L', such that
Or,; f € L' Then:

f = diw otk - dx —ik-x
Ky f (k) J g i) = i J g ). (1.75)
Therefore, o
. 1 .
ki f (k)| < WHaxjful = |f(k)] < ol (1.76)

Thus, limg, o f (k) = 0. The statement extends to functions with are just L'. This follows
from the fact smooth, compactly supported functions are dense in LP with 1 < p < 0.
Let (f,) = C*(R%), such that:

T I = i = 0. (1.77)
Take € > 0. Write: R R
f(k) = fa(k) + f(2) — falz) . (1.78)

For n large enough:

dr  _n 1 €
[ et @) - futah)| < 41 = fulh < 5. (1.79)
(2m)2 (2m)>2
Also, for |k| large enough:
: 10z, ful1 _ e
fa(b) < —7F— < 5- (1.80)
K5 2
All in all, for |k| large enough: A
lf(k)] <e (1.81)

that is f(k) — 0 as |k| — 0. This result takes the name of Riemann-Lebesgue lemma.

The Fourier transform turns convolutions into products. Let f and g be functions in
L' ~ L2. Consider their convolution:

h(z) = f * g(a) == f dy f(z — y)g(y) - (182)

The requirement that f,g are in L? is needed in order to make sure that the convolution
exists. Let us compute the Fourier transform of the convolution. We get:

) = [ 5 e n

(2n)
- f (26533 f dy f(z = y)gly)e " EVe Y (1.83)
— (21 % dy dz 5 e—ik-ze—ik~y = (271 % r ~

— (2m) f P f g 90) — 2m)f F(R)a(h)

The exchange of integrals in the third equality sign is allowed by Fubini’s theorem, since
both functions are in L'.

11



f(Az). Then:

(v) Rescalings. Let fy(z)
A de  _..
(k) = f ;R @)
2
=\ J d)\xd —iA71k~Amf()\x) (184)
)2
flk/ /\)
(vi) Action on differential/multiplication operators. Let a = («y,...,aq), 8 = (B1,...,84) be
multi-indeces. Let us introduce the notation:
d d
v =[Jaf, DP=]]o". (1.85)
i=1 i=1
(1.86)

Suppose that, for all |a| < k, |5] < j:
D f e LY(RY) .

Then:
dzx
z*DBf(k) = | —
= | 7Y
dx
= (1D)“ fzk-:pDﬁ T
( ) J(27T)2 f( ) (1.87)
= (iD)® da . Befik-a: T
iy | g (PP

(iD)*(ik)* f (k) .
Thus, as for the Fourier series, the Fourier transform turns differential operators into
The importance of this is that it will allow to

multiplication operators (and viceversa)

turn PDEs into algebraic equations
It is useful to compute the Fourier transform of a Gaussian function
Proposition 1.9 (Fourier transform of a Gaussian.). Let g(z) be the Gaussian function
g(x) = el (1.88)
Then,
|k|?
g(k) =2"2¢" 1 (1.89)
(1.90)

d{L‘ il ]2
e zk:ace |z|

Proof. We write:
i = |
(2m)
_ J 42 —forib/2f? o—lk/4
(2m)>
The integral can be written as
dr  _jetik/2? T —(a+ik;)?
Te = H - | dae g (1.91)
(2m)2 j=1(2m)2

12



A simple application of the residue theorem shows that the integral is actually independent of
k;. Hence:

d <1
fz:d ol tik/2> _ H T Jda e~
(2m)> j=1 (2m)2 (1.92)
1
= .
22
Plugging (1.92) into (1.90)), we get the claim. n

It turns out that the Fourier transform can also be defined on L?(R%). The definition however
cannot be the one given in ((1.72)), since the integral is in general divergent for L? functions. On
this space, the Fourier transform will have the nice property defining an isometry. The starting
point to define the Fourier transform in L? is the following theorem.

Theorem 1.10 (Plancherel.). Let f € L*(RY) A L2(R%). Then, f is in L2(RY), and the following
identity holds: R
[ £l =1£12- (1.93)

Proof. Let f,g in L'. We start by noticing that:

| do t@a@) = [y ot (1.94)
Let us now take g to be a rescaled Gaussian function:
ga(x) = e Ml” (1.95)

As discussed in Proposition the Fourier transform of this function is:

. 1
2
Eq. (1.94) reads:

de f(y)lge_lk|2/4)‘ = Jdm f(ac)e_)"”ﬂ2 ) (1.97)

(2X)
Now, take f € L' n L?, and define h(x) = f(—x). Let w = h * f. By property (iv) above,

W= (27)2hf = (2m) 2|2 . (1.98)
The function w is continuous (exercise), and hence:
. R d d
lim, [ dow(@)g(@) = @m)Fw(0) = (2m) 113 (1.99)

A—0

On the other hand, by (1.94)) the left-hand side of (1.99)) is equal to:

)l\in%) dxw(z)gy(z) = /l\inr(l)fcm uA)(x)e_)"g”‘2
- - (1.100)

_ﬁmm@_@mif%

This concludes the proof of the theorem. u

13



Definition of the Fourier transform in L?. Let f € L?, and let (f,) be an approximating
sequence in L' n L?:
Tim [f  fule = 0. (1.101)

The existence of such sequence is guaranteed by the density of C®° in L?. By Plancherel,
[fo = finl2 = [fa = fmlz =0 asn,m — . (1.102)

Thus, ( fn) forms a Cauchy sequence in L?. Being L? complete (all Cauchy sequences converge
to a limit in L?), there exists f such that:

lim [ f— ful2=0. (1.103)
n—o0

We define f as the Fourier transform of f. To check that the definition is meaningful, let us
verify that f does not depend on the choice of the approximating sequence. Let (gy,) be another
sequence in L' n L? such that g, — f. Let § the Fourier transform constructed above. We have:

If = gl = lim | fo = Ginll = lim | f = gl < lim | fro = f]| + lim | f = g = 0 . (1.104)
n,m n,m n m

One can check that the L? Fourier transform satisfies the properties (iv), (v) and (vi) above.
Recall the definition of L2-scalar product:

(f.9) = f dz F@)g(x) (1.105)

The next property is a simple consequence of Plancherel’s theorem.

Proposition 1.11. Let f,g in L?>. Then:
(f.9) = (f.9) - (1.106)
Proof. For f = g, the identity is Plancherel theorem. More generally, we have:
1f +agl = [/ +agl . (1.107)
Expanding both sides and using Plancherel, we get:
o(f.9) +alg, ) = o(f,9) +a(3. f) - (1.108)

Let o = 1. The identity reads:

Re (f,9) = Re(f,9) . (1.109)
Instead, for a = i we get:

Im (f,9) = Tm (f,3) . (1.110)
Eq. (1.109) and (1.110) imply the claim. m

The above discussion shows that Fourier transform defined an isometry F : L? — L?. To
conclude, let us find the explicit form for the inverse Fourier transform. For f € L', define:

A~

F(k) = F(—k) (1.111)
The * operation is then extended to L? as for the ° operation.

Proposition 1.12 (Inverse Fourier transform.). Let f € L? and let Ff := f Then,
F k) = f(k). (1.112)
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Proof. Our goal is to show that f = f. Recall that:

fmﬂwmw=jMﬂmmm. (1.113)
Then, ) B
fda: fa)g(x) = f dz f(2)g(x) = jdaz f@)g@) =@, f) . (1.114)

By Eq. :
fmﬂmmw—@n—jMﬁmm@. (1.115)

Being ((1.115)) true for all g € L?, we get
f=1. (1.116)

and the proof is concluded. ]

Simple application. Before concluding the section, let us discuss a simple application of the
Fourier transform. As for the Fourier series, we shall consider again the heat equation, this time
on the real line:

dvu(z,t) = 02u(a,t) , u(z,0) = u(x) , (1.117)

and we assume that u(z) is smooth and such that all derivatives are in L?. As we will discuss
later in more detail, the above equation describes the evolution of a temperature gradient u(z,t)
of an infinite conducting bar. We look for a solution wu(z,t) which is smooth in both variables,
and such that all derivatives are in L?. Taking the Fourier transform of both sides of (1.117)) we
get:

ovi(k,t) = —k*a(k,t),  a(k,0) = a(k) . (1.118)

The solution is: ,
a(k,t) = e ta(k) . (1.119)

This suggests the following expression for u(x,t):

o dk eikxe—tha
(i t) = f oo k) . (1.120)

If (1 + k?)a(k) € L', one can easily check that this function is indeed a solution of the heat
equation. In particular, the solution converges to, as t — oo:

dk dk
U () = tlirrolo ﬁ eh ekt () = J()l ke tlirrolo e_kgtﬁ(k) =0. (1.121)
- 2m)2 2m)z -

The interchange of limit and integration is allowed by dominated convergence theorem. Physi-
cally, all the heat is dissipated at infinity.
2 Poisson equation

2.1 Motivations

The Poisson equation is a PDE describing the electrostatic potential generated by a fixed charge
distribution. We shall discuss the mathematics of this equation, following [2], Section 2.2.
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Let f(z) : R®> — R be a charge distribution, and let E(z) : R®> — R3 be the electric field
generated by such distribution. The equations of electrostatics read:

V-E=f

2.1
VxE=0. (2.1)

Recall the significance of the electric field: E(x) is the force per unit charge acting on a charged
particle. The second equation in encodes the fact that the electric force is conservative:
the work performed by a charge moving in an electric field moving from a to b does not depend
on the path connecting a and b. In order words, the work performed on a closed loop is exactly
zero. In fact, considering a loop 7, encircling a region U:

J E-dﬂzf drn(x) - (Vx E)(z)=0 (2.2)
¥ U

where n(x) is the normal vector at x, compatible with the orientation of the boundary ~. The
first identity is Stokes’ theorem, while the last follows from . Concerning the first equation
, it encodes Gauss law, which states that, considering a region Q of R?, the electric flux
through 0€ is equal to the total charge contained in €. The total flux is equal to

E-ndx = J divE dzx , (2.3)
o0 Q
where the identity follows from the divergence theorem. Also, using the first equation of ([2.1)):

L divE dz — L f(@)da | (2.4)

where the right-hand side has the meaning of total charge contained in 2. This shows that the
first of (2.1) is equivalent to Gauss’ law.
Provided FE is regular enough, the second equation of ({2.1)) is equivalent to:

E(z) = —Vu(z) , (2.5)

for a function u(x), called the electric potential. Therefore, the first equation of then
implies:

—Au(z) = f, (2.6)
which takes the name of Poisson equation. The solution to this equation describes the electric
potential generated by the charge distribution f.

Eq. is formulated in the whole space. It could be of relevance to consider the associated

Dirichlet problem. Let U < R? with U open. We define the Poisson equation with Dirichlet
boundary conditions as:

—Au(z) = f(z) forzxeU

u(z) = g(x) for x € oU . (2.7)

The homogeneous version of the Poisson equation, obtained setting f = 0, is called Laplace
equation. This equation describes the propagation of the electric field inside a region, conditioned
to the value of the electrostatic potential at the boundary of the region. Functions satisfying
the Laplace equation are called harmonic.

Definition 3 (Harmonic function.). Let U € R%, U open. Let u: U — R such that u € C?(U)
and

Au =0 inU. (2.8)

Then, we say that u(x) is harmonic in U.
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For d = 1, harmonic functions are linear, u(z) = ax + b. For d > 2, things become more
complicated, as we will see below.

To conclude the introduction, let us stress that the Laplace/Poisson equation appears as
mathematical description of many physical phenomena, that have nothing to do with elec-
tromagnetism. As we will see, it also describes stationary solutions of the heat equation, or
stationary solutions of the wave equation. See [4], Chapter 12, for further examples.

2.2 Fundamental solution of the Laplace equation

To begin, let us look for solutions of the Laplace equation in R?. This equation always admits
the trivial solution u(x) = const. In fact, from the theory of the Fourier transform, this is the
only available solution, with const = 0, if we assume that v € L? and Au € L?. Taking the
Fourier transform of the Laplace equation we get:

|k[*a(k) =0, (2.9)

which only admits 4(k) = 0 as solution. Thus, nontrivial solutions of the Laplace equation
cannot be such that u € L? and Au e L2.

In order to find nontrivial solutions of the Laplace equation, we will not rely on the Fourier
transform. To begin, we shall look for solutions respecting the symmetry properties of the
equation.

Proposition 2.1 (Rotation invariance of the Laplace equation.). Let u(z) be such that Au(z) =
0. Then v(x) = uw(Rx) with RRT = RTR = 1 is such that Av(z) = 0.

Proof. By the chain rule:

dv(z) = > Rji(dju)(Ra) . (2.10)
J
Furthermore,
Ov(x) = ) RjiRyi(0),u)(Rx) . (2.11)
5’
Hence:
Y 0v(x) = ) RjiRjyi(0;u)(Re)
i W4
= Z(RRT)jj’(aj,j’u)(Rx) (2.12)
33
2 (Fu)(Ra)
J
where in the last step we used that (RRT); j = §;;. This concludes the proof. n

We will look for solutions of the Laplace equation that respect the symmetries of the equation.
That is, we will look for u(x) such that u(x) = v(r), with r = |z|. Let us understand the action
of the Laplacian on a radial function. We have:

Os,ul) = Oy, v(|]) = v'<|x|>|%'|
2 2 (2.13)
ctuta) = (ol) () +0eD) (7 - )
Therefore,
d 7"2 n T‘2
> () = v”(r)?2 +0'(r) <T — 7“5> (2.14)
=1



meaning that

Au=0 <= V"'(r) +'(r) = 0. (2.15)
By defining h(r) = v/'(r), Eq. becomes:
W)+ h() Tt = 0= h(r) = (2.16)
which gives:
o= foa- {0 N )

/2
7F(g+1) be the volume

of the unit ball in RY, T'(z) = SSO drz*~'e ™ for Rez > 0. For x € RI\{0}, the function

Definition 4 (Fundamental solution of the Laplace equation). Let a(d) =

— x| ifd=1
P(z) = { —5= log |z ifd =2 (2.18)
1 1 .
Aa—2a(d) o1 ifd=3

1s called the fundamental solution of the Laplace equation.

Notice that the fundamental solution is defined only for x # 0. It is a solution of the following
PDE:
Au=0  in RN\{0}. (2.19)

The function x — ®(z — y) is harmonic in = # y, and so is the function z — f(y)®(x —y). We
shall now be interested in considering linear combinations of such functions, namely:

u(w) = [dy e~ ) (). (2.20)

Using that ®(x — y) is harmonic in z # y, and using that in the integral the lack of harmonicity
only involves a zero measure set, we would be temped to conclude that u(x) is harmonic in x
as well. The issue with this reasoning is that we cannot interchange the y integration with the

Laplacian A,. In fact,
1

D@z —y) ~ EE

(2.21)

which is not integrable in d dimensions. As a consequence of this fact, the function u(x) in
(2.20]) turns out to be not harmonic. Moreover, as the next theorem proves, the function u(z)
in (2.20) is a solution of the Poisson equation.

Theorem 2.2 (Solving the Poisson equation.). Suppose that f € C?(RY). Let u be given by
2.20). Then, ue C*(RY), and furthermore:

—Au=f inR% (2.22)
That is, [ is a solution of the Poisson equation.

Proof. 1. We shall only discuss the cases d > 2, and we leave the case d = 1 as an exercise. Let

u@) = [ dy@a—u)f) = | o)) (223
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by a simple change of variables. Let vy, - - ,v4 be the standard basis of R¢, and consider

deh) ) [ gyl = e, (2:24)

By assumption f € C2?, which means that

flx+hvi—y) - flz—y)

li = fo(z — ), 2.25
lim - fai(x—y) (2.25)
and the limit is reached uniformly in x — y. Therefore,

wna) = [ @)1 a =iy (226)
Repeating the argument,

s, = [ @) eir, o = )i (2.27)

and using again that f € C? we infer that Uz, 1S continuous in .

2. Let us now compute the integral. Let € > 0, and let us rewrite:

M) = | @Sy [ e@ASe oy @2
1 o 7 ’

We will study the two integrals separately.
3. We have:

L] < f B(y)| |Anf (@ — y)| dy
B:(0) (2.29)

< sup |Af(z—y !f )l dy
yeBe(0)

Being D?f continuous and compactly supported in B.(0), it is bounded by a constant. Hence:

dy|loglyl|, ifd=2,
ij‘ W)l dy < C $5.0) yl ]glyH | (2.30)
SB Y gz if d > 3.

Now we are left with bounding the integrals: let us first study the case n = 2.

€
f d%NbgWH=L[ fybgy|=0J‘mwbgr
B(0) Be(0) 0 (2.31)
T21 € J‘Cd 7’2]. <C(2‘lo |+2)
=c|—logr| — r——| <cle €|+ €
2 8T ), M2 &
which vanishes as ¢ — 0. Suppose now d > 3. We have:
1 € d 1 5
dy —— = J dr— < Ce (2.32)
JBE(O) |y[@=2 o 72

which vanishes as € — 0. We then conclude that I, — 0 and ¢ — 0.

19



4. In order to study the integral J, it is worth recalling that, by Gauss-Green theorem:

f Uy, dT = J uv;ds (2.33)
U ou

where v is the outward normal of oU. Let u(y) = ®(y)0,, f(x —y). We get:
0 WS ) 282w ] = | 8w sty) 23

so that

o= | asw @y Dyfta-u)- | dyDe) Dyfla-y).  (23)
¥8B€ (0) R4\ B, (0)

/ _/
" ~~

L K

We will study the two terms separately. We have:

1 ifd=2
Ll <e[ ast) o) - celloge]  if d =2, (2.36)
0B.(0) ce if d > 3.

Therefore, L, — 0 as ¢ — 0. Consider now the term K. Integrating again by parts:

K, dy AD(y) f(a — ) — f ds(y) v - Dy®(y) f(x — y)
R\ B, (0) 0Bc(0)

5 (2.37)

= *j ds(y)v - Dy®(y)f(r —y)
0B (0)

where we used that ®(y) is harmonic if y # 0. Next, we compute:

— £ log |y| if d =2
Dq)(y):D{%l if d >3
d(d=2)a(d) [} 147
(2.38)
B {—;wﬁz if d =2,
= 1 1 1 :
~ @@ ¢~ D = T w@pe A>3
where we recall a(d) = %, and in particular «(2) = 7. Summarizing
DO(y) L v if 5 # 0 (2.39)
y) = — — if y # 0. .
do(d) [y|?
To compute the integral in (2.37)) we use that, for y € 0B(0):
y _ 1P 11
Y Y, Doy - _ . 2.40
g ly| e Y () da(d) e+t da(d) ed—1 (240)
Hence
K== dst)v: D))
0B<(0) (2.41)

1
= _ed_lda(d) LBG(O) dS(y) f(x - y)

which converges to —f(z) as € — 0, by continuity of f. In conclusion, taking the limit e — 0 we
get
Au(z) = —f(z). (2.42)
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Remark 2.3. i) Even if the source term f(x) is compactly supported, the solution u(zx) prop-
agates over all R?.

ii) It is obvious that the solution is not unique: if u solves the Poisson equation, so does
u + const. As we shall see, the solution will be unique in an appropriate space of functions.

(1it) The above proof shows that —Ay®(y — x) = 6(y — ) in the sense of distributions. The
symbol 6(y — x) denotes the Dirac delta distribution: it acts as

fdy Sy —x)g(y) :==g(z), for all g e CP(RY). (2.43)

Also, A denotes the distributional Laplacian, defined as:

de Ay®(y —z)g(y) := de Py — 2)Ayg(y) - (2.44)

Thus, the above proof shows that the following identity holds:
jdy(—qu)(y —2))g(y) = de S(y—a)gly)  for allge CP(RY). (2.45)

2.3 Properties of harmonic functions

Here we shall discuss some important properties of the Laplace equation. We start with the
mean-value formula. Given a bounded set U ¢ R?, we shall use the notation:

J[U"' _ @L (2.46)

Unless otherwise specified, we shall assume that U < R? is a bounded and open subset. Also,
we will suppose that 0U admits a continuous parametrization.

Theorem 2.4 (Mean-value theorem.). Suppose that u(x) is harmonic in U, and let By(z) < U.
Then:

u(z) = J[Br(x> dyuly) = Jg o B (2.47)

Proof. For d = 1 the theorem is trivial to check, since all harmonic functions are linear. For
d = 2, the proof is an application of Gauss-Green theorem. Define

o(r) := £BT(x) ds(y) u(y) = J[aBl o ds(z)u(x +rz) . (2.48)

We compute:

¢ (r) = J[ ds(z) Du(x +rz) -z = :f ds(y) Du(y) - y—=
0B1(0) 0B1(0) r (2.49)

r

dJB, (z)

where the second identity follows from Gauss-Green theorem and the last from the fact that u
is harmonic. This means that ¢ is constant, which implies:

o) = limo() = lm f  ds(y)uly) = u(a). (2.50)
- —V J0B(x)



To prove the equivalence with the average over the ball we write:

= ' s(y)u =u(z rsa s = u(z)a d
JBT<x>“dy [ a ( | R0 <y>> (@) | dasdata) @atdpt
= u(z)|Br(z)| ,

which implies the desired claim. =

In d = 1, being harmonic functions linear, it is trivial that they attain their extremal values
on the boundary of the interval in which they are defined. The analogous statement in more
than one dimension is less trivial to prove, and it is the content of the next theorem.

Theorem 2.5 (Maximum principle.). Let U = R? open and bounded, and let u(x) be harmonic
in U. Then:
max u(z) = maxu(zx) . (2.52)
U ou
Furthermore, if U is connected and there exists a point xg € U such that maxgu(z) = u(zo),
then
u(z) = constant in U . (2.53)

The second statement is stronger than the first (it is also called strong maximum principle).

Remark 2.6. Recall that a set U is called connected if it cannot be represented as the union
of two or more disjoint and nonempty open sets. In R® this notion is equivalent to path-
connectedness. In particular, if U is open and connected, and U = Uy v Uy with Uy, Uy open
and disjoint, then either Uy = U and Uy = & or Us = U and Uy = J.

Proof. We shall prove the second statement. The first follows from the second after possibly
splitting the domain U in connected components. Suppose that there exists a point xg € U such
that:

u(zp) = I:ile&g(u(x) <M. (2.54)
Define:
Vi={zeU|u(x)=M}. (2.55)

Let now 0 < r < dist(xg, 0U): by the mean value theorem we know that

M = u(xg) = J[B ( )u(y)dy <M (2.56)

The only way in which this can be true is by having:
u(y) =M Vy € By () . (2.57)
In particular, this means that V is open. Let us rewrite:
U=V u(U\V), (2.58)

where U\V = {z € Ulu(z) # M}. By continuity of u, this set is open as well. Clearly U n
(U\V) = ¢&. Therefore, since U is open and connected:

either V = {z € Ulu(z) = M} = & or U\V = {z € Ulu(z) # M} = &. (2.59)

However, by assumption V' # (J since it contains the point zy. Therefore U\V = ¢, which
means that u(x) is constant in U. u
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Remark 2.7. Notice that the boundedness of U is only used to make sure that M < oo. Thus,
the same proof can be used to prove the maximum principle for bounded harmonic functions on
unbounded sets U.

Application: absence of stable equilibrium points in the vacuum. As an application
of the maximum principle, we show that the electrostatic potential does not admit stable equi-
librium points in the vacuum. Mathematically, these corresponds to strict local minima of the
electrostatic potential u(x). Suppose that zg is a strict local minimum of u(z), and suppose that
zo € U and that Au = 0 in U. For r small enough, B, (z) is contained in U and x is a global
minimum of w in B,. Equivalently, z( is a strict global maximum of —u(z) in B,(xg), which
is also harmonic. By the strong maximum principle, Eq. , this is not possible. Another
interesting application of the maximum principle is the uniqueness of solution of the Poisson
equation.

Proposition 2.8 (Uniqueness of solutions of Poisson equation on bounded domains.). Let U <
R? be a bounded open set and suppose that uy and us are two solutions of the Dirichlet boundary
value problem:

—Au(z) = f(z) forxelU
u(z) = g(x) for x € 0U. (2.60)
Then, u1 = us.

Proof. Let w = u; — us. Then:

—Aw =0 for x e U

(2.61)
w=g for x € OU.

By the maximum principle, w < 0, that is u; — uo < 0. Reversing the roles of u; and ug the

claim follows. |
Finally, the next theorem characterizes bounded harmonic functions on R

Theorem 2.9 (Liouville). Let u be bounded and harmonic in R%. Then,

u(x) = constant. (2.62)

Proof. To begin, recall the mean-value formula:
u@ =f uly)y (263)
B (x)

which holds for any r > 0, since u is harmonic in R?. Changing variable,

1
u(zr) = B 0] o) dyu(z +ry) . (2.64)

Taking the derivative with respect to xz;:

(2.65)
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By Gauss-Green theorem:

1

oiu(r) = ———— dS(y) vi(y)u(x + ry) , 2.66
) = B oy 5 N ) (2.66)
which gives the estimate:
10B1(0)]
oiu(x)| < —=—=lu| e . 2.67
(@) < T lle o (2.67)
Being r arbitrary and u bounded, the claim follows. u

To conclude, Liouville theorem can be used to prove the uniqueness of a bounded solution
for the Poisson equation in R%, d > 3.

Proposition 2.10. Let d > 3, and f € C?(R%). Any bounded solution of —Au = f on R? has
the form:

u(z) = J}Rd dy ®(xz —y) f(y) + constant. (2.68)

Remark 2.11. In d = 1,2, the main term in the right-hand side of is not bounded
uniformly in x, due to the unboundedness of ®(x).

Proof. Let:
w(@) = [ dyee—u)fe) . (269)

In d > 3, the function uq(x) is bounded. Suppose that us(z) is another bounded solution of the
Poisson equation. Then, w = u; — us is a bounded solution of the Laplace equation in R¢. By
Liouville theorem, w = constant. This concludes the proof. ]

2.4 Newton’s theorem

In this section we shall have a closer look at the solution of the Poisson equation —Au = f in R%.
In particular, we shall consider the case in which the source term f(x) is radial, f(x) = f(|z|).
As for Theorem we shall suppose that f is compactly supported, that is f(z) = 0 for |z| > R.

Theorem 2.12 (Newton’s theorem.). Let u(z) be given by (2.6§), with d > 1. Then:

mm=f @ﬂwwm+J dy F(1)@(y) (2.70)
lyl<|z| ly|=|z|

Before discussing the proof, let us highlight some consequences of this remarkable identity.
Suppose that |z| > R, that is we probe the electrostatic potential away from the support of f.
Then, the second term in (2.70)) is zero, and hence:

ue) = 8@ Q= [dys(). (2.11)

The constant )y physically corresponds to the total charge associated to the charge distribution
f. Thus, u(x) coincides with the electrostatic potential generated by a point-like charge at = 0,
with total charge given by Q. This is a very remarkable identity, of enormous importance both
in electrostatics and in astrophysics (the gravitational potential behaves as the electrostatic
potential, up to a minus sign).

Furthermore, suppose that f(y) = 0 for |y| < R’ < R, and let |z| < R'. Thus, f describes
the charge distribution of a spherically symmetric object with a cavity, and we are probing the
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electrostatic field in the cavity. Then, the first term in (2.70)) is identically zero. Eq. (2.70)
reads:

u(x) = f dy F()®(y) (2.72)

The electrostatic field in the cavity is constant: no electrostatic force acts on a charge placed
inside the cavity. This conclusion could have been anticipated by recalling that the electrostatic
potential cannot have local maxima or minima inside the cavity, as we proved in the previous
section. By the fact that u(x) is radial, the reader can easily convince herself that u(x) is
constant.

Proof. We start by writing:

u(z) = j dy f(y)®(z — y) + J dy F(y)B(z ) (2.73)
ly|<|z|

ly[>]z|

the region |y| = |z| can be omitted, since it is a zero measure set and since the function is
integrable. Consider the first term. We have, using that f(y) is radial:

|x|—e
fly|<x| dy f(y)®(z —y) = il_I)I(l)L dr f(r) L dS(y)®(x —y) . (2.74)

B:(0)

Since |z| > r and |y| = r, the function ®(z — y) is harmonic for y € B,(0). Thus, by the
mean-value formula:

|z|—e
| ayswee -y =tim [ ar )80
lyl<|z| =vJo

(2.75)
= | avrwew.

lyl<|z|

Consider now the second term in ([2.73)). We write:
| aswee-p-tm| | aswee-y. @0

ly]> 21 =20 Jjal+e 2B, (0)
Consider the function, for |z| < r:
o) = [ as) Bz ). (2.77)
2B, (0)

The function is radial. In fact, let R be a rotation matrix, describing rotations around the origin:
Re SO(d), RR" = RTR = 1. Then,

g(Rz) = L 1 150 2R )
" (2.78)

- f dS(y) ®(z — RTy) |
2B,.(0)

where in the second step we used that ®(z) only depends on |z|, and furthermore that |Rz —y| =
|R(z — R"y)| = |x — RTy|. Next, by a change of variable, and using that the integration domain
is invariant under rotations,

9(Rz) = g(x) <= g(z) = g(|z]) . (2.79)
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In particular, g(z) equals its spherical average:

o(x) = Jg RCTE

(2.80)
= J‘: dS(z)J dS(y) ®(z —y) .
(9B|z|(0) 0B (0)
Since |z| < r, we can interchange the integrations in y and z. We have:
g(z) = f dS(y)Jf dS(2) ®(z — ) . (2.81)
2B,.(0) 0B),/(0)

Now, the function z — ®(z — y) is harmonic for z € B|;(0), since |y| > |z|. Therefore, by the
mean-value theorem:

o(x) = f 45 (y)(y) (2.82)
0Br(0)

Plugging this identity into (2.76)), we get:
| ayswee-p-tim | o] daswew
lyl>le| 0 lal+e 98:(0) (2.83)
= J dy f(y)@(y) -
ly|>z]

Combined with (2.75)), this concludes the proof. |

2.5 Green’s function

Finding the solution of the Poisson equation on a general domain could be extremely hard, if
not impossible. One can prove that such solution exists, for a large class of bounded domains
U, under suitable regularity assumptions on the boundary; see e.g. [5]. Here we shall refrain
from proving this general statement; instead, we will discuss a reformulation of the Poisson
problem, that will allow to find explicit solutions in some special cases. The method is based
on the notion of Green’s function, that we shall introduce here. Roughly, the Green’s function
allows to understand the solution of the Laplace/Poisson equation as a suitable propagation of
the boundary condition.
For U < R% open, let us consider the Dirichlet boundary value problem:

—Au = in U
u=f n (2.84)
U=y on oU.
For z ¢ 0U, let us define the function y — ¢*(y) as the solution of:
Ap® =0 in U
¢ o (2.85)

¢"(y) =@(z—y) ondl.
For reasons that will be clear in a moment, this function is called the corrector function.

Definition 5 (Green’s function.). Let z,y € U, © # y. The Green’s function for the region U
1s defined as:

G(z,y) == P(y —z) — ¢"(y) . (2.86)

Remark 2.13. As a function on y, the Green’s function is harmonic in U\{z}; moreover, it
vanishes on the boundary of U. Physically, it corresponds to the electrostatic potential generated
by a pointlike charge at x, under the constraint that it vanishes on the boundary of U.
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Theorem 2.14 (Representation formula for the solution of (2.84).). Suppose that u € C?(U)
solves the Poisson boundary value problem . Then, the following identity holds:

u(r) = —f dS(y) 9(y)v - DyG(z,y) + J fY)G(z,y)dy . (2.87)
oU U

This result is quite remarkable: it provides an expression for a large class of boundary value
problems, determined by f and g, provided one is able to find the Green’s function G. This
amounts to solving one specific boundary value problem, for the corrector function . Later,
we will discuss how to find the Green function for two special cases, the sphere and the half-plane.

Proof. Let x € U, and let € > 0 be small enough so that B.(z) € U. Let V. = U\B(z). By
Gauss-Green theorem:

| dvluwase - o - o - 02u)
Ve (2.88)
— [ dst) [utw - DOy — )~ by~ 2w Duly)]
oVe

with v the outward normal on dV;. Rcall that A®(y —z) = 0 for y # x; thus, the left-hand side

of (2.88)) can be written as:
- f dy ®(y — ) Au(y) + o(1) , (2.89)
U

where o(1) denotes terms that vanish as e — 0. Consider now the right-hand side of (2.88)). As
we observed in the proof of Theorem

f dS(y) ®(y —z)v- Dyu(y) - 0  ase — 0. (2.90)
0B ()
Furthermore, notice that, if v is the inward normal of 0B.(x):

| aswyutw-De-o)=| das@ - Dby - )
0Bc(x) 0Bc(7)

1 (2.91)
= T35 dS(y)u(y) ,
0B.@)] Jop. W)
where in the last step we used that:
1 Yy—
Doy —x) = — - 2.92
Y (y ZB) da(d) ‘y _ [L"d 9 ( )

with a(d) the volume of the unit ball, hence da(d) the volume of the unit sphere, and v =
—(y — x)/|y — z|. Therefore, by continuity of wu:

J dS(y)u(y)v - D®(y — x) — u(x) as € — 0. (2.93)
0Bc¢ ()
Thus, the right-hand side of can be written as:
u(z) + L () [u(w)y - DBy —2) = By — ) - Duly)| + (1) (2.94)
Hence, combining with , ase — 0, for z e U:
u(z) = — L dy ®(y — x)Au(y) + LU dS(y) [‘P(y — x)v - Du(y) —u(y)v - DO(y — af)]

= | et -+

oUu

(2.95)
aS(y) |y — 2)v - Duly) - gly)v - DOy — )|
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This identity almost provides a closed expression for the solution of the Poisson problem, pro-
vided we know the value of v - Du on 0U. To solve this problem, let us now apply Gauss-Green
theorem, to obtain:

- fUdyw(y)Au(y): f 45 [u(y)y - D& (y) — & (y)v - Dyuly)] . (2.96)

ou

where we used that A¢®(y) = 0 in U. Recalling the definition of corrector function (2.85)), we
rewrite (2.96)) as:

0= f dy W) fw) + | dSW)[gw)v - D () — By — x)v - Dyu(y)] (2.97)
U oU

Therefore, adding this identity to (2.95) we get:

u(x) = L dy Gy, 2) 1 (y) - L dS() )y D,Glu) (2.98)

which proves the claim. =

Recalling Remark (iii), the Green’s function satisfies the following distributional equation,
parametrized by x € U:

-AyG(y,x) = 6(y — x) in U

2.99
G(y,x) =0 on oU. (2.99)

The solution describes the electrostatic potential generated by a charge at z, conditioned to
vanish on 0U. By linearity of the equation, this could be realized adding up to ®(y — x) (the
electrostatic potential of the charge at ) another electrostatic potential, generated by a charge
outside U which cancels the potential generated by the charge at = on the region oU. This
intuition is called the method of image charges, in electrostatics. We shall now discuss the
computation of the Green’s function in two special cases, in which the symmetry of the problem
allows to use the method of images to find the solution.

2.5.1 Half-plane

Let U = R‘i, defined as
R% = {zeR?| z4 > 0} . (2.100)

We look for a corrector function ¢*(y) such that: ®(y — ) — ¢*(y) is zero on y; = 0 for all
z € R%; and ¢%(y) is harmonic for y € R. The natural choice is to consider

P*(y) =@y —2), T=(T1,...,T4-1,~Tq). (2.101)

This function is singular at y = &, which however does not belong to R‘i, and it is harmonic for
y € R‘fr. Also,
Oy—z) =Py —x) for all y € ORY. (2.102)

This choice defines the Green’s function on the half-plane.
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2.5.2 Sphere

Let U = B;(0). We now look for a function ¢*(y) which is harmonic in B;(0), and which is such
that, for all x € B1(0):
" (y) = Py — x) for all y € 0B1(0). (2.103)

As for the half-plane we “reflected” the singularity by replacing x with Z, here we consider the

mapping
T

[af?
For all x € B;1(0), the function ®(y — %) is harmonic for y € B;1(0). However, it is not true that
O(y —2) = ®(y — x) for all y € dB1(0). To adjust the situation, we consider

(2.104)

T =

9" (y) = @(|z|(y — 7)) - (2.105)

This function has the same harmonicity properties of ®(y — ). Moreover, we claim that |z||y —
z| = |y — x| for all y € dB1(0). In fact, for |y| = 1:
2y -z 1
2 =12 2
—aP = jaP(1- 25 )
oy =3 = (1 = 5 +
=|z* -2y -2 +1 (2.106)
= |z —yl*.

Therefore, the choice (2.105]) defines the Green’s function for the Poisson problem in a ball.

3 The heat equation

3.1 Motivations

We are interested in describing the variation in time of a certain quantity, that cannot be created
nor destroyed: no sources or sink are available. We shall denote by u(x,t) the density of such
quantity at a given point = € R? at the time ¢ > 0. In our particular application, the quantity
u(z,t) will denote the heat density, which we shall also identity with the temperature (the two
are related up to a proportionality constant).

Let Q c RY. We define the rate of variation of heat of Q as:

;JQ dx u(z,t) . (3.1)

Since we are ruling out the presence of sink and sources, the body €2 is only able to exchange
heat through its surface 0€2. Thus, we expect:

0
e JQ dru(z,t) = — o dS(z) h(z,t) - v(x), (3.2)

with v(z) the outward normal at x. The vector field h(z,t) is called the heat flux. It describes
the amount of heat that traverses the surface the infinitesimal surface element at x, at the time ¢.
The minus sign in is chosen so that the temperature decreases if the net heat flux through
the surface is positive.

Experience suggests that the heat flux points from regions with higher temperature to regions
with lower temperature. Thus, we postulate that:

h(z,t) = —kVu(x,t) , k>0, (3.3)
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for a certain constant x - the diffusion constant - that we shall fix to 1 from now on. Therefore,

the equation (3.2) reads:

0
g7 JQ dxu(z,t) = LQ dS(x)v-Vu(zx,t) . (3.4)

Applying Gauss-Green theorem, we have:
8J drxu(z,t) = J dx Au(z,t) . (3.5)

Since the equation holds for all Q c R, it is equivalent to:

opu(z,t) = Au(x,t)
u(z,0) = g(x) for all z € R%. (3.6)

Equation ({3.6|) is called the heat equation, and it will be the focus of the present section. It
describes the evolution of an initial temperature profile g(x).

Remark 3.1. (i) Notice that steady state solutions of the heat equation, that is constant in
time, are harmonic functions.

(ii) The heat equation is ill posed for negative times. To see this, consider the heat equation

on Si_:
(at - awx)u(x7t) =0, u(a:,()) = g(l‘) (37)
with u(z,t) = u(z + 2m,t) for all t. As discussed in Section[1], the solution is:
u(z,t) = Z e leintg (3.8)
neL

Let us consider the following special initial datum:

Jn = 5‘n|’jefln‘ for |n| = j. (3.9)

Then, g(x) = 2e77 cos(jx). The solution to the heat equation is:
u(z,t) = 21" te cos(jz) . (3.10)

We notice that g(x) — 0 pointwise, for j — o0, while u(xz,t) — o as soon ast < 0. This
proves that the solution of the heat equation for negative times is not continuous in the
initial datum.

(7ii) The heat equation is not invariant under time reversal. Let a(x,t) = u(x, —t). It satisfies
the evolution equation —dytt = Au, the backwards heat equation, which is different from
the heat equation (@)

3.2 Fundamental solution of the heat equation

As we have seen in Section the heat equation can be solved by using the Fourier transform,
for g € L'(R%). Taking the Fourier transform of (3.6) we have:

ovt(k,t) = —|k[*a(k,t)

u(k,0) = g(k) . (3:11)

The solution is: ,
a(k,t) = e FFtg(k) . (3.12)
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This function is L' in k, for ¢t > 0. Taking the inverse Fourier transform, we obtain:

wlz.t) = dk ef|k|2t€ik-zA
(a,1) f Py (k) (3.13)

As one can easily check, this function is a solution of the heat equation (3.6)). In fact:

(0 — Ag)u(z, ) — f (2‘7{5 7 (0 D)
_ dk .2 2\ _—|k|%t ik-x A _ (3.14)
—f(ml( K2 + [K[2)e e (k) = 0

The exchange of integration and differentiation is justified, since the derivatives are L' functions
in k. Next, we would like to represent the solution in terms of the inital datum g(x), instead of
g(k). To do this, we would like to apply the fact that, recall Eq. (1.83):

(f9)(x) = (2m)"2(f * §)(x) . (3.15)

In our case, f = f = e kPt and g = g(k). The formula holds provided both functions f ,
g are in L' n L?. The Gaussian is in any LP space, however the condition g(x) € L' alone is not
sufficient to ensure that g € L' n L2, As discussed in Section the integrability properties of
g(k) are related to the regularity of g(x). For the moment, we shall assume that g(x) is regular
enough, so that §(k) € L' n L2. If so:

wrt) = [ ke ke
(a.1) f P (k)

= (2m)2 fdy e (2 — y)g(y) (3.16)

where we also used the behavior of the Fourier transform under rescalings (1.84)).

Definition 6 (Fundamental solution of the heat equation.). The function:
1
Dz t) = ——e TV (2 1) e R x R, | (3.17)
(4mt)2
1s called the fundamental solution of the heat equation.

Remark 3.2. (i) To see that ®(x,t) solves the heal equation, simply write it in terms of its

Fourier transform:

Bz, 1) — f(;’f)de“teik-w . (3.18)

(i) Thus, the solution can also be written as:
u(e.t) = [ dy ey~ 2. 1)900)

= (P % g)(2) D(y) = Py, t) -

The function ®(y,t) is also called heat kernel.

(3.19)

To represent the solution of the heat equation as (3.19]) we used a number of properties of the
initial datum g. It turns out that the expression (3.19) provides a solution of the heat equation
for a much larger class of initial data.
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Theorem 3.3 (Solving the heat equation.). Assume that g € C(R?) n L*(R%). Let:

u(,t) = [ dy®(y —x,t)g(y) . (3:20)
Then:
(i) ue C*(RL x Ry),
(ii) dpu(x,t) = Au(x,t) for (z,t) e R x Ry,
(i4i) lim,_,o+ u(z,t) = g(x) for all z € RY.

Remark 3.4. The item (iii) in the above theorem implies that one can view the fundamental
solution of the heat equation as the solution of the followind PDE, in the sense of distributions:

(0 — A)dy(z) = 0

lim ®;(z) =d(x), (3.21)
t—0t
with §(x) the Dirac delta distribution at zero.
Before proving the theorem, notice the following fact:
fdx Oy —z,t)=1. (3.22)
This follows from:
fdx@(y—:c,t) — (2m)2d(0,¢) =1, (3.23)

since ®(
t

e
of u(z,

k,t) = (2m) %2~ recall (3.18). More generally, let us denote denote the total heat
) as:

fdac u(z,t) . (3.24)

Then, if g € L'

[ dvutwt) = [dx [y = .09) = [y [doate—p090) = [drgt), @29

where the exchange of integrals is justified by the fact that both ® and ¢ are L'. Thus, the total
heat of the solution u(z,t) is a constant of motion, which is consistent with the fact that, when
motivating the heat equation, we assumed that no sink or sources are present.

Proof of Theorem[3.3. The first item follows immediately from the fact that ¢ is bounded, and
from the integrability in y of all the space-time derivatives of ®(z—y,t). The second item follows
from the fact that ®(x — y,t) solves the heat equation for positive times.

Let us now consider the third item. By continuity of g, for any € > 0 there exists § > 0 such
that for all y € Bs(z):

l9(z) —g(y)| <e. (3.26)
We rewrite, using the property (3.22):

u(z t) — g(z) = f dy ®(y — 2,8)(9(y) — 9(x))

— J dy ®(y — ,1)(g(y) — g(x)) + f dy®(y —z,0)(gy) — g(z)) 32D
Bs(a) Bg(a)

=I1+1I.
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Consider the first term. By continuity of g:
1<yt sols) - o)
Bs(z)

< EJ dy ®(y — x,t) (3.28)
Bs(z)
<e.

Next, consider the second term. We estimate it as:

11| < 2/ g0 fB dy (x — y,1)

§(z)
1
“2lglo g [ agert (3.20)
(4mt)2 Jjy—z|=0
ly|=6/v/
which vanishes as ¢t — 0%. This concludes the proof. u

Remark 3.5. The heat equation has infinite propagation speed: even if g(x) has compact sup-
port, the time evolution u(x,t) spreads over the whole RY. Physically, this is of course impossible:
other effects, not taken into account by the heat equation, prevent this from happening. Mathe-
matically, this is a consequence of the fact that time and space derivatives have different orders
(first order for the time derivative, second order for the space derivative). For the wave equation,
discussed in the next section, both derivatives are of second order and the propagation speed will
be finite.

3.3 Non-homogeneous heat equation

In this section we shall discuss the non-homogeneous heat equation in R? x R,

Oy — Au(x,t) = f(x,t

(01 = Aul.t) = Sz, a0
u(z,0) = g(z) ,

where f(x,t) is a given source term. The reason for interpreting f as a source term is that the

solution of the heat equation now satisfies the following integral equation (recall the discussion

in Section :

af dxu(z,t) = f dS(z)v - Vu(x,t) + f dx f(x,t), QcR?. (3.31)
ot Jo o9 0
Thus, the rate of variation of the heat in {2 is not only due to transmission through the boundary,
but also to the bulk term appearing in the right-hand side of . In this section we shall
discuss how to solve the non-homogeneous heat equation . The trick we shall use is called
Duhamel principle, and it will be the content of this section.

As discussed in Section the Fourier transform allows to convert differential operators
into multiplication operators. That is, suppose that f € C7(R%) and that D®f e L'(R?), for all
la] < j. Then:

dk

(D)) = [ e e (3:32)
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This identity suggests the following definition of functions of differential operators. For F' €
C(R%), and for f such that F(ik)f(k) is in L'(R%), we may define:
dk N ik
(FDINa) = [ -2 Bl fre’. (3.33)
(2m)>

Under the assumptions on f, the right-hand side makes sense, and it defines a bounded and
continuous function. The identity (3.33) is an example of functional calculus, induced by the
Fourier transform. Thus, consider:

ALY (1) = dk 67|k|2tA pik-a
(At f)(x) - f g ¢ (3.34)

Notice that the right-hand side is well defined under rather mild assumptions on f. In particular,

for the moment we can simply suppose that f € L'(R?). Comparing Eq. (3.34) with Eq. (3.16)),
we see that the action of the heat kernel on the initial datum of the heat equation coincides with

the action of the operator exp(At). In particular:
Oretf = AePlf = eAIAS (3.35)

where the last identity holds provided Af € L' as well. We shall use this representation of
the heat kernel to find a solution of the non-homogeneous problem, under suitable regularity
assumptions, and then later we will check that the obtained solutions makes sense for a large
class of initial data and source terms.

Let t > 0 and 0 < s < t. Let u(x,s) be a solution of the non-homogeneous heat equation
, and let u°(z, s) be a solution of the homogeneous heat equation (f = 0 in ) We
define:

Az, t;8) := (2, ) (x) . (3.36)

According to the above definitions, this identity makes sense provided u(-,s) € L'. Notice that:
w(z, t;t) = u(z,t) , a(z,t;0) = ul(z, 1) . (3.37)

Thus, the function s — u(z, t; s) allows to interpolate between what we know (the solution of the
homogeneous problem), and what we would like to find (the solution of the non-homogeneous
problem). We write:

t

(z,t;t) — a(z,t;0) = f ds 0su(x,t; s)
0

= L ds [ — (APl 8))(2) + (27 du(-, 5))(2)] (3.38)

= L ds [ — (A2 u(, 9)) (@) + (2 Au(, 5)) (@) + (2 f (- 9))(@)]

where in the last step we used that u(x,s) solves the non-homogeneous heat equation (3.30)).
Thus, assuming that: Au(x,s) e L', and f(z,s) € L', we obtain:

(s t) = w0, t) + L ds (209 (., 5))(x) , (3.39)
or, more explicitly:
u(z,t) = de O(x—y,t)g(y) + L ds de O(x—y,t—s)f(y,s) . (3.40)

This way of solving the non-homogeneous problem, by interpolation with the solution of the
homogeneous equation, is called Duhamel method. As the next result shows, the representation
formula (3.38)) holds for a much larger class of initial data and source terms.
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Theorem 3.6 (Solution of the non-homogeneous heat equation). Suppose that g € C(RY) n
L*(RY) and that f € C2(R? x [0,00)), with f,0;, Df, D*f in L*(RY x [0,0)). Then:

(i) ue C3(R? x (0,0))
(ii) (0; — Au)(x,t) = f(x,t) for x e R and t > 0
(i4i) lim,_,o+ u(z,t) = g(x) for all z € R%.
Remark 3.7. The notation f € C2(U) means that f, Df, D*>f,0,f are all continuous in U.

Proof. As proven in Theorem the first term in the right-hand side of solves the
homogeneous problem. Thus, we are left with checking that the second term in the right-hand
side of satisfies items (), (i7), (4i7) above, with ¢ = 0. From now on, we shall suppose that
g=0.

The function ®(x — y,t — s) has a singularity at (0,0), and we cannot exchange directly the
integral and the derivatives d;, A. To avoid this problem, we change variables in the integral, so
that the derivatives only act on f:

u(x,t) stfdyq) x—y,t—s)f(y,s jdsjdy@ y,8)f(x —s,t—s). (3.41)
Using that f € C?(R™ x [0, 0)), we compute:

oru(z,t) = fdy O(y,t)f(xr —y,0) + Lt dsfdy D(y,s)orf(x —y,t —s), (3.42)

where the exchange of integrals and differentiation is allowed, since f(-,t), d;f(-,t) are bounded,
and hence the argument of the y-integrals are L' functions. Similarly,

Au(z,t) = Lt dsfdy Oy, s)Af(x —y,t—s). (3.43)

Therefore, we write:
t
A= fdy By, 1) f(z — 4.0) + f dsfdy Sy, s)[0nf (z —yrt— )~ Af(x— gt — 5)]

Efdy‘@(y, (z —y,0 JdSdeé y,8) — 0sf(x —y,t —s) = Af(z —y,t — )] .

(3.44)
Consider the second term. We rewrite it as:
¢
fo ds [ dy@(y.s)[ - 2.f(@ — yot = )~ Ao~ .t = )]
134
= | ds | dy®(y,s)| — 0sf(x —y,t —s) — Af(x —y,t —s
fo J v ) - o=yt = 5) = Af(a =yt = 5] 55)
t
# | ds [ dyaiw o) - auf@ -yt = 9)— A=yt = )]
I3
=I+1I.
Consider the first term. We have, using that {dy ®(y, s) = 1:
Il<e 0O Jt— A —y,t—
1] <SI§1[8”§] géﬁRXI flz—y,t—s)|+ e zré%{gl fle—y 8)|> (3.46)

=o(1).
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Consider now the second term. Integrating by parts:
t
II = f dsfdy (0s — Ay)P(y, s)f(x —y,t —s)
15
- |y s 3.0+ [ dyoes@ -yt -2 (3.47)

- —fdy By, 1) f(x — 4.0) + fdy By, ) fx -yt —e)

where we used that (0s — A,)®(y,s) = 0. Combining this with (3.44]), and taking the ¢ — 0

limit, we get:

up—Au = lim | dy®(y,e)f(z—y,t—¢)= f(z,t), (3.48)

e—0t

where we used the continuity of f(x,t) in ¢. This proves item (ii). We are left with proving
item (i77): in our setting, this means checking that lim; g+ u(z,t) = 0. We have:

(s 8)oo < 1 ot f dy B (y, s)
= | fllot

which concludes the proof. =

(3.49)

3.4 Uniqueness

So far, we have not discussed the uniqueness of the solution of the heat equation in R%. Suppose
that u; and uo are two solutions of the non-homogeneous heat equation:

(at - A)u(x,t) = f(l’,t)

(3.50)
u(xz,0) = g(x) .
Let w = u; — us. Then, w solves the equation:
Or — A ,t) =0
(O = Bwlz,1) (3.51)

w(z,0)=0.
Obviously, w = 0 is a solution of this equation. The problem is whether there are other solutions.

Theorem 3.8. Let T > 0 and let 0 < t < T. The function w(x,t) = 0 is the only solution of
such that, for some A,a > 0:

lw(z, t)] < el for all z € R and for all 0 <t < T. (3.52)

The proof of this result follows from the maximum principle for the heat equation, that we
shall not discuss; see [2]. It turns out that the growth condition is crucial: in general, it turns
out that the heat equation (3.51]) admits nontrivial solutions (Tychonov example).

We shall now turn to the problem on a bounded domain. To this end, we need to introduce
some notation. Let U be an open and bounded subset of R, with C! boundary oU. Let T > 0.
We define the parabolic cylinder as:

Up = U x (0,T] . (3.53)

Note that Ur includes the top U x {t = T'}, and does not include the bottom U x {t = 0}. We
also define the parabolic boundary of Ur as:

I'p:=Up—Ur. (3.54)
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Notice that I'r includes the bottom U x {t = 0}, but does not include the top U x {t = T'}. In
also includes the time-translation of the space boundary, oU x {t € [0,T")}. We are interested in
the following boundary value problem:

(0t —Au=f inUr

(3.55)
U =g on I'r.

Notice that both g and f might depend nontrivially on time, g = g(z,t) and f = f(z,t). Finding
a solution to (3.55) might be hard; however, the next result proves that, under mild assumptions
on f and g, the solution is unique.

Theorem 3.9. Let f € C(Ur) and g € C(I't). Then, there exists at most one solution u €
C2(Ur) of the initial/boundary value problem .

Proof. The proof we shall give of this theorem is based on an energy argument. Suppose that
u1 and ug are two solutions, and let w = u; — ug. Then, w solved the initial/boundary value

problem (3.55)) with f = g = 0. Let:
e(t) = J w?(z,t)de  0<t<T. (3.56)
U

Clearly, e(t) = 0 and e(t) = 0 if and only if w(x,t) = 0. At t =0, e(0) = 0. At later times, we
compute the derivative:

d
—e(t) = QJU dzxw(z, t)wy(z,t)

dt (3.57)
= 2[ drw(z,t)Aw(z,t) .
U
Integrating by parts, and using that w(z,t) = 0 for x € oU:
d
4oy = —2J \Duw(z, t)%dz < 0. (3.58)
dt U

Therefore, e(t) < e(0) = 0. Since e(t) is a nonnegative quantity, this implies that w(z,t) = 0. =

3.5 Green’s function

As for the Poisson equation, also the heat equation admits a representation formula for its
solution in terms of a suitable Green’s function. Let U be open and bounded, with C! boundary.
Consider the following boundary value/initial value problem:

O — Au = in U
! f 4 (3.59)
u=g on I'p.

Let us introduce the Green’s function of the heat equation as the solution of the following PDE:
(0 — Ay)G(z,y,t) =0 forz,yeU,t>0
G(z,y,t) =0 forye oU or x € oU, t >0 (3.60)
lim G(z,y,t) =d(x —y) .
t—0+

Let u(z,t) be a solution of (3.59). We claim that:

wawzﬁygLwfmﬁemwx—@+L@wmmeww

. (3.61)

—fdamjwm%Ww%Gmuwwu
oU 0
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where v is the outward normal of dU. To prove the statement, let us start from the following
identity, which follows as a consequence of the fact that v and G solve the heat equation:

t—e
| | dsestutv 6@t -)
U 0
t—e
[ av| s8G9~ A Glat - 5] (362
U 0
t—e
+f dyf ds f(y,s)G(z,y,t —s) .
U 0
Consider the left-hand side. It is equal to:
|, vttt = 1600 = w0600 (363)
As e — 0T, this expression converges to, using the last property in (3.60)):
) = | dva(n0)Gat) . (3.64)

Consider now the first term in the right-hand side in (3.62)). By Gauss-Green theorem it is equal
to:

J - dsf dS(y) [v - Dyuly, s)G(z,y,t — s) —u(y, s)v - D,G(x,y,t — s)] . (3.65)
0 ou

Using that the Green’s function vanishes for y € oU, we get, as € — 07

3.65) = —J dsJ dS(y) g(y,s)v - DyG(z,y,t —s) . (3.66)
0 ou

Putting everything together, the claim (3.61)) follows.

The representation formula can be used to find solutions of the heat equation, in cases
in which we can find the Green’s function, under suitable regularity assumptions on f and on
g. For instance, suppose that U = Rfi. As for the Laplace equation, the Green’s function is
obtained by the method of images. Let ®(x,t) be the fundamental solution of the heat equation.
Let g be the reflection y across the boundary of ]R‘i: y; = y; for i # d and g = —ygq. Then, the
Green’s function for the heat equation on the half-plane is, for z,y € Ri:

G(z,y,t) = ®(x —y,t) — P(x — g,t) . (3.67)

We leave to the reader the check that this function satisfies the properties (3.60)).

4 The wave equation

4.1 Motivations

[...] This problem of explaining new phenomena in terms of old ones, when we know the laws of
the old ones, is perhaps the greatest art of mathematical physics. The mathematical physicist has
two problems: one is to find solutions, given the equations, and the other is to find the equations
which describe a new phenomenon. (R. Feynman)

The wave equation is PDE of second order in time and space, that describes a wide class
of phenomena, from sound propagation, to the oscillations of membranes, to the waves in the
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sea. Here we shall heuristically discuss how the wave equation arises in the description of the
propagation of sound in a one-dimensional medium. We will follow [3, Chapter 47].

We consider a thin, one-dimensional tube, filled with a gas initially at equilibrium. Let us
denote by po(z) the initial density of the gas, and by FPy(x) the initial pressure. We postulate
that the pressure is a local function of the density, Py(x) = f(p(x)), for some f. At equilibrium,
the density is constant po(x) = pg. We are interested in discussing the evolution of the gas, once
a variation of the density is introduced by an external perturbation.

We suppose that at time ¢ = 0 a variation in the density is introduced, po(z) — po(x)+ pe(z).
Correspondingly, the pressure at = also changes:

Po(z) = Po(z) + Pe(x) = f(po(x) + pe(@)) = Po(x) + pe() f'(po(@)) - (4.1)

Therefore,
Pe(z) ~ kpe(z), K= [(po()). (4.2)
At equilibrium, x is a constant. A change in the pressure introduces a net force on a small

portion of the gas, in the interval [z, 2 + Ax]. We are interested in finding as equation for this
displacement. After a small time ¢, the interval [z, Az] will evolve as:

[z, + Az] — [z + u(z, 1),z + Az + u(z + Az, t)], (4.3)

for a small interval Az. We are interested in finding an equation for u(zx,t). Ultimately, the gas
is formed by molecules, that evolve following the laws of mechanics. Thus, we shall try to find
an equation for u(z,t) based on mechanical considerations. By mass conservation:

poAx ~ p(z)[r + Az + u(x + Az, t) — z — u(z,t)] . (4.4)

The left hand side is the total mass of the interval [x,z + Az], while the right-hand side is an
approximation for the total mass in the evolved interval. The approximation is due to the fact
that we are choosing the density p at the point z, while we should integrate p(-) in the evolved
interval. This further approximation is motivated by the fact that Az and u(x,t) are small: we
are studying a small displacement around x. Neglecting higher order corrections,

po = (po + pe(x))(1 + Opu(z,t)) = pe(x) =~ —polru(z,t) . (4.5)

The last relation in the above equation has the correct sign: if the size of the interval increases,
the density has to decrease. To find an equation of motion for u(z,t), we shall rely on Newton’s
second law. The acceleration of the particles inside the gas is given by d?u(x,t), and the total
mass of the interval is pgAz. The net force acting on the interval is given by the pressure
difference P(x) — P(x + Ax). Therefore, for small times:

poAzdiu(z,t) = P(z) — P(x + Az) . (4.6)
Linearizing the right-hand side in Az, and recalling the relation for the pressure:
pol2u(z,t) ~ —KOype(x) ~ Kpod2u(z,t) (4.7)
where in the last step we used . Therefore, we obtained the following evolution equation
for u(x,t):
U%&fu(z:, t) — 02u(z,t) =0, (4.8)

S
with v2 := k the speed of sound in the medium. Eq. (4.8) is the wave equation, in one spatial
dimension. In higher dimension, the wave equation in R¢ is the following initial value problem
(we shall set vs = 1 from now on):

Zu(x,t) — Au(z,t) =0
u(z,0) = g(x) (4.9)



where g and h specify the initial condition; notice that, being the equation second order in time,
with respect to the heat equation we need an initial condition for the time-derivative as well.

4.2 Solution in d = 1: d’Alembert formula

To begin, we will discuss how to solve the wave equation in one space dimension. We consider
the initial value problem:

(02 — 0H)u(z,t) =0
u(z,0) = g(z) (4.10)
oru(x,0) = h(x) .

As usual, we shall suppose that a solution exists, and we shall find a representation formula for
the solution. Then, we will have to check that the formula indeed provided a solution. It is
convenient to rewrite the equation as:

(01 + 02) (8 — 3)u(z,t) = 0 . (4.11)

Let us define v(x,t) := (0t — 0z)u(x,t). Then, the wave equation reduces to two coupled first
order PDEs:

(Ot + Oz)v(z,t) =0

(0 — Oz)u(z,t) = v(x,t) . (4.12)

We shall first solve the first, and then use it as a source term for the second. These two equations
are a special case of the transport equation, which we now briefly discuss.

The transport equation. In R%, the transport equation is, for a fixed vector b € R%:
oru(z,t) +b- Vu(x,t) =0. (4.13)

This equation described the evolution of the density of a rigid body; let us see why. Let Q < R¢
be the volume occupied by a body, and let us define its translation along b as:

Qt):={zeR?|z—bteQ}. (4.14)

Let u(x,t) be the mass density contained in Q(¢). Then, the total mass at time ¢ is:

f dx u(z,t) f dru(z + bt,t) . (4.15)
Q) Q

The total mass is unchanged by the translation:
d
= f dru(z +bt,t) = f dx (Qpu(z,t) + b - Vu(z,t)) . (4.16)
dt Jo Q

Being true for any Q < R, we see that the density u(z, ) satisfies the transport equation (4.13)).
If u(x,t) solves (4.13)), the function s — z(s) := u(x +sb,t+s) is constant in s. In particular,

2(0) = z(—t), (4.17)

which implies:
u(z,t) = u(z — bt,0) . (4.18)
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Therefore, the solution of the transport equation corresponds to a translation of the function
u(z,0). To conclude the discussion about the transport equation, let us consider the non-
homogeneous case. We consider:

(4.19)
u(z,0) = g(z)
Equivalently, we can reformulate the transport equation as:
d
£z(s) = f(x + sb,t +s) . (4.20)
Integrating:
0 d
0) —z(—t) = ds —
A0 =20 = | dsox()
0
= f ds f(x + sb,t + s) (4.21)
—t
¢
= J ds f(x + (s —t)b,s) .
0
That is: .
u(z,t) = g(x —tb) + J ds f(x + (s —t)b,s) . (4.22)
0

The formula (4.22) is useful in solving the wave equation in d = 1, (4.12)). By the previous
discussion, the solution of the first equation in (4.12) is:

v(x,t) = h(x —t) — (0pg)(x — 1) . (4.23)

Let us now consider the second line, where now v acts as a source term. We have:
¢

u(z,t) = glx +1t) + Jo dev(x — (s —1t),s); (4.24)

plugging the identity (4.23) in (4.24)), after a few manipulations, we have:

u(z, t) = %(g(a: )+ glr—t) + % f“ dy h(y) . (4.25)

r—t

This is a representation formula for the solution of the one-dimensional wave equation, which
takes the name of d’Alembert formula. It is not difficult to check that (4.25)) solves the one-
dimensional wave equation.

Theorem 4.1 (Solution of the wave equation in d = 1.). Let g € C*(R), h € CY(R). Let u(x,t)
be given by d’Alembert formula. Then:

(i) we C*R x [0,0))
(1) ug — Uz = 0 for (z,t) e R x Ry
(#3) limou(z,t) = g(x) and lim;_ow(x,t) = h(x).

Remark 4.2. (i) In contrast to the heat equation, the solution of the wave equation does not
get smoother.
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(ii) The solution has finite propagation speed. The solution u at the space time point (x,t) is
determined by the functions g(y) and h(y) for values y such that |z — y| < t. In order
words, perturbations of g and h for values of y such that |y — x| > t do not affect the
solution u at (x,t). Physically, the information carried by the propagation did not reach
the space-time point (x,t).

(#ii) The wave equation is time-reversal symmetric. Given a solution u(x,t) with initial datum
(g,h), we obtain another solution u(x,t) by setting u(x,t) = u(x, —t) and choosing initial

datum (g, h) = (gv —h).
(iv) The solution of the one-dimensional wave equation can be rewritten as:
u(z,t) = F(x +1t) + Gz —t) (4.26)

with, for an arbitrary point xgy:

Flz+1) = %g(x 1)+ % fH dy h(y)
. s (4.27)
Gxr—t) = §g(x —t) + B _tdyh(y) .

Thus, the solution can be viewed as the superposition of two travelling wavefronts, with
opposite directions.

The wave equation on the half-line. Before concluding the section, let us discuss the
solution of the wave equation on the half-line. This will be relevant for the content of next
section as well. We consider:
Upt — Ugg = 0 on Ry x R,
u(z,0) = g(z) for x € Ry
ut(x,0) = h(z) for x e Ry
u(0,t) =0 forte Ry .

(4.28)

Thus, for consistency g(0) = h(0) = 0. In order to solve (4.28)), we shall use a reflection method.
Suppose that u(z,t) is a solution of (4.28). We extend this function to = € R by defining;:
u(x,t) = u(z,t) x>0

w(z,t) = —u(—=x,t) 2 <0. (4.29)

It is easy to check that @(z,t) is continuous at x = 0. Also, @(x,t) is continuous at z = 0. It
order to have a C? solution on R, we also have to assume that ¢g”(0) = 0, as it will be clear in a
moment. By construction, the function o satisfies the wave equation on the real line:

Ut (2, 1) — Ugg(z,t) =0 on R x (0,00)
on R x {t = 0} (4.30)
on R x {t =0} .

We can find the expression for @ by using d’Alembert formula. We get:

iz, 1) = %(g(x )+ —t) + % f“ dyh(y) . (4.31)

r—t

Suppose 0 < x, x = t. Then:
1 1 x+t
u(z,t) = i(g(fv +t)+glx—1t))+ ZJ dy h(y) . (4.32)
x—t
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Instead, if 0 < x < t:
1 1 T+t
u(et) = 5lola+ 0 =gt -0) + 5 [ dyhiy). (433)

t—x

These two branches of the solution can be joined in a C? way only if ¢”(0) = 0.

4.3 Solution in d = 3: Kirchhoff formula
In this section we shall discuss the wave equation in d = 3:
(02 — A)u(z,t) =0 on R? x R,
u(x,0) = g(x) on R3 (4.34)
ut(x,0) = h(z) on R?.

The procedure we will follow to find the solution for this equation will rely on the 1d case on
the half-line, discussed at the end of the previous section. Let us define the spherical averages:

U(z;r,t) = ][u(yjt)dS(y)
Glair) = f ow)ds(y) (4.35)
H(wir) = | hy)as().

By continuity, lim, o+ U(z;7,t) = u(x,t), and the same for H and G. Our strategy will be to
find an equation in the (r, t) variables, at x fixed, for the spherical averages. The solution of the
wave equation in d = 3 will be obtained as 7 — 07 of the solution of this new equation.

Lemma 4.3 (Euler-Poisson-Darboux equation.). Suppose that u € C™(R? x R) for m > 2

solves the wave equation. Then, U € C™ (R4 x Ry), and it solves the equation:

d—1
Uy —Up——U, =0 on Ry x Ry

r
U=G on Ry x {t =0} (4.36)
Ut:H OnR+X{t=O}.

Before proving this lemma, let us show how it allows to solve the wave equation in d = 3.
To this end, let U be a solution of the EPD equation, and let:

U=rU, G=rG, H=rH. (4.37)

We claim that U solves the 1d wave equation on the half-line:

ﬁtt*ﬁrrzo OHR+XR+

U=0G on Ry x {t =0} (4.38)
oU = H on Ry x {t =0} .
U=0 on {r =0} x R;.

Also, G" (0) = 0, as one might easily check. Let us check that 1) holds. From now on, we
shall set d = 3. We have.

~ 2
Uy =rUy = T(Um‘ + ;Ur) (439)

43



where in the last step follows from the EPD equation. Therefore:
Uyt = rUpr +2U, = (U +7U,), , (4.40)

and the final claim follows after recognizing that U + rU, = ﬁr. Let us now use the explicit
solution of the wave equation on the half-line, obtained at the end of the previous section, to
determine ﬁ(w, r,t) for 0 < r < t; this is the only range of parameters we are interested in, since
we will eventually take the limit 7 — 0%. We have:

- 1/~ N 1 T+ -
U(z;r,t) = 5(6‘(.@;7“ +t) — G(x;r — t)) + ZJ tdyH(y) : (4.41)
—r+

By continuity, u(x,t) = lim,_,g+ U (x;7,t)/r. Hence:

oI AT t+r
u(z,t) = lim <G(x,7" ) = Glair—1) + 1f
r—0+ 2r 2r Ji_, (442)

= 0,G(x;t) + H(x;t) .
Let us compute the first term. We have:

At = G(of  aswow)

- ;(tjfa NCCICE 12))

(4.43)

= J[ dS(z)g(z +tz) + J[ dS(2)tz - Dg(z + tz)

0B1(0) 0B1(0)
y—x
= dS(y) |gly) +t(=——) - Dg(y)| .
Jop, 45 [st0) = (*57) - Doto)]

Plugging this identity in (4.42), and recalling that fl(a:, t) = t&aB(x n dS(y)h(y):

wr.) = a5 [ow) + =) Do) + )] (1.49)

Eq. (4.44) is the explicit solution of the wave equation in d = 3. It is called Kirchhoff formula.
Eq. (4.44) has been derived under the assumption that u(z,t) is a solution. It is not difficult to
check that Eq. (4.44) indeed provided a solution of the wave equation.

Theorem 4.4. Suppose that g € C3(R3) and h € C*(R3). Let u(x,t) be given by (4.44). Then,
u(w,t) is a C? solution of the wave equation .

Remark 4.5. (i) Compared to the 1d case, we are requiring more reqularity on g and h. In
particular, the reqularity of g is higher than the regqularity of u.

(ii) The solution has the finite propagation speed property. The value of u at (x,t) is determined
by the values of g and h at y such that |y — x| = t. Equivalently, the value of g and h at a
given y affect the solution u for all (x,t) such that |x —y| = t.

To conclude the discussion of the solution of the d = 3 wave equation, we have to show that
if u(x,t) is a solution then its spherical average satisfies the EPD equation (|4.36]).
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Proof of Lemmal[{.3 To begin, we compute:

0
Ulzirt) = 5.4 dSwu(w.0)
or JoB, (x)
X (4.45)
= J[ dS(y)y - Dyu(z + ry,t) .
T JoB1(0)
By Gauss-Green theorem:
1
Ur(z;7,t) = ——— dy Ayu(z + 1y, t)
r10B10)] Jg, ) "
r
= — dy Agu(z + ry,t) 4.46
r[0B1(0)] Jp, 0 (4.46)
= T][ dy Au(y,t) ,
dJB,(2)
where we used that |0B1(0)| = d|B;1(0)|. Hence,
1
d—1
r¢ U (z;r,t) = J dy Au(y,t
(z57,1) da(d) )00 (y,1)
(4.47)
_ b J dy g (3, 1)
where we used that u solves the wave equation. Furthermore,
1
d—1
(i), = s [ dS() e
" da(d
(d) JoB, (2) (4.48)
=S un(t)
0B (x)
which is equal to 74~ Uy (z; 7, t). Hence:
U (x5, t) — o (’I“dilUr(l‘;’l“,t))r =0 (4.49)
which is equivalent to:
d—1
Up(z;r,t) — " U (x;r,t) — Upp(z;7,t) = 0. (4.50)
This concludes the proof of Lemma (4.3 ]

To conclude the section, let us briefly sketch the argument that one should follow to solve
the wave equation in d = 2. Suppose that u € C?(R? x R, ) is a solution of the 2d wave equation.
Define 7 € C?(R3 x R,) as:

w(z1, xa, x3,t) = u(x1, T2, .) (4.51)

That is, the function @ is constant in x3. Being u solution of the 2d wave equation, the function
4 trivially solves the 3d wave equation. The solution of the 3d wave equation is given by
Kirchhoff formula . In this expression, the argument of the integral is constant in y3; thus,
performing the y3 integration we get, see [2] for details:

1 tg(y) + 2h(y) + t(y — x) - Dg(y)
) == d . 4.52

This expression takes the name of Poisson formula.
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Remark 4.6. Notice that the value of the solution at (z,t) is influenced by the values of g and
h fory such that |x — y| < t, instead of |x —y| =t as in the 3d case. Equivalently, after a time
t, the initial datum at y influences the solution in a ball of radius t centered at y, while in the 3d
case it influences the solution in a sphere of radius t centered at y. This phenomenon is called
Huygens principle.

4.4 Non-homogeneous wave equation

Let us now consider the wave equation in the presence of a source term:

(02 — Au(z,t) = f(x,1) on R? x R,
u(z,0) = g(z) on R? (4.53)
ut(x,0) = h(x) on R?.

The source term f describes an external force acting on the system. For instance, in the heuristic
discussion of Section [4.1] it could take into account an external force acting on the gas confined
in the thin tube, such as gravity, if the tube is tilted.

In this section we shall discuss how to solve . By linearity of the equation, we can
represent the solution as u = uj + ue, where u; is the solution of the non-homogeneous problem
with ¢ = h = 0, and s is the solution of the homogeneous problem with f = 0. Thus, without
loss of generality we shall suppose that g = h = 0.

Suppose for the moment that u(x,t) is a solution, in L'(RY) n L?(R?), together with all its
derivatives. Then, we can define the Fourier transform of u, which we can also invert. The
Fourier transform of the solution of the wave equation satisfies the ODE:

07 + |k[*ya(k,t) = f(k,t)

( (4.54)
@(k,0) = i (k,0) =0 . ‘

In general, the solution of the homogeneous wave equation, with non-zero initial datum, is:

sin([klt) -

fo(l, ) = cos([kIE)g (k) + = () (4.55)

By functional calculus, we could also represent the function wug(z,t) as:

sin(|V]¢)

uo(x,t) = cos(|V|t)g(z,t) + N

h(z,t) . (4.56)
We shall apply Duhamel’s method. We would like to define a function @(k,t;s) which allow
to interpolate between the solution of the non-homogeneous equation and the solution of the
homogeneous equation (for g = h = 0). To this end, it is natural to define:

sin([k|(t — s))

u(k,t;s) = cos(|k|(t — s))u(k,s) + |k|

ok, s) , (4.57)

with 4(k, s) the solution of the non-homogeneous problem. We see that @(k,t;t) = u(k,t) and
u(k,t;0) = 0. Hence:

t
ik, 1) = f ds Ok, t: 5)
0

= L ds []k:\ sin(|k|(t — s))u(k, s) + cos(|k|(t — s))dsu(k, s) (4.58)

sin(|k|(t — s))

— cos([k|(t = 5)dua(k,5) + =

2a(k, s)] .
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Using that @ solves the non-homogeneous problem, we have 02a(k,s) = —|k[*a(k,s) + f(k, s)
and therefore:

ik, ) — L ds Wﬂk, 5) . (4.59)

Notice that the argument of the integral is also the solution of the following homogeneous wave
equation:

; (4.60)

Thus, we found that the non-homogeneous wave equation with g = h = 0 is solved by:

¢
u(z,t) = J dsug(z,t;s) , (4.61)
0
where ug(z,t; s) solves the homogeneous wave equation:
(O — A)u(z,t) =0 for t > s

4.62
u=0, u = f(-,s) for t = s. (4.62)

We proved this by assuming suitable regularity properties of the solution. The next theorem
proves that the expression we found, Eq. (4.62)), holds on greater generality.

Theorem 4.7. Lef]| f € ClY2HY(RE x R,) ford =2 and f € C*(R x Ry) for d = 1. Then, the
function u(x,t) in solves the non-homogeneous wave equation.

Let d = 3. By Kirchhoff formula (4.44]), the solution of the wave equation (4.62]) is:
wietis) = (=9 dSE)ws). (463)
0Bi—s(x)
That is, plugging this expression in (4.61)):

ulie, ) = j s “‘5>J€Bt . )dS(y)f(y;s)

f(y;s)
ds LBt ) P (4.64)

f(yv l— S)
47r ds LBS dS(y) —

Therefore, rewriting the expression in terms of an integral over a ball:

_ 1 flyit =y — =)
u(x,t) = e jB( )dy . (4.65)

ly — o

The integrand on the right-hand side is called a retarded potential.

%[a] denotes the integer part of a.
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4.5 Uniqueness

In this section we shall discuss the proof of uniqueness for the solution of the wave equation.
We shall use energy methods, that allow to prove uniqueness of a bounded domain. The same
method will allow us to reformulate the finite-speed of propagation property.

Let us consider the following initial value/boundary value problem:

uyg — Au = f, on Ur
u=g, on I'p (4.66)
ug = h, on U x {t = 0}.

The set U < R? is open and bounded, with C' boundary. See Section for the definition of
Ur and I'p.

Theorem 4.8 (Uniqueness for the wave equation.). There exists at most one function u €
C%(Ur) solving (4.66

Proof. Suppose that u; and wug solve (4.66). Let w = u; — ug. Then, w(x,t) solves:

wy — Aw =0, on Ur
w(z,t) =0, on I'p (4.67)
wi(z,t) =0, on U x {t = 0}.

Cleary, w = 0 is a solution of such PDE. We would like to know whether it is the unique solution.
To this end, define the energy of w(x,t) as:

1
E(t) := QJ ds [wy(z,t)* + |Dw(z,t)|*] (4.68)
U

for 0 < ¢t < T. Trivially, E(0) = 0 and E(t) > 0. Suppose we know that E(t) =0 for 0 <t <T.
This implies that wy(x,t) = 0 and that d,,w(x,t) = 0for 0 <t < T. Since w = 0on U x {t = 0},

we find w(z,t) = 0 for (z,t) € Ur.
Let us now prove that E(t) = 0 for 0 < ¢t < T. As for the heat equation, we compute the

time derivative of the energy:

d

aE(t) = fU dx [wi(x, t)wy(z, t) + Dw(z,t) - Dwy(x,t)] . (4.69)

Integrating by parts, using Gauss-Green theorem, we have:

d

4 B(r) - f d we(z, ) [ (2, 1) — Aw(, 1)] + f dS(x) Dw(a, 1) - vwn(z,t) . (4.70)
U ou

The boundary term is vanishing, due to the fact that w(z,t) = 0 for (z,t) € oU x [0,T], and

hence wy(z,t) = 0 for (z,t) € U x [0,T]. Also, the first term is vanishing, due to the fact that

w(z,t) solves the homogeneous wave equation. Therefore,

E(t) = E(0) forall 0 <t <T, (4.71)
which proves that w = 0 is the only solution of (4.67)), hence u; = us. =

Remark 4.9. Notice that the above proof works also on unbounded domains, provided the energy
of the solution is finite.
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To conclude the section, let us review the issue of the finite speed of propagation, using
conservation of the energy. For the sake of the forthcoming discussion, U might be unbounded;
e.g., it could be U = R?. Let us consider the following boundary value/initial value problem:

wy — Aw =0, on Up
w(z,t) = g(z,t), on I'p (4.72)
we(z,t) = h(z) , on U x {t = 0}.

Let 9 € U, T > to > 0. Suppose that By, (z¢) < U. Let us define the backwards wave cone with
apex (xo, to) as:
K(l‘g,to) = {(x,t) | 0<t<ty, |l’*l‘0| <t0*t} . (473)

Notice that, due to the condition By, (zo) < U, K(zo,t9) < Uy,. The following theorem gen-
eralizes the finite speed of propagation property, encountered in the previous discussion, when
finding explicit solutions of the wave equation in d = 1,2, 3.

Theorem 4.10 (Finite speed of propagation.). Let u be a solution of in C*(Ur). Suppose
that g(z,0) = h(x,0) =0 for x € By,(x0). Then, u(x,t) =0 for all (x,t) € K(x0,to).

Remark 4.11. This theorem easily implies that any perturbation of the initial datum away from
By, (z0) does not affect the shape of the solution inside the cone K (xg,to).

Proof. For 0 <t <ty <T,let us define the local energy:

1
e(t) := J dz [u}(x,t) + |Du(z,t)|%] . (4.74)
Bty—t(z0)
Clearly, e(0) = 0. To estimate e(t) at later times, compute:
d 1
Ge0 =] delwustDu-Dul =3[ sl D @)
t Bt —t(z0) 0Bio—t(z0)
By Gauss-Green theorem:
d
—e(t) = J dx ug(ug — Au) + J (v - Du)udS(y)
dt Bio_t(xo) aBtO_t(Io) (476)
5| s+ D).
aBtoft(x())
Using that u solves the homogeneous wave equation:
d 1
Celt) = J (v DuymdS(y) ~ 4 J dS() [+ |Duf].  (477)
t 0Bt—t(0) 0Bt—t(0)

This is the point where we used that By, (xo) < U, which also implies By,—¢(xg) < U. Next, by
Cauchy-Schwarz inequality, recalling that |v| = 1:

1 1
‘(1/ . Du)ut‘ < §]Du\2 + 5”'? . (4.78)
Inserting this inequality in (4.77)), we get, for all 0 <t < {¢:
d
—e(t) <0. 4.79
Ge(ty <0 (4.79)
Therefore, 0 < e(t) < e(0) = 0, which means that
ut(y,t) =0 and JQu(y,t) =0 for all x € Byy_t(zo) and for all ¢ € [0, to]. (4.80)
Since u = 0 on By, (zg) x {t = 0}, the first condition in (4.80]) implies that u = 0 in K (xo, to).
This concludes the proof. ]
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5 Quantum mechanics

Quantum mechanics is the microscopic theory of nature that describes the properties of the
microscopic world, on the scale of atoms and molecules. It is more fundamental than classical
mechanics, in the sense that classical mechanics can be derived from quantum mechanics in a
suitable limit. Evolution in quantum mechanics is defined by the Schrodinger equation, a linear
PDE that will be introduced below. This section will be devoted to the study of the Schrodinger
equation, in some special cases. Most of what will be discussed in this section can be found in
the books [9, [§].

5.1 Postulates of quantum mechanics

States and observables. Let H be a vector space over C, equipped with a scalar product (-, -).
In the following, we shall denote by || - || the norm induced by the scalar product. If H, equipped
with this norm, is complete, then the pair (H,{:,-)) is called a Hilbert space. An important
example is the space of square-integrable functions, L?(R%), equipped with the scalar product

o= | deT@gte) (1)

States in quantum mechanics correspond to vectors in a Hilbert space H. The precise choice of
the Hilbert space is dictated by the problem we want to study. Physically measurable quantities,
called observables, correspond to self-adjoint operators on H. Recall that a linear operator
O : H — H is called self-adjoint if:

(f,0g9)={0f,g) VfgeH. (5.2)

The expected value of the observable O on the state ¢ is defined as

¥, 09) . (5.3)

Being O self-adjoint, this quantity is real. Physically, this number is what one obtains after
infinitely many measurements of the physical observable O.

Suppose for the moment that # is finite dimensional. By the spectral theorem for self-adjoint
operators, we can represent O as:

0= NPy, , (5.4)

J

with A; the eigenvalues of O, and P, the orthogonal projector onto the eigenvector ;. That
is:

Py, i) =@, V) - (5.5)

Then, we have:

@, 0Py = N[, oI - (5.6)
J
Notice that, by the completeness of the orthonormal basis generated by the eigenvectors of O,

2P =1. (5.7)

The interpretation of the identity is the following. The eigenvalues \; are the possible
values of the observable O, and [(1, p;)|? is the probability that, if the system is in the state v,
a measurement of O gives the value A;. If, for example, 1) = ¢;, then a measurement of O will
produce the value A\; with probability 1. In general, however, ¢ will be a linear combination
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of different eigenstates ¢;, hence a measurement of O will give different values with different
probabilities. It makes sense, therefore, to introduce the variance of O in the state 1 by setting:

AOy = (), (0 =, 00))*p = (), 0%y — (3, 0h)* . (5.8)
If, as before, O = Zj AjPp;, then it is not difficult to see that:
AOy = Y (N — &, 0P K, o) - (5.9)
J

An important property of quantum systems is that noncommuting observables cannot be mea-
sured simultaneously with arbitrary precision.

Theorem 5.1 (Heisenberg’s uncertainly principle.). Let A, B be two self-adjoint operators on
H. Then, we have:

1
AAyABy = L[, [A, Bl , (5.10)
where [A, B] = AB — BA is the commutator of A and B.

Proof. Without loss of generality, suppose that (i, Ay = (3, By)) = 0. If not, we redefine A
and B by subtracting them their respective averages on 1. Then:

W, [A,Blyp) = (¢, ABY) — (¢, BAY) = 2ilm(3p, ABY) . (5.11)

Therefore,
[, [A, Bw)| < 200, ABY) = 2|(Av, B)| < 2| Av||By| = 2AA?AB)? (5.12)
which proves the claim. =

Many applications of quantum mechanics rely on infinite dimensional Hilbert spaces, such
as L2(R%). In these cases, self-adjoint operators might have continuous spectrum as well. Also,
the operator O might be unbounded, which means that Oy makes sense only for ¢ in a dense
domain D(O) of H:

DO)={peH|OyYeH}. (5.13)

For an infinite dimensional Hilbert space, the spectral resolution of O takes the more general
form, for all ¢ € D(O)

(p,0p) = fR tp(dA)A (5.14)

where f1,(+) is a Borel measure. Physically, this Borel measure describes the probability measure
for the outcomes A\, which might form a continuum.

Theorem also holds for unbounded operators, provided the vector v is chosen in the
appropriate (dense) subspace of H.

Time evolution. Time-evolution in quantum mechanics is generated by a self-adjoint operator
H on H, called the Hamiltonian. The precise form of the Hamiltonian depends on the physical
problem we are interested in. Given a Hamiltonian H and a state v, the expected value (1), H1)
has the significance of average energy of the systems.

Once a Hamiltonian is given, the time evolution is given by the Schrodinger equation:

iop(t) = Hy(t) ,  ¢(0) =, (5.15)
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with ¥ (t) € H. A key feature of this evolution equation is that it preserves the norm of (t):

LIl = S0, (1)

)
[0 (0), (8)) — (W(0), i ()] (5.16)

= i[(H (1), (1)) — p(t), Hp(t))]
=0,

since H is self-adjoint. If H is a bounded operator on H, the solution of the Schédinger equation
is given by:

Y(t) = e My(0) (5.17)
where the exponential e=*#* is defined through the absolutely convergent series:
i _ o (CitH)!
e =) —n (5.18)
£=0

In particular, if H has the spectral decomposition H = > y A;j Py, the exponential map is given

by: ' .
e tHE — Z e_lAftP¢j . (5.19)
J

In particular, the solution of the Schrédinger equation associated with initial data (0) = ¢; is:

P(t) = e_i’\jtgpj . (5.20)

In other words, the time-dependence of the state reduces to a phase, which has no physical
significance. In fact, the expectation value of an arbitrary self-adjoint operator is:

W(t), Ap(t)) = (pj, Apj) (5.21)

and does not depend on ¢. Thus, the vectors ¢(t) and ¢; describe the same quantum state. For
this reason, we say that eigenvectors of H describe stationary states.

The uniqueness of the solution of the Schrédinger equation for bounded operators follows
from the definition of the exponential map. For unbounded operators, the series in does
not make sense; the existence and uniqueness of the solution of the Schrodinger equation, on
the domain of H, is proved using the spectral theorem for unbounded operators. Later, we will
focus on special choices of the Hamiltonian H, and we will not make use of this general result.

Measurements. What happens to the state ¢ € H of a quantum system when we perform a
measurement of an observable O (a self-adjoint operator on H)? Measurements in quantum me-
chanics correspond to interactions with classical devices. For example, to measure the position
of an electron we let it interact with a detector. We do not want to describe the detector as part
of the quantum system; we want to consider it instead as a classical device, obeying the rules of
classical mechanics. As a consequence, we cannot describe the measurement process through the
Schrédinger equation. We need to establish new rules to describe what happens to the quantum
system when it undergoes a measurement. This is still a highly debated subject in quantum
mechanics (the problem of foundations of quantum mechanics). The most common interpreta-
tion of the measurement process, called Copenhagen interpretation, is as follows. Suppose that
a quantum system is described by a normalized vector v in a Hilbert space H. We perform a
measurement of an observable associated with the self-adjoint operator O. For simplicity, let
us assume that O has the spectral representation O = Zj AjPp;, where \; are the eigenvalues
and ¢; the corresponding normalized eigenvectors of O. As explained above a measurement of
O produces the outcome \; with probability [(¥, ¢;)|?. If the measurement of O produces the

52



outcome \j;, then, after the measurement, the system is described by the eigenvector ¢;. More
precisely, as a result of the measurement, the vector v collapses into the vector Pjy/|Pji|,
where P; denotes the orthogonal projection onto the eigenspace associated with the eigenvalue
Aj. In particular, if the eigenvalue is nondegenerate, we have Pji/|Pjy| = ;.

Canonical quantization. From now on, we shall assume that % = L*(R?). This choice is
relevant for describing the motion of one quantum particle on R?. The wave function of a particle
is a function 1 € L2(]Rd). The position operator % is the multiplication operator acting as:

(&0)(x) = wi(a) (5.22)

The expectation value of the i-th component of the position operator is:

W) = | deafp@)P . (5.23)
R

In particular, |1)(z)|? has the interpretation of probability distribution for finding the particle
at z. That is, the probability for finding the particle in A © R? is defined as:

Py (A) = L dz | (z)]? . (5.24)

By the normalization of the wave function, P, (RY) = 1.
The momentum operator p is a differential operator acting as:

(p)(x) = —iV(x) (5.25)

where the —i factor makes it self-adjoint on a suitable dense domain. Let zﬁ be the L2-Fourier
transform of ¥. The expectation value of the i-th component of the momentum operator is:

W) = | P (5.26)

where we used Plancherel’s theorem. Thus, the momentum operator p; acts as a multiplication
operator, in Fourier space. Later, after discussing the solution of the free Schrodinger equation,
we will motivate the definition of momentum operator as given above. Notice that position
and momentum operator correspond to two non-commuting operators on H. In particular, by
Heisenberg’s uncertainty principle, Theorem [5.1, we have:

Ok,j

A(Pe)pA(X)y = =

013 - (5.27)

Informally, this means that a localized state in position space has to be delocalized in momentum
space, and viceversa. This fact, which has no counterpart in classical mechanics, plays a crucial
role in the stability of matter, as we will see later.
The classical Hamiltonian for a non-relativistic, pointlike particle in R, subject to an exter-
nal potential V' (x), is:
2
p
H(z,p) = —+V(z). 5.28
(2.0) = 2+ V(@) (5.28)
This is a function on the phase space, R? x R? which generates the classical evolution from

Hamilton’s equation of motion:

% <93(t)> _ < VpH (x(t),)p(t

)
() —%ﬂ@@mwo' (5.29)
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The quantum counterpart of this equation of motion is given by the Schrodinger equation ((5.15)),
where the Hamiltonian H is an operator on L?(R?) defined as:

]52
H="4V(@
o T V()
A .
Z—%‘FV(I’),

(5.30)

with A the Laplacian on R%, and V(Z) a multiplication operator:

(V(@)¢)(x) = V(z)p(z) . (5.31)

Notice that H is now an unbounded operator on L?. For a wide class of external potentials V/,
such as those we will consider, it turns out to be a self-adjoint operator, on a dense domain D(H).
What makes the problem of studying the quantum evolution generated by particularly
interesting is that the operators p? and V(2) do not commute, in general.

5.2 The free Schrodinger equation
To begin, we will consider the free Schodinger equation, that is:

io(t) = —AY(t),  ¥(0) = e L*(RY). (5.32)

We will restrict our attention to a nice enough class of initial data, that will allow us to find a
strong solution of the equation. Notice that we set m = 1/2, for convenience.

Definition 7 (Schwartz functions.). For any two multi-indices o, B, define:

|f
We define the space of Schwartz function as:

g = 2D flos - (5.33)

SMRY) :={f € C®(RY) | |flaps < oo for all multi-indices a, B.} (5.34)

It is not difficult to check that S(R?) < LP(R?), for all p. Also, S(RY) is dense in L?(R?).
Another nice aspect of the Schwartz space is that it is left invariant by the Fourier transform.

Lemma 5.2. Let f € S(RY). Then, f € S(RY).

Proof. Recall the properties of the Fourier transform, in particular Property (vi) in Section
We have:

a6 = kD’ fleo
= [D*af f0

|/

(5.35)

where in the last identity we omitted the 7 factors, since they do not affect the norm. Then, we
estimate:

1
()

| Do2f floo < | D2 £

- Gl 0 (5.6)

1 1
< 1 d+1y o, B H
(27r)dH1+|x|d+1H1H( ")

< 0H<1 + \xde)D%ﬁme .

The last term can be written in terms of a finite combination of the | - |5 5 norms, which are all
finite since f is Schwartz. u
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Remark 5.3. In particular, since the Schwartz space is in L?, the Fourier transform defines a
bijection on S(R?).

We shall consider the Schrédinger equation on the Schwartz space.

Proposition 5.4 (Solution of the free Schrodinger equation.). The free Schridinger equation
has a unique solution ¢ € C*(R,S(R?)). It is given by, for all t € R and x € R%:

1 ; 2
() = g | dye ) (531)
Moreover,
lp(E, )2 = [4(0,-)ll2 - (5.38)

Remark 5.5. Notice that (¢, x) is equal to the solution of the heat equation, Eq. , after
replacing t by it.

Proof. Since ¢(t,-) € S(R?), rewrite the Schrédinger equation in Fourier space:

i0ph(t, k) = [k[*(t, k) . (5.39)
The solution is: X N

h(t, k) = e (E) (5.40)

The conservation of the L? norm immediately follows from this expression, combined with
Plancherel’s theorem. To conclude let us prove the formula (5.37] - for the solution in configu-
ration space. Notice that ( is a convolution; one would be tempted to say that ( - ) holds
because it is the Fourier transform of a product e+ t4)(k), recall Property (iv) of the Fourier
transform. However, this is not a valid proof, since the inverse Fourier transform of the function
e~ ikt ig not defined. We have:

dk . G2y A
d}(t,l‘) = j (27r)d/2 eZk~ze—l|k| tw(k,)

dk .
= lim J e’k'ze*”klztw(kz)
Ko |<

= lim eeeilkl tj(%)d/ze Fp(y)

_ _ay ik-(w—y) —i|k|2t
= lim J J dk e Ye .
R—w ) (2m)d v |ks| <R

Let us now compute the innermost integral. Completing the square, we have:

(5.41)

J de k@) g—ilk 2t _ 6—ix—y|2/4tf de o itlh—(@—y)/21]?
kil <R |ki|<R

e e (@) g—ilk[2t _ e—i:v—y|2/4tf e eIk

JuciKR i+ (z—y)i/2t| <R (5.42)
R—(x— 2t

= —z\x y|2/4tHJ (@=9)i/ ]efitka.

—(z—y);/2t

Therefore, the problem reduces to computing;:

R—a g R—a s 0 s
j dxe " = J dze " + J dxe " (5.43)
—R—a 0 R—a
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Consider the first term in the right-hand side, the other will be studied in the same way. The
function e~ is entire in C. Let C be the closed complex path:

0>R—a—(R—a)—i(R—a)—0, (5.44)

where all arrows correspond to straight paths. Correspondingly, by Cauchy theorem:

R—a
f dze ™ = — f dze " — f dze (5.45)
0 (R—a)—i(R—a)—0 R—a—(R—a)—i(R—a)

Consider the first term. Writing z = e~"/4y with y € [0, R — a], we have:

) ) R—a S
dz e—ztz2 _ e—mr/4f dy e—ty2 — @[J dy e—tyz + e (R)] (546)
0

LR—a)—i(R—a)—»O 0

with €1(R) — 0 as R — oo0. Consider the second term in the right-hand side of ((5.45)). We have,
writing z = R —a — 1y:

R—a
dz e—it22 _ J dy e—it(R—a—iy)2
0
5.47
it R? fiza ity? —2t(R ( )
=" J dy e~ (R—a)y _, ea(R) ,
0

J‘R—a—>(R—a)—i(R—a)

with e2(R) — 0 as R — c0. A similar analysis can be performed for the second term in (5.43]).
All together:

R—a s 0 )
J dre ™ =/—i J dye ™ +¢(R)
—0

—hia (5.48)
[
=4A/= R
with ¢(R) — 0 as R — 0. Thus, coming back to ([5.42]):
j dk ™ @=w) gkt (.3)d/2e—“x—yl2/4t +ea(R), (5.49)
|ki|<R it
with g4 — 0 as R — o0. Plugging this result in (jo. we easl et:
ith eq(R) — 0 as R Plugging thi It in (5.41) ily g
vite) = s (5) [ vttt (550)
which gives the claim ([5.37) u
From this expression, we immediately get that:
1
[, ) < WIWJIM -0 ast— 0. (5.51)

This bound is called dispersive inequality. Let A — R, and recall the definition of probability
for finding the particle in the set A at the time t:

Pon(d) = [ delotta)f (5.52)

o6



In particular, for a bounded set A:

Py, (A) < |A] (4|17ft|)Ld1/2 —~0  ast— . (5.53)
That is, as time goes to infinity, the probability for finding the particle in any bounded subset of
R? is zero: the particle escapes at infinity. At this stage, it is useful to compare the behavior of
the solution of the free Schrodinger equation with the one corresponding to the solution of the
heat equation, Eq. . The estimate also holds for the solution of the heat equation.
However, the heat equation preserves the L' norm of the solution, while the Schrédinger equation
preserves the L? norm of the solution.
The dispersive estimate , combined with the conservation of the L? norm, can be used
to prove a bound for the LP norms of ¢ (t, ), for p > 2. We have:

(e, e < j dz (¢, )P
< (kB 2, )3 (5.54)
< Ct 307D~ 3
that is: . s ,
[(t, )p < Ct= 2022 | ;2P 577 . (5.55)

One can prove an even stronger bound, as stated in the next theorem, which we will not prove.

Theorem 5.6 (LP to L? estimate.). Let ¢ (t,x) be the solution of the free Schriodinger equation.
Then, the following bound holds, for all p € [2,0] and q such that 1/p+ 1/q = 1:

dq_
[(t, ), < Ct 202y, . (5.56)

This bound is stronger than 1} due to the fact that by interpolation, [¢|, < H1/JH}72/ZJ|WHS/”
for ge[1,2] and 1/p+ 1/q = 1.

Asymptotics of the momentum operator. Recall the expression for finding the particle in
the region A < R%:

P(X(t)e A) = L W (t, x)|? da . (5.57)

Next, we want to determine the “asymptotic momentum distribution” of the quantum particle.
Recall that we have set m = 1/2. Consider:

1/2) X (¢
lim P(M e A) = lim P(X(t) € 2¢A) = lim | |(t,2)|2de . (5.58)
t—00 t t—00 t—00 2HA

Notice that choice of the origin of the reference frame does not play any role. To get an expression
for the above limit, we shall use the next lemma.

Lemma 5.7. Let 1(t) be the solution of the free Schridinger equation, with 1(0) = 1y € S(RY).
Then:

b(t, ) = (2‘2‘)‘;/2@;0@/275) bt ) (5.59)

with limy_,qo [|7(¢)] 2 = 0.

o7



Proof. We have, by Eq. (5.37)):

22
e’ 1 iz zﬁ

U(t,z) = W(%T)d/zfe 2ty<€ @ +1- 1)7/}0(21) dy

2

— (2#;/2 (ﬁo(x/Qt) + (27r1)d/2 fei;ty (ei‘% — 1)¢0(y) dy)

= (o(w/20) + bt z/20)) (5.60)

2
with h(t,y) = (eszt — 1)tho(y). We set:

2
T
Ly

e ~
To prove the claim on the L? norm, we proceed as follows:
2 2 1 7 2 7 2 2
I = [t = i [ a2 de = [l Pay = [ ep)Pay . (562

Now, notice that h(t,z) — 0 pointwise as t — o0. Also, |h(t,2)|* < 4|¢o(z)|?. Therefore, by
dominated convergence theorem:

. 2 .
lim J Ih(t, 2)2dz = 0 . (5.63)

This concludes the proof. =

Theorem 5.8. Let 9)(t, ) be a solution of the free Schridinger equation and let A < RY. Then:

tim p(W2X0 ) | o) Pap. (5.64)
Proof. By Lemma we have:
1
Lm [0 (t, z)|2de = (%)df 4o (2/2t)|>dx + R(t J lvo(p)2dp + R(t) , (5.65)

where, following the proof of the Lemma:

. o . 2 A A~
lim B = Jim | r(t,2)f de+ fim 2Re ( 5 ) wo(m/2t)h(t,x/2t)dx>
= tli>nolo 2Re f Yo(p (5.66)

By the Cauchy-Schwarz inequality we have:

Jim | [ (et p)n| < Jimy [dola (02 = 0. (567)
where in the last step we used (5.63)). u
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The above result elucidates why the operator p := —iV has the interpretation of momentum
operator. Its expectation value is:

o, pin) = fRdwt,x)(ﬁth,x)dx: D RRD(E R)dk = fRdW(o,k)de, (5.68)

where we used that |¢(t, p)| = [¢(0, p)|. By , we interpret [¢)(0, k)|? as the probability dis-
tribution of the values of the asymptotic momentum operator. Thus, Eq. corresponds to
the expectation value of the asymptotic momentum, which is consistent with the interpretation
of p as momentum operator.

L? solutions. To conclude the section about the free Schrédinger equation, let us comment
about a more general notion of solvability of (5.32)). Let us define the m-th Sobolev space as:
H™RY) := {1 e LXRY) | (1 + [k[>)™P(k) e LARY)} . (5.69)

In particular, if ¥ € H?(R?), we define the L?Laplacian as the inverse Fourier transform of
k|24 (k). Thus, —Av € L2(R%); the space H2(R?) is called the domain of the Laplacian. Let us
now introduce the notion of L2-solution of the free Schrédinger equation.

Given g € H*(RY), let 1o be its Fourier transform, and consider the function:

Dt k) = e Pty (k) (5.70)
One can check that t — @(t, k) is continuous in the L? sense: we have:
[(t k) = dlto, k)2 = 0 ast—tg (5.71)

by dominated convergence. Also, the function @(t, k) is differentiable in time in the L?-sense,
and its derivative equals |k|?¢(k, ). In fact:

Hzﬁ(t,k) — P(to, k)
t—to

1
t—to

. . , 2 .
R R B e (o ) B R W 0 E R 2
As t — tg, the argument of the first absolute value converges to 0, and for all ¢ it is estimated
by 2|k|2. Since |k|*)(k)|? is integrable, by dominated convergence we conclude that:

H?]J(t k) — 1 (to, k)
¢

*tO

— Jk[24(t, k)”2 S0 fort — tp. (5.73)

That is, the sequence of L? functions given by Wk%%ﬁ)(tok) converges in L? to |k:|21ﬂ(t, k). In
this sense, the function ¢ (¢, k) satisfies:
0 (t, k) = |k|*D(L, k) . (5.74)
Or, taking the anti-Fourier transform:
10pp(t) = —AY(t) . (5.75)

Notice that this notion of solvability does not rely on pointwise differentiability.
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5.3 Confinement in presence of an external potential

In this section we shall consider quantum Hamiltonians of the following type:
H=-A+V(2), (5.76)

under suitable assumptions on V', to be specified. In classical mechanics, the dynamics associated
to the Hamiltonian H = p?/2m + V(x) depends strongly on the shape of the potential V. In
particular, suppose that z, is a local minimum of V. Let E = H(pg,xo) be the energy of the
initial datum, which is conserved under the Hamilton flow: E = H(p(t),z(t)). Suppose that
E — V(z4) is small enough, so that the equation F = H(0,z) has two and only two solutions
in a suitably small neighbourhood of z,: x = 24 (E). Then, by energy conservation the motion
t — x(t) € [x—,z4] for all times, and the motion is periodic, with period:

T4 1
= dx .
v e e o0

For special choices of the potential V', one can actually determine the trajectory ¢ — z(t). A
paradigmatic example is the harmonic oscillator, for which V' (x) = (k/2)|z|?>. There:

z(t) = Asin(wt — B) , w=4+/k/m (5.78)

In this section we would like to understand how to formulate confinement, in a quantum setting.
To this end, let us make the simplifying assumption that:

clx — z.|* < V(z) < Clz —a4|® (5.79)

for some positive constants ¢, C, o, 5. Under these assumptions, the potential is confining at
T, in a classical sense, and also S(R?) belongs to the domain of the quantum Hamiltonian
H=-A+V.

As we have seen, in quantum mechanics there is no notion of position of the quantum
particle. Instead, the state of the system is specified by the wave function ¢ € L?(R%), and
|9(z)|? describes the probability distribution for finding the particle at . Thus, the question
we would like to address is: what is the probability for finding the particle “far” from z,? By
our classical intuition, we expect that being very far from z, should not be convenient from an
energetic viewpoint. This intuition relies on the notion of energy conservation, that we shall
prove in the next proposition.

Proposition 5.9 (Energy conservation). Let ¢ € S(R?), |[¢|2 = 1. Let us define the energy of
Y as:

Ey 1= (b, HUY (5.580)
Let (t) be the solution of the Schrédinger equation:
ot = Ho@),  0(0) =0 (5.81)
Then,
@ (t), Hy(t)) = (p(0), H(0)) - (5.82)

Remark 5.10. Strictly speaking, we are only considering potentials satisfying . However,
the proof below applies to self-adjoint Hamiltonians H, provided the initial datum 1 is chosen
in the domain D(H).
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Proof. We compute:

D 0(0), H(1)) = uble), (D)) + (o(e), Houb(1))

= (=0)CHY(t), HY(t)) + ilp(t), HHP(t)) (5.83)
= (=0)CHY(t), Hy(t)) + ilHY(t), H(t))
=0.

where the third step follows thanks to the self-adjointness of H. u

Then, the next proposition gives a first instance of confinement, for a quantum particle.

Proposition 5.11. Suppose that holds true. Let 1 € S(R?). Consider:

PIX(0) ¢ Bosl) = [ di ot o) x(Bsi () (5.8
where x(A) is the characteristic function of the set A = R%. Then:
P(X(1) ¢ Ban(r)) < 1 (5.85)

uniformly in t € R.

Remark 5.12. (i) This result proves that the probability for finding the particle away from
Ty 48 arbitrarily small, provided one looks away enough from x.. The important point here
is that the bound is uniform in time. In fact, using that ¥(t) € L? for all times, it trivially
follows that P(X (t) ¢ Bar(x+)) <€ for alle > 0 provided L is taken large enough, however
possibly not uniformly in t.

(i) The bound is false if V=0, by the dispersive inequality:
P(X(t) ¢ Bar(zs)) = 1 — P(X(t) € Bop(w4))

5.86
=>1-c¢ ( )
where the last step follows from , for all L > 0 and for t large enough.
Proof. A moment of thought shows that:
. T — Ty |
X(Bs(24)) < |LO‘*’ : (5.87)
Therefore,
1
P(X(1) ¢ Boslra) < 7 Jda: o(t, 2) 2l — ] - (5.88)
By the assumption (5.79)), we also have:
1
P(X(t) ¢ Bar(w4)) < —5 | dzlo(t, )’V (2)
eLe (5.89)

1 .
= W), V(@)

Finally, by the positivity of the kinetic energy, which follows from (1), —Ap) = {dk |4 (k)|?|k|?,
we have:

P(X(1) ¢ Bar () < (1), (1))
< L (W(0), HU(0)

where the last step follows from the conservation of energy. Thanks to the finiteness of the
energy of ¢, the claim follows. =

(5.90)
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Remark 5.13. (i) The estimate holds under the assumption that V is confining, in
the sense of the lower bound in . More generally, a similar bound holds for the
eigenstates of H, that is for L? solutions of:

Hy = Evp. (5.91)

These are stationary states of the Schrodinger equation, in the sense that the evolution is
simply Y (t) = e~ ). Thus, one immediately has:

P(X(t) ¢ Bor(24)) = P(X(0) ¢ Bor(+))

-, (5.92)

for all e > 0 and for L large enough.

(i) The bound can actually be used to prove that the spectrum of H is pure point if V'
is confining (as an application of the RAGE theorem, see e.g. [§]).

i11) For explicit choices of V', much more can be said. In the next section, we will consider the
ii) F licit choi 1% h b id. In th t secti 1l ider th
quantum counterpart of the harmonic oscillator.

5.4 The harmonic oscillator

Here we shall describe the prototype of the exactly solvable model in quantum mechanics: the
harmonic oscillator. The Hamiltonian is:

H=—-A+|z)?, (5.93)

and for the moment we shall consider this operator as acting on S(R?). Also, for simplicity we
shall set d = 1. The importance of the harmonic oscillator in physics is that it allows to describe
the low-energy behavior of Hamiltonians H = —A + V(z), for a large class of potentials. In
fact, suppose that x, is a global minimum of V. Then, by Taylor expansion:

1
V(z) =V(xg) + §V”(x*)(:v —24)2 + O(Jz — x4 %) . (5.94)
Informally speaking, if V”(x,) # 0, it is reasonable to expect that, on states with low enough
energy, the dynamics generated by the Hamiltonian H can be approximated by the one of the
harmonic oscillator, for a certain time scale.
The goal of this section will be to solve the eigenvalue problem in L?(R):

Hiy = Ey . (5.95)

As already discussed, eigenstates of H correspond to stationary states of the dynamics. We will
start by solving this equation on the Schwartz space S(R), and then later we will discuss how to
extend the analysis to the whole L2(R). In particular, we will prove that the solutions of
form an orthonormal basis for L?. This will allow to study the dynamics generated by H of any
initial datum ¢ € D(H). To begin, we will introduce the notion of creation and annihilation
operators (or rasing and lowering operators).

Creation and annihilation operators. Let us define the following operators, on S(R):

Ay = i(az T i) . (5.96)



Integration by parts shows that the adjoint of A, on S(R) is A_: A% = A_. The operators A4
satisfy a number of useful algebraic properties, which we will now discuss. To begin, we claim
that:

[A_, A ] =1, (5.97)

understood as the identity on S(R). In fact:

[A_, AL Y(z) = %[w + % T — %]¢($)
_ [di,w]w(@ (5.98)
().

Next, we notice that the Hamiltonian H can be rewritten in terms of A1. To this end, define
the number operator as:

N=4.4. (5.99)
Then,
N +1 = (x—%)(x—i—%) +1
::E?_Ciz_[i,x]ﬂ (5.100)
=H,

since [%, ZL‘] = 1. Thus, there is a one-to-one correspondence between the eigenvalues of N and
the eigenvalues of H:

Ny =np < Hy=2n+ 1) . (5.101)

The motivation for the names “creation operator” and “annihilation operator” is that they
“raise” or “lower” eigenvalues of N. Suppose that 1) € S(R) is an eigenvector of N'; N9 = nap.
Consider the new state Ay, which is also in the Schwartz space. Then,

NAL) = ANy + [N, ALy

5.102
=nAiyp+ [N, ALy . ( )
Furthermore,
[N, As] = A [A A] + [Ay, AL]A- (5.103)
=+A;.

where we used (5.97), together with the trivial identities [A_, A_] = [A4, A+] = 0. Therefore,
we obtain:

Thus, A+ and A_1) are eigenvectors of N with eigenvalues n + 1 and n — 1, respectively. This
observation can be used to generate infinitely many eigenvectors for A/ in S(R), if we only know
one.

Eigenvalues of /' on S(R). To begin, we claim that if n is an eigenvalue of A/, then n > 0.
In fact:

NY =np = (W, Np) =nlh,9) . (5.105)
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The claim follows from the observation that (1), N9) = ||A_1|3 = 0. Then, we claim that the
value n = 0 is attained by a unique function in S(R). To see this, notice that:

Np=0 < A 9Yp=0. (5.106)

One implication is trivial. To prove the other one, suppose that Ny = 0. We claim that
A_1p = 0. We shall proceed by contradiction. Suppose that A_v # 0. Then, by (5.104)):

NA_p = (-1)A_y . (5.107)

Thus, A_1) is an eigenvector of N with eigenvalue —1, which is impossible since we just proved
that n = 0.
Hence, to find the eigenvectors of AV with eigenvalue n = 0 we have to solve A_1 = 0, that
is: d
— = — . 5.108
“p(a) = —a(z) (5.108)

The solution to this ODE is, up to a multiplicative constant,
b(x) = Ce /2 (5.109)
Choosing the constant C' so that ||z = 1, we find:
P(z) = mie 2 = yg(a) . (5.110)

In particular, Hyg = 9. We shall call ¢y the ground state of the harmonic oscillator. Now
that we know one eigenstate of H, we can construct infinitely many others acting with A’i. We

define: N
A+ wO

Akl |

These functions satisfy Ny = ki, or equivalently Hiy = (2k + 1)1;. By the uniqueness of
the solution of the ODE , the ground state g is unique. Also, one can show that the
excited states i are also unique. Suppose that ¢ € S(R) is a solution of Ny, = ki with
k € N. Consider

Vg (5.111)

&= ALy . (5.112)

We claim that & is equal to ¥y, up to a proportionality constant. This follows from the fact
that:
N& = ARV —k)pp = 0. (5.113)

By uniqueness of the ground state, £ = (const.)y. Next, we claim that ¢ = (const.)Aliwo. In
fact, as a consequence of what we just proved:

(const.) AR g = A% A% o). (5.114)
Also,
Ak AR g = ARTIN AR T,
= ATTAMI N — (k= 1) g
=NWN =1 N = (k—=1))¢x
= k'(pk .

(5.115)

Therefore, we proved that ¢ = CAy. Choosing the constant so that |j¢g|2 = 1, we get
ok = Y. To conclude the discussion about the spectrum of AV on S(R), we show that the only
eigenvalues are k € N. To this end, suppose that 1, € S(R) is such that N, = a1, with a ¢ N.
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Consider A_1),; this is an eigenvector of N, with eigenvalue o — 1, which is # 0 since a ¢ N.
Thus, A_t), # 1o, which means that A2y # 0. Iterating this argument, A* ¢ # 0; these are
eigenstates of NV with eigenvalues o — k, which can be arbitrarily negative. This contradicts the
property n = 0, proved after . In conclusion, all the solutions of N4 = ny in S(R) have
n e N.

To summarize, we proved that all the solutions of Hi) = E1) in S(R) are:

(W, E) = (W, Ex)  k=0,1,2,... (5.116)
with B = (2k + 1) and ¢y, = CkA’jwo, where the normalization constant Cj, is (exercise):
1
— = | Al vola = VE!. (5.117)
Ck
Notice that eigenstates corresponding to different eigenvectors are orthogonal. In fact, for k # j:
1 .
1 11
= kfj[@/’?ﬂk, Y5y — (P, Ny (5.118)
=0,
since Ny, V) = (Y, Noj) = (A_tpy, A_1p;). Finally, we point out that the functions ), can

be written explicitly in terms of Hermite polynomials:

1
Yi(x) = WHk(x)ibo(x) : (5.119)

where Hy(x) is a polynomial of degree k, that is determined by the following recursion:

d
Hy(x) = —%Hk,l(x) + 20 Hjy1(2) Hy(z)=1. (5.120)
Explicitly, one has:
[k/2] ' k! '
Hy(@) = 3 (- g 20/ (5.121)
= 5!

where [k/2] is the largest integer less or equal than k/2.

Minimal energy. The eigenstates of H on S(R) have strictly positive energy, 2n +1 > 1. As
we will see, the energy of any (normalized) state ¢ € D(H) is bounded below by 1. This is in
contrast with what happens in classical mechanics, in which the lowest energy configuration of
the harmonic oscillator is the one associated to (p,z) = (0,0). Informally, this configuration is
not allowed in quantum mechanics, because it would imply infinite localization in position and
in momentum, which violates Heisenberg’s uncertainly principle. To see this more precisely, let
v € D(H). This implies, in particular, that

(W, =AYy = [pyff <0 (W,2%) = a3 < . (5.122)

For general 1 € D(H), derivatives have to be understood in the L2-sense, recall the discussion
at the end of Section The energy of 1 is:

o= [l ol i
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From a® + b > 2ab, we have:

. 16> 2| o] ool > 2w (5121

where the last inequality is Cauchy-Schwarz inequality. On the other hand, we have:

(o)l = (ReGgoe)) + (m(Gom))

(5.125)
d 2
> (Re(pvav))
We have:
d 1 d d
(ReCgrav)) = 5 (o) + (v )
1 d
_ = il 5.126
2<7’[” [x daj]w> (5.126)
1
= Il
In conclusion,
W, Hy) = [yl =1, (5.127)
as claimed.
Uncertainty principle. Let us rewrite the position and the momentum operator as:
- LAy, po—il o ia—ay (5.128)
- \/§ + -/ p= dr - \/§ + —) .
Recall that <A’i¢0, Ai?,!)o> = 0 for k # j. This, together with 1' immediately implies:
(i, Bbw) = (b, Py = 0. (5.129)

That is, the position and the momentum operators have zero average on the eigenstates .
Let us now consider the variance of the position and of the momentum. Let us start from the
ground state ¢g. We have:

o, 70y = 5o, (A + A)(A + A o)

1 1 (5.130)
= §<¢07A7A+¢0> = 5 .
Similarly,
1
(o, o) = — 50, (A4 — A-)(As — A-)do)
1 1 (5.131)
= §<¢0,A7A+¢0> =35
Thus, recalling that the averages of = and p are zero:
1
AXy, APy, = — . (5.132)

4

This shows that the ground state vy saturates the uncertainly principle. Similarly (using that
the averages on 1y, of A% and of A% are zero)

Wy, 2Py = %W}c, (Ay A+ A A )

2 : (5.133)
= 5<¥k, N + Dy =k + 3"
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Also,

ko PPy = —5 (s (AL A — A AL )

. (5.134)
— k4=
=
That is: N2
AXy APy, = (k+3) - (5.135)

One can actually prove that the uncertainly principle is saturated if and only if the state is a
Gaussian.

Lemma 5.1 (Minimizers of the uncertainly principle are Gaussians.). Let ¢ € L?(R), |42 = 1.
Let:

a:=pay, b= p) . (5.136)
Then: 1
AXMV%:1<$$d@Q=ém%@—ﬂ) (5.137)

Proof. To begin, let us prove that ¥(z) = e**%1)y(x — a) has minimal uncertainly. Notice that:

AX¢ = <17Z)7 $2¢)> - <,¢7 33‘1[)>2
= (o, (z + a)*o) — (o, (x + a)ih)? (5.138)
= (3o, 2240y = AXy, -
Similarly, one can verify that:
APy, = APy, . (5.139)

Thus, 1 saturates the uncertainly principle because 1y does, as we have seen in ((5.132)). Let us
now prove the converse implication. Suppose that 1) saturates the uncertainly principle. Let:

o(x) == e7®Y(z + a) . (5.140)
Then, one easily checks that
AXy ={p, %), APy ={p,pp). (5.141)
Therefore, the function ¢ satisfies:
prﬂahwﬂ3=:i- (5.142)

From (5.124)), (5.125]), we see that ([5.142)) holds if and only if

[ te KoY. w0 am
The first condition holds provided:
d
= Az for |A| = 1. (5.144)
The second condition holds provided:
Im\|zp|3=0= ) eR. (5.145)
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Therefore, the minimizer satisfies the equation:

d
—p =+ . 5.146
TP = T (5.146)
The solution of this ODE is: ,
o(z) = Ce*™ /2, (5.147)
hence, in order to have an L? solution we are forced to choose A = —1, which implies that ¢ = 1
(choosing the constant C to enforce the L? normalization). All in all:
Yo(x) = e (2 + a) = P(x) = oz — a) , (5.148)
which concludes the proof of the lemma. u

Remark 5.14 (Coherent states). Thus, the minimizers of the uncertainty principle coincide
with the functions:

U(z) = eo(x —a) . (5.149)

These are called coherent states, and will play a role in the following discussion.

Eigenstates on L?(R). So far, we have found infinitely many eigenstates of H on the Schwartz
space. We are now interested in understanding whether it is possible to have other solutions
of Hy = E+. To answer this question, we shall restrict the attention to the following class of
coherent states:

P (z) = raem (@) , aeR. (5.150)

That is, w(“) is simply a translation of the ground state vy. Let us discuss how to represent
these coherent states in terms of the Schwartz eigenstates of H. As we have seen in the previous
paragraph, these states saturate the uncertainty principle. In terms of the Fourier transform,

¥ (@) = Yoz — a)
dk o
= Py (x) .

As we have seen, p can be represented in terms of A as:

. 1
p_\/§

Therefore, the coherent state 1(*) can be represented as:

(A, —A). (5.152)

@) = e—(a/\/i)(A+—A7)¢0 ] (5.153)
Formally, by expanding the exponential, we have:

P = > epn (5.154)

k=0

for some coefficients ¢, > 0. We claim that the series is convergent in L?; let us sketch the proof
of this statement. Consider the estimate for the k-th term in the Taylor series of the exponential:

Jal*

rga (A = A=) o2 - (5.155)
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The norm is estimated by the sum of 2¥ terms, all of the form:

HAEI o AakaHQ . (5.156)

We claim that:
| Acp]3 < (o, W+ 1)) = (N + 1)20)3 . (5.157)
If ¢ = —, |43 = {p,Np) and the claim is trivially true. If ¢ = +, we have ||A.p|3 =

{p, (N + 1)p), where we used the commutation relation of A4 . Therefore, we estimate:
|Asy -+ Actbolla < [NV + 1)Y2 A, -+ A bl = VE[Azy -+ Aol - (5.158)
Repeating the argument, we have:
| Ae, - Acy o2 < VE!Yo| = VE!, (5.159)

which gives:

alt o a2
11252 I(A+ — A_) o2 < TRk

which is summable in k. Thus, the sum in (5.154)) is convergent, and defines a function in L?.
One could actually compute the coefficients ci; we have, omitting the details,

(5.160)

—atjs_0" (5.161)
C = € . .
V2kE!
Thus, we found that the coherent states can be approximated in terms of the Schwartz eigenstates
Y. Our ultimate goal will be to show that all functions in L? can be approximated by s,
that is they form a orthonormal basis of L?. To see this, let us consider the set of all linear
combinations of coherent states:

N

G = {¢ e L(R) ‘ p=> aw(ak)} . (5.162)

k=0
Proposition 5.15. G is dense in L*(R).

Proof. That is, for all ¢ € L? and for all € > 0 there exists 1), € G such that

g —vel2 <e. (5.163)

Equivalently, by unitarity of the Fourier transform F : L? — L?:

|6 — ez <e. (5.164)

We will find it convenient to show that FG (the unitary conjugation of G with the Fourier
transform) is dense in L2. To this end, recall the Fourier transform of a given coherent state:

~

(@) (k) = r—qethae=h?/2 5.165
P\ (k) (5.165)

In order to show that the linear combinations of such functions are dense in L? we shall use that
a linear subspace A of L? is dense in L? if and only if for all ¢ € L?:

W,9)=0 VpeAd=¢=0. (5.166)

We plan to apply this criterion with A = FG. In fact, it will be enough to check that the
condition ([5.166)) holds for a subset of 7G. Also, it will be enough to check the condition (|5.166]
for vectors ¢ in a dense subset of L?; in our case, we shall take ¢ € L2(R) n C,(R).
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Consider:

<w%@=fﬁﬁwmmm

L , (5.167)
= J dkm~ie k™R 2 (k) .
Suppose that <1/A1(a), ¢y =0 for all a € R. Then, the previous identity implies that
F(ePp(k))(a) =0 VYaeR. (5.168)
That is, being the Fourier transform unitary, this implies that:
e FRPe(k) =0, (5.169)

which can only hold if ¢ = 0, since e=¥*/2 > (. This shows that the only vector ¢ € L2(R) nCe(R)
orthogonal to all 9(%) is ¢ = 0; in particular, the only vector ¢ € L?*(R) n C.(R) orthogonal to
all vectors in FG is ¢ = 0. Thus, FG is dense in L?(R) n C.(R). Being L?(R) n C.(R) dense in
L?(R), the claim follows. m

The next proposition shows that the v, are the only eigenstates of H on L?. Let:

N
D= {yel’R)|v =) At} , (5.170)

k=0
and let us denote by D the closure in L? of D.
Proposition 5.16. D = L?(R).

Proof. By the formula (5.154), one easily finds G — D. Also, by the previous proposition,
G = L?*(R). Therefore, since G € D < L?(R) we get D = L*(R). m

Remark 5.17. This result proves that any vector ¢ € L?(R) can be represented as 1) =
Zk;o Brk, for suitable coefficients PBy. Also, the vectors vy, are orthonormal; therefore, () is
an orthonormal basis of L*(R).

The next is an immediate corollary of Proposition [5.16
Corollary 5.1. Suppose that ¢ is an L*-solution of Hvp = E1p. Then, 1 = 1y, for some k € N.

Proof. Suppose that ¢ € L?(R) solves Hy = Ev for E ¢ 2N + 1. Then, (¢, ;) = 0 for all
k, since ¢ and v are eigenvectors of H with different eigenvalues. Being (1)) an orthonormal
basis of L2, this implies that 1) = 0.

Next, suppose that ¢ € L?(R) solves Hi = E1 for E = 2n + 1 and n € N. Without loss of
generality, suppose that |¢|s = 1. We represent v as:

%= Btk (5.171)
s

where we used that v, form an ONB of L?. Taking the scalar product with 1,, we have, using
the orthonormality:

1= (0, %) = B, ) - (5.172)

Since |92 = >, |Bul?, we known that |8,] < 1. Also, [(¥, )| < 1. Thus, the only way to
satisfy is by having 5, = 1 and [{¢,%,)| = 1. In particular, the normalization of 1
implies that 8 = 0 for all & # n. This shows that ¥ = 1, and it concludes the proof of the
corollary. u
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Periodicity of dynamics. In conclusion, we have shown that the spectrum of H, as an
operator on L?, is given by:
de:@n+qneN}, (5.173)

and that the eigenvectors are given by ¢, = \/H‘lAwO. In particular, the spectrum of H is
discrete. Instead, the spectrum of the Laplacian is continuous, and it coincides with R} = [0, c0).
This is a consequence of the fact that —A is unitarily equivalent to the multiplication operator
|k|?, via the Fourier transform. The discreteness vs. continuity of the spectrum of the model
has important consequences on the dynamics of the system. The general connection between
the spectral properties of H and the qualitative properties of motion is provided by the RAGE
theorem [§]. We shall not discuss such result; instead, we shall limit ourselves to the following
remarks. As we have seen, the free Schrodinger equation is dispersive: the particle escapes at
infinity. Instead, the dynamics generated by the harmonic oscillator gives rise to a periodic
motion. To see this, let 1) € D(H), and let us represent it in the basis of the eigenstates of H:

b= e (5.174)
k

The solution of the Schréodinger equation with initial datum (0) = 1) is given by:

Y(t) = . cpe PRIy, (5.175)
P

(since e~*(k+ 1%y, is the stationary state associated with the initial datum 4);,). Thus, from the

expression (5.175|) it is clear that:
Y(t) = (t + 2m) (5.176)

which shows periodicity of the dynamics.

Dynamics of coherent states. It is natural to understand whether the quantum evolution
resembles the classical one, at least for a special class of quantum states. Here we shall consider
the dynamics of coherent states; since they minimize uncertainly, the evolution of these states
is close to the classical one, in a suitable sense. Recall Hamilton’s equation of motion for the
harmonic oscillator, with Hamiltonian H(z, p) = p?/2m + kx?/2:

%x(t) — p(t)/m %p(t) = —ka(t) . (5.177)

Thus, the solution is given by:
x(t) = Acos(wt) + Bsin(wt) w=4/k/m, (5.178)
with A and B determined by the initial datum:
xo=A, po = Bw . (5.179)

In quantum mechanics, position and momentum corresponds to operators acting on the wave
function. Given ¢, 1 € S(R), we can define the evolution of the position and of the momentum
operator as:

(o, &(6)Y) == (), zp(t)) (o, () := {p(t), pYo(t)) (5.180)

with 9(t) and ¢(t) the solutions of the Schrodinger equation with initial data given by ¢ and
@, Y(t) = e iy, o(t) = e lp. That is,

i(t) = etltgetHE p(t) = etHipe=tHt (5.181)
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We are interested in finding the evolution equations for such operators. We have:

jt< B)) = <dt ()2 w(t> <*0 >

— i(Hp(t), #(1)) — io(t), me< ) (5.182)
— —ip(t), [ HIG (1)) -

Since H = p? + #2, the commutator is given by:

[,p%] = 2ip . (5.183)
Therefore,
%@,:@@)w = 2(p(t),pY (1)) - (5.184)
Similarly, one has:
%Qp,ﬁ(t)@ = —2{p(t), 2(¢)) - (5.185)
That is: L d i
5%96@) p(t) £P(t) = —2%(t) . (5.186)

If the Hamiltonian has the more general form H = p*/2m + k#2/2, the 1/2 factor is replaced by
m, while the —2 factor is replaced by —k. Solving the differential equation, we get:

Z(t) = sin(2t)p + cos(2t)7 p(t) = cos(2t)p — sin(2t) . (5.187)
Let us consider the evolution of a coherent state,
P (2) = Yo(x — a) = Py () . (5.188)
Then, the solution of the Schrédinger equation with initial datum given by (@ (z) is:
efthlb(a)(x) = emiHtgipagitlt =ity ()
= et ()

where we used the fact that g is a stationary state of H, and where p(t) = etpe—iHt  Therefore,

from (|5.187)):

(5.189)

efthw(a) (:C) _ efitei(cos(2t)ﬁ+sin(2t)§c)w(a)(x> ) (5190)
Notice that, due to the fact that p and Z do not commute,
6i(cos(2t)13+sin(21‘,):)3) ] eicos(Qt)ﬁeisin(Zt)i ) (5191)
The correct factorization property is provided by the next result.
Proposition 5.18 (Weyl relations.). For all o, B € R, the following is true:
ei(aﬁ-‘rﬁi‘) _ eiaﬁeiﬂieiaﬁ _ ei,@ieiaﬁe—iocﬁ ] (5192)
Proof. Let us define A = ap and B = 2. Let us define the unitary operator:
F(t) := !ATB)tgmidt =it (5.193)
Clearly, F'(0) = 1. Let us compute the time derivative. We have:
d D pt) — el A+B) peidt =Bt _ jgi(A+B)t =it g ~iDt

at . . (5.194)
_ i(A+B)t [B, e—zAt]e—Bt .
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To compute the commutator, we rewrite it as:

[BaefiAt] _ f ds iefiA(tfs)BefiAs

o ds
_ Jt ds =AU B, Ale—ids (5.195)
= tozﬁs_mt ,
where we used that [B, A] = afi, which commutes with all operators. That is:
d .
ﬁF(t) = itapF(t), (5.196)
which gives F(t) = ¢P*/2_ Therefore, F(1) = ¢!(A+B)e=ide=iB — ciaB/2 which gives:
(ATB) _ (B giAgiaB/2 . (5.197)
recalling the definition of A and B, this proves the claim. =

As an application of the Weyl relations, we can determine the time evolution of coherent
states, under the dynamics generated by the harmonic oscillator. We get:

€_th1[)(a) (iL') _ e—it—i sin(2t) cos(2t) ei sin(2t)i‘ei cos(2t)ﬁw(a) (JL‘) ) (5.198)

Thus, up to an irrelevant phase, the time evolution of a coherent state is again a coherent state,
with time-dependent position and momentum given by the solution of the classical equation of

motion (5.177)).

5.5 The hydrogen atom and stability of matter

The classical Hamiltonian for a pointlike negative charge e = —1 interacting with a fixed positive
charge Z > 0 at the location R = 0 is:

¥ Z
H(p,x) = om Tal (5.199)
The same Hamiltonian plays an important role in the description of gravitational motion; in
that case, the charges are replaced by the masses of the planets. The assumption that the
particle/planet at with charge/mass Z is fixed at R = 0 is reasonable if we assume that the
mass of this particle is much larger than the mass of the particle at z. It is obvious that this
Hamiltonian is unbounded from below: the configuration (x,p) = (0, 0) has energy equal to —o0.
Classically, the system is unstable, as it is an unbounded source of energy.

In gravitational physics, what prevents the system from collapsing is the conservation of
angular momentum. Both the energy of the initial datum and the modulus angular momentum
are conserved quantities along the Hamiltonian flow. From the solution of the two-body problem,

we know that |z(t)| = p—, where:

_Z zZ2 A2
~|E| E?2 2Em’

p_ (5.200)

with £ = H(pg, zo) is the energy of the initial datum, while A is the modulus of the angular
momentum:
A =lz(t) x ()| = |zo x o] - (5.201)
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Thus, the minimal distance of the particle from the fixed charge vanishes as A — 0. The same
mechanism could be applied to the electrostatic problem. This however would not be enough
to rule out instability: a more complete description of the system should also take into account
the energy radiated by the fact that the charge e = —1 is accelerating around the nucleus. The
Larmor formula predicts that the energy of the system should decrease, which eventually would
imply the collapse of the electron on the nucleus.

Let us now consider the quantum mechanical counterpart of this problem. The hydrogen
atom is the simplest element of the periodic table of elements. It consists of one proton and
one electron; since the mass of the proton is much larger than the mass of the electron, it is
reasonable to describe the system by the quantization of the Hamiltonian ([5.199):

1 Z
H=——A—— 5.202

2m ||’ ( )
on a suitable dense domain D(H) < L?*(R3). For Z = 1, the system is charge neutral. For
general Z > 0, we shall talk about hydrogenic systems. The ground state of the system is

defined as the smallest energy attained by 1 € L?(R3); we have:

EO = inf 7<¢7 H¢> .

5.203
A (5.203)

A first question, which is already nontrivial, is whether this quantity is finite or not. From a
classical viewpoint, this object should be —oo. This would correspond to the configuration in
which the electron collapses on the nucleus: classical mechanics is not able to prove the existence
of a stable hydrogen atom, and more generally of stable atoms and molecules.

This is of course in contrast with the fact that matter exists and it is extensive. One
of the major triumphs of quantum mechanics is the explanation for this observation, whose
importance cannot be overemphasized. Intuitively, the reason for stability is the uncertainly
principle: infinite localization in both position and velocity is not allowed. How can we quantify
this? From the uncertainly principle, we obtain:

AX;AP; > i , (5.204)
that is, supposing that v is such that (¢, 2¢) = (¢, pvo) = 0,
9
PPy > 5.205
WP 15 a0 (5:209)

This inequality unfortunately does not tell us anything about the finiteness of Ey; we would like
to have a bound that allows to related kinetic and potential energy in . Before proving
such estimate, let us try to develop an intuition by considering the energy variation for a state
Y € S(RY), after a space rescaling. Consider, for A > 1:

O (z) = A2p(\a) . (5.206)
Clearly, [|t)5]2 is independent of A. Let us consider the energy of 1y. We have:
1 Z
Coxs Hipa) = s =5~ Adby) — (U, mdw
. ” (5.207)
— )2 _ _ -

In particular, this shows that the energy diverges to +00 as A — o0: space localization is not
energetically convenient! Highly localized states have very high kinetic energy, which eventually
dominates the potential energy. This discussion suggests that collapse is avoided by the growth
of kinetic energy, but of course it does not prove it. Stability follows from the next result.
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Lemma 5.19 (Coulomb uncertainty principle.). Let H € H*(R3). Then:

[ e i@ < 190l e, (5.208)

Before discussing the proof, let us use this lemma to prove the stability of the hydrogenic
atom.

Proposition 5.20. Let ¢ € H*(R?), E, = (¢, HY). Then, the following inequality holds true:
Z2
B> -2l (5.209

FEquality is reached for ¢ = Ke~(Z/9)lal

Proof. (of Proposition ) Suppose that |¢[2 = 1. By Lemma we have:

2

Ey > |[Volz = Z[Vels = -, (5.210)

as it follows from 22 — Zz = (z — Z/2)? — Z?/4. Equality for ¢ = Ke~(4/Y17l is left as an
exercise. u
To conclude, let us prove Lemma, |5.19

Proof. (of Lemma ) The starting point is the following identity:

1 T
2, ¥ = PRGN ﬁ]w , (5.211)
z j=1.2,3 z
where we used that: )
[ax, ﬁ] 14 (5.212)
Pl z o [2f

Therefore, integrating by parts:

1
2 ST = - az ) y Uz
@ ) j1223(< i |¢>+<| 19, 00,9))
— —2Re )] (Oay b, L)
j=123 |
< 2Z|<ax]w,| ol
By Cauchy-Schwarz inequality:
1 T
21), — < 2 000 2] 2
SO ;| o]
1/2
2Tl i) (ZHm )
J
< 2|Vl 2 - (5.213)
This concludes the proof. ]
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Since H%(R3) < H'(R3), the above result proves that the hydrogen atom, on its natural
domain D(H) = H?, has bounded ground state energy. In particular, since e~ (Z/Mlel is in the
domain, the ground state energy is:

22
-
Remark 5.21. The mass of the particle can be reintroduced recalling the scaling . Given
e D(H), consider the unitary transformation:

Ey = (5.214)

() = (\/;—m)mzb(\/;—m) . (5.215)
It turns out that: ) p .
(), HY) = <¢, —%A@ - ﬁ@, mw> (5.216)

This shows that the ground state energy of the system with mass 1/2 and nuclear charge Z is
equal to the ground state energy of the system with mass m and nuclear charge Z/v/2m. In
particular, the ground state energy of the system with mass m and nuclear charge Z 1is:

ZQ
Ep = —m2 (5.217)
The ground state wave function is:
W(z) = Ce™V2m(Z/4al (5.218)

So far, we have only discussed systems involving one particle at the time. This, in particular,
does not allow to consider any other element in the periodic table: except for the hydrogen atom,
all elements in the periodic table involve more than one electron. For instance, the helium atom
is formed by a nucleus of two neutrons and two protons, interacting with two electrons. To
properly discuss such system, one has to be able to take into account the repulsion between the
negatively charged electrons.

For an N-particle system, the many-body wave function is:

YN = YN (T1,015...3TN,0N) (5.219)

where x; denotes the position of the i-th particle, and o; is the spin of the particle. The spin
variable o; takes integer values. The probability distribution for finding the particles in the
positions x1,...,xy and spin states o1,...,0nN is:

[N (21,0055 an, o) (5.220)

Thus, the natural space for such wave functions is L?((R? x C)"). The normalization of proba-
bility corresponds to the requirement:

1= |lyn|3:= Zfdxl den YN (2. 2w (5.221)
g
with z; = (x4,0;). For identical particles, the N-particle probability distribution is invariant
under permutation of the particle labels 1,..., N:
W)N(zb EEE ZN)| = |d}N(ZTl'(1)7 R zﬂ'(N))| . (5222)

In nature, there are two kind of identical particles: bosons and fermions. Bosons correspond to
symmetric wave functions:

UN (2155 2N) = YN (2r(1)s -5 2r(N)) - (5.223)
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Example of bosons are photons, the Higgs boson, Helium atoms etc.. Fermions, instead, corre-
spond to antisymmetric wave functions:

N (21, -, 2n) = sgu(m) YN (2r(1), - - -5 Ze () - (5.224)

In particular, fermionic wave functions vanish whenever two particles have same coordinates.
Examples of fermions are electrons, protons, neutrons etc. Ordinary matter is made of fermions,
and it is therefore of utter importance to understand their properties. By the spin-statistics
theorem, which is proved using relativistic quantum mechanics, fermions correspond to particles
with an even number of possible spin values, while bosons correspond to wave functions with an
odd number of possible spin values.

Many-particle Hamiltonians are self-adjoint operators acting on L?((R? x C)"V). The Hamil-
tonian for a molecule formed by M fixed nuclei and N electrons is:

N 1 Moz
HN,M(Z,E) = Z <— ijA:cj — Z:l |x]_R|> Z ’351 — :I:]| Z ‘R R | (5.225)

J:]_ 1= ¢ 1<j
The fermionic ground state energy of the system is defined as:

Enm(Z,R) := inf W, AvmlZ, Bj¥w) (5.226)

YneL2((R3xC)N) I3

where L2 ((R3 x C)") is the space of antisymmetric, or fermionic, wave functions. A first question
to address is the extension of what we discussed before: is the ground state energy bounded
below? A natural attempt to attack this problem is to estimate:

N 1 M 7.
vy Hyum(Z, R)Yn) = <¢N, Z < - QTnjAa:j - Z |ycj—ZR|>¢N>
j=1 i=1 v

N M 1 Z;
=;i;<w,(— T R Foy ) (00

where we used the fact that the Coulomb repulsion is positive. Each term in the sum corresponds
to the Hamiltonian of a hydrogenic atom, with electron mass m; M, and with nucleus at position
R; and with charge Z;. This suggest that the ground state energy of the system is bounded
below by the sum of the ground state energies of these individual problems. To prove this, one
can repeat the argument of the proof of Lemma using the identity (we can get rid of the
nuclear coordinates by a change of variables):

(5.227)

2<¢N,| |¢N>— > <¢N,[xkj,@]¢zv> (5.228)

§=1,2,3

where x, is the position of the k-th particle, xy = (2 1, Tk 2, Tk,3). We then have:

M 72
Enx(Z,R) Z 2 mﬂ >~ (5.229)
j=1li=1

This bound proves stability of matter of the first kind: the ground state energy of the system
is finite, for any finite value of NV and M. This is nice, but however not very useful from a
practical viewpoint. What we actually would like to prove is that the energy per particle is
bounded below uniformly in N and M. Equivalently, we would like to have a lower bound for
the ground state energy of the form:

Enum(Z,R) = —C(N + M) . (5.230)
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This estimate is called stability of matter of the second kind. This bound is compatible with
a bounded energy per particle. Physically, this is what one expects: the energy of a system
with N7 + Ny electrons and M7 + Ms protons should be of the same order of the energy of two
separate systems of (N1, M7) and (Na, Ms) particles. If the energy did not depend linearly on
the number of constituents, one could extract a huge amount of energy simply by merging or
splitting systems. This would ultimately rule out the existence of matter as we see it.

It turns out that the bound only holds for fermions, and it is false for bosons. The
proof of stability of matter of the second kind is much more involved, and it relies on two key
ingredients:

(i) The antisymmetry of the wave function (or Pauli principle),

(ii) A partial cancellation between the positive Coulomb repulsion between the electrons, and
the negative Coulomb attraction between electrons and nuclei.

The proof of this statement is a major achievement of mathematical physics, and it goes far
beyond the scope of the present course. We refer the reader to [7] for a review of this topic and
of its modern extensions.
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