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AMPA Eluid dynalics 1. ~ Introduction and
boric definitions.

The
purpose of this last set of lectures is to perile some

rotive of the degremics of fluits, as well as address and
tre" a few interesting "exercises".

Fluid dynamics is a much of the so called
"hium" mechains, thatis,the studyof the
entative of sisters with we infante of defies of
Felna, whose parenter space is a "critical,"that

is, a min-zew meaner setin IR3.*)
He so-called articum lujpates is in defnuable bodies
averts that:

3

-1) Ia reference state was for the body is, who ovenwill
↳ (*t

-2) The motion of the body is descubed by a e

Mop
4: (0,0) xu. -> rt

invertible (withregular riverse) I fisalt.
- 3) It is differentiable (tunci, at least) iit.

Letus examine 37.2 The entire of the body (n of as

supportive2) is the desculed, in cateria cardinates,

by (,a)e(0,0)an. - xlt,) Ert

-

ꋺ) Analogously, one can aside - as we stall as in the

applications - to 201 bodies.
**) Actually, we courelax to 14, 112



This is akinto the used mecaucal expesentative,
where, fora system of a particle locatel atPie
t=to, we have

x:(t) =x,(t,x:).
In a picture

E x (t,a)form.
Thus is called "Loguagiondesciptive". The

↑

Lagrangiervelocityis
v(t,a) =22(,a).

In unds, this is the velocity a trust of the fled
parcel that, at=0, was labeled by a
The Eulerian velocity is, instead, a rector in
↳Be a is defined as

u(x,t) =w(t,ki(2)). (11)

Here we make use of the viractibility (VE) of the

bedly motion,thatis, given (1,2) =(9,0) XW= I!
a(k,t) S.t. 4-(2(2,t)) =1.



7The lagregion desciptition of any quantity representing
a playscal perfectly willhe given by

q(b,a).

Its Eulerian cutepatwill he

f(z,z) =f(x(t;a),t) =g(a,t)
d
ver as a scaler full, defined as 10,0)but this is define

M(0,0)x2201
To define the equation of Mention, delecterizing to, we
notice that, once n(t,K) is known, then our can

reconstruct the motion [t,a) If x14,0) by siting
He ODE's with antial value

da
=y(t,x)

↓t

(102) E=(t0) =a
So the born heminational quantity to be deterrenced
is the Euler velocity field 4(*,).

Further axius:

4) Mass desity and its conservation

I a hin-negative function =4 (t,e) gig rise

to its Eulerain counterport ( (2,51.



As we have seen inone of the lecture onthe D'Alahatquatro
was creation thouslates into the DDE

9+.(21)
=0 (1.3)

I: The translation ofthe fueolamental phy,d lows

[ classical physic
The question is how toimplementin this settingthe
fanometal lows of plics, thatis:

·) The enter holouce low,
->

↓I
=
↑ext "N =2m,:"

↓t

--

C ex's the "resullent" i.e, the sin, ofa

faces, internal ones notcontributing to the before
four by the 3rd Newton purple)

·e) Theaugular unvention balance,
-- ext

-- -

E =

M L =aN

-las*2. 1a
ext -

M I

· ..) The firstandsecd principle of Hamodynamics

isgetfeasternths
laste



The idea is to consides a greenopensubset Bocco

end "follow it "dog the -still verbation -
meatine, i.e cie BI-4t(Bd). Then,

↑

if I is thevolume dentary of size plagical

quantity (e.g. deity, relocaty,.....). The

out of such quantity housputed by it
willbe

=) fet,1)
dic.

Be

It is thus natural to enure that the time-venative

of IB(t) willbe due to twodeypes of tens:
t

A) a volume source 44) PVE

3)a contubation from the boundary, with sun for
desity I, so thatgeneral entitine

equations will he mutter in the free

(ft,x)d =(q(+,x)dx + )r.dA.
Be BE &Bt

letus first dealwith theLefthad side ofthis qual
equation.

Reach thatwe are defining a quantity (i.e

Sp(,)dx) following the pation B,inits



time-enlution. Hence weare adopting a legrengionpoint
of view. Butwe meat, inthe enol, tohave an exposin

winting Erleinquantities. The key to our atsuch
a resultis the so-called Pregnoll's TransportThereau(Rii)

Theorem (RTT)

let I be a c function of its argument, oul let

Be the entation of Bo along the displacutea=xex(e)

the

(1.4) ==((5)di =((af +(4.x)f +fE.) de
Bt

where I is the Evile velocityvector fell.

Hof:

It (F(t,z)dx =

(15) Be
=tws[(fCt, exan)dxxth-(f(,) dre],

Bath
where subscapts 7th, a sand to emphasize enter the
integration is to be taken.

Since we are "nervingwith the body", we fave

(1.6) 21th =2++hw(t,x) +x(h) and, inthe fut

h so, we can use
this as a coorduate change.

The fashionmatrixof the
trous function (1.6) is

11.1) Jue= th =de-gelaeoch) I



so that its determentis

dot5 =1 +ha + o(h).
0sek

(
=
1 +hTr5 +o(h))

So the LHS of4.5) becomes

Notin([f(tt,xxxh)(1 +h(.1 +0(h)) - f(t,z-)]dax
Be

Taglin-ex amhig f(tth, Katu) yields,
still wang (1.6)

DS:fiti))Ifecesthe (2))(theore

Thus we get

=(fd=ff +1.f
+f) ds

PED.

make:aflet =1. ThenSido=Vreli).
Then, using DTT we oblin

E (dxt=(.1 de i.e the ban
Be BE

formula thatthe neuction of volumes along avertic
field Iare given by the divergence of 1.

b)let t =e be the olensity. By definition

Care, rather, by our percolore of "followinga patie



of the body in its motion",

*Sedx =0 (Tus is sativesa

somewhere colled

Laroisie penciple).
Using RTT we have

0=(et,x)d=([9+ +1.e +97) dx =

t Bt

- bythe usual feulas=) +1. (91) dex.
BE

Since this must hold FBI we "ladize" this witqual
formed and recover the man cause nationlow

(As see the lectures on the olenation of the

D'flewhet equation) as

n.bey)=0.
Chobe referedto as MCE).

areect:

The quantity fit 1.DF is celled Material

or corrective deviative. It is oftendental

by . Aeglow, inlactasion cometer,
its is given by 2f+Iudff.
Noticethat A satisfies the Leibnits rate; 1=)s+fDt



LEMMA ("per-wit were leana").
letI be the "pe-mitwas densityof a scala

quantity of, i.e set

(B):dx=e
de

Fe(B) =)eEdit=(elEttn.) die
BE Bt

Hof:It consists in a suitable regroupingof theterms
appearing in the RIT facula(1.4).
We here

RTT

(eEdx=(((9) +nox(e) +eEx.)dx
Bt

=>((4 +eEx +e1.E +E1.e +4y.u) dx
Be

= (. (ex+1.e7.)- 9 (dE +4.DE)]d
0 by MCE

-Idx ein.



Of great importance is the computation of the time demotive

of the liveon momention decisity (it will be the LHS

of the momentum balance equation, i.e the translation

in the mechanics of deformable bodiesof the I ventor

spruceple").

we have
via thebo

4.10) JenajediJelatkudix.
BE Be explicity Re

For further me, we notice thatin being a lanterion
basis in IR3),

(14)2 =zwid= ndute;=
=ER(0:n).ni) ei=I( Juj: i)e;
where In is the Jacobion metrixof the relicty
rector fiel

This somehow ends the benetical description of
the motion of a definable body. In Section 2
weshall bable the problem of dynamics.

--



Intro to ED-Section 2 -

MICS.
A) The ramentum balance equations.

we have to transplantthe Newton's quation fe

systems of fluid particle

Et z ri= Fest [Fext beingtheextendn
-

faces acting on the system)
We have already competed the rate of sonation of
the five mouration density (1.10)

E S 94dxs=(f(k+ +(4.1) u)dest.
B

we have toequatethisquantity tothe face

exactedon BC. This will be dimbled (es

ventinal before) with a

(2.1) I =(ebdx + S T · dAt
B OBE
t

-

Booy Force Start auge face
cexterel) exected by the "rest"

of the fled on Bt.
I in the first snowed of (2.1)
is the density per wentwas
of the body face. E.g. in the
case of granty, b =8 - the greatly acceleration.
Whatis une subtle is the bowley facet.



sure wedo nothave lando not mounts to give a

microscopical modellization of such interactive we
have to make see "plaameulogical" exsuptives.

The first one is theso called louders hypothesis, that
requires (let us"freeze"time) I to be

a linear functionof the naval 1 to B, eX.

(The Coudly hypothers rules out dependence on thecurator
or other higher anke genetic properties of Bt).
W.B.:we are not consicking - intheloudly up-
surface tensionplanner. They, inthecost of
fluhappen atthe boundary, e.g. thl-auc.
As such, fence be chatis open, there is

no contradiction.

Hauce, E = TORY, i.e

I =24e =2 zijus.
Such tense it is called "STRESS TNSOR"

(inIblia,"tensive degli sfarzi").
Fudly, the integidedfree of the unventur

balance equations are mutter as

2.2)

jedix =edX + (m, dAleBt



To "localize" (2.2) we first useGenes them on the

bourlong face thereto mitre

(1!.m,dA(x) =f(I.It') dxt, wher
&BE Bt

It is the nectic I =II? ari) en
His trousfres (2.2) unt

Jedix= ((eb +1.5) dxt.
Bt Bt

Since this holds of (regular enough) Bt we are at

12.3) 9=eb +Rat ↳ "Caudry equations"
..........

The second fundamentalequation ofthe denomic
Cho=totmest; an be adogously transplanted in
the continue setting as follows.

The angular verwenter density will be

↳B1) ag y ax · I still beingthe Euler velocity..
BE

Hence

(B) =(+1)dx
Using Leibnitz rule, A(AR) =a +xxt

It



Since X is an Euleiencoonute, 24 =0, ?x=I a

so *= 1. So the unterward reduces bits secoulter,
1.2.

12.4) dLR) =e 1nD d*Yt.
E

The RHS ofthe angular reventure balance low is

b.5))Anqb + SXnTow dA

Bt oBt

Letus recipitate the secreta. Incoonlutes, its but

component is

I isFine ·A (sk'sbeingthe bi-Gintae OBE crupletly outsymetric
Helsin - a symbol).

Usingthe gauss the we have that it equals

·eSe(*is:;)dx=
B
t

=2Ssaidetae Jeh's diese

this is the bothcomponentof dot. So

using [2.4) oul (2.5) we waterthe agull summerton
balance low es

(xdx= S xaleb +2.) +en)z,sksysI
Bt

i.2
Bt Bt



12.5) JentetzebetonSabzien)Es isteBE

=bk
=13a)2dx =0 =D

# is Ti, i.e # is a YMMETRIC Heuse.

swingup, so for we have the system

it +P(e1) =0
2.7 E 28 =eb +k.

i
t =

supposingI given, so far
this is undetained. Indeed

we have a degree of feeder fore, 3 fo
al 6

cusing the test algebraic relation) for the streetenseit.

MCEonthe Coudy ofone 4 equations.
To tu and close the systemone has to maker suitable

anptivus ("Ansatze") an

1) The farce and functival dependenceof
2) Relatives between "themoquancal quartities"

Assumptions as are celled "constitutiveequations"
2) "Equations of state".



↑

A flu can be defined as a matinum whose stress tense is

popative to the identity when a =0 (sc configuration)

This means thatthe constitutive relation is

= - WHd + Foyu f is the presuce, whence the
mine sign in the relation.

Notice thati --It is

E = -1is usual to BI.

So, a continue"isa this if I cast admitsher stages

treat.

Dition:A flu is on Euler (a"idea") fu if
It is always popational tothe identity.
Writingit =-N(x,t)Id, it is invaliateto seethat

I. i--X. Meuce the furlonatalsystem 2.1) became

9 +2.(91) =
-

3 n ++(y.3)1 =
- E +b

(4 equations in5 aubles, 9, 1, N1.
To close the system one introduces are equation of state.
A flud is callel BAROTROPIC if such a relative can be inten as
m =NrCe) thusyieldingtheclosed system (gesis).

22.8) ++ EC92) =0E 4
x+4.2)1 =

- 4(e)4 +3.

(See the lectures on sound moves)



SECMON3:INCOMPRESSIBILTY
-

Action:the incorperbility fine to a flail is
the one in whichthe volume of any subjectionof

thetheil

is constant. Hence, the characteristic equation
is 1.1 =
0 also (2.8) closes es

4 +1.xe =0

22.9) 1.4 =0I a
=+kixu =

-4 +b

1) As we shall see in the next page, the exception of weaponsibility
is consistent for fled no times with characteristic speeds

much less than the speed of sound.

C) A particular case of"imc. flids" is the core of homogenous flands,
voeely 4 =%.

3) While inges dynamisp isa "themodynamical quantity",
in the incorpremble refine to becomes a

"metrical quantity".
and satisfies anelliptic equation"with sowide defending
on I are. Luckel, take the dirgence of the last of 12.91,ie

a) +1. (41) = - D.(T) +4.b
=-N +beYN.Te+b

In the Loungeweauscose (4-40) tus simplifies to
- Ar =4 [1. (UDul) - I.b].



let us discuss now point 1) ofthe pavinespage.
We have seen that, for a perfectflat, the linerization
all x =0, 1= 4(constant) of the Eder equatives
is (setti u=EN, 9= 90+ 54

t +201.=0
(2.(0) ECot +n'(er) - =

0 with =w (C)

let me remind that to obtainthe D'Alehartequation

to o one lakes it of the firstone and the

diregence of the record ofR. 10) to get

S
Yet+9(Y.U) = =0

edl them, by
to (D.1= +h' (90) 1=0 subtraction

- v'(er) A Y =0

Then p'(co) =cs, the square of the speed of soul

If, listed, we take the loglacion of the first of(210)

we get

() (A2) + +to A. (1.2) =
0

heace, bling it of the oregance of the sewal in 2.10

(0.) to (5.0)1t +f'(90) (AY)= =0

so (A)t ==e)) It oul, substituti vilos



we get

90 [-(E)It +N(90) A. (E.1] =0

which slows that If satisfiesthe same quative
of 5. i.e, perturbations of EMC=s5.E)
jouegate with thespeed of sound.

Now, suppose we boutto describe planer with

a characteristic speed to. Fix enlebitay) length
scale (=b L/F is a time side.

Gender the D'Hamlet quotineto of

(211) (D.1) it -C A(.1 =0
and setx =Lx* =xi =x* (also,t =2t* ->E

&
t =d5. =u*

lutter starred rules (2.11) becomes

(D.) ir -cA*(t.1 =0**I

samplifying and diverting by we get

~(Y.Yt*- A* (:r7 =0.

C

For C functions we seethatis the "exymphatic

Lint twll bea
home

anene
corset, the incupessalityregime as *= 0.



in4:MoEnderFleil.

let us conside the Euler equations for a Homes. Fluid

Doe
=0

44.1) E*t +r.t.0) =- +b

whe natural b.c. e wow =0 epleyical
bondary ("no thethough thewalls.").

If Jo decate the Jacobianof the velocity,

(55)ij = 0je: we notice that the secul if 4.1

cerbe mitten as

qu +(Jr)rere=-der/to
foldinga subtracting or(incomprents,

(Iren we we can site it as

Iin+2re(en-2(e) +Zwebetz -- eewly.
2 eu u

11 11

(Ex) ar is Illu

Revating to the rector rotation, with =D*

we awire atthe "Lamb formof the Euler equation,
vit.

(4.2) &t +XH +wae= -+D



When I admits a potential, 1 = -D4, we have

14.3) + I1 +war = -x (Myt4s).
1) Bevoulli'sHn:

let bestiary, i.e, NI=0 =1 (4.3)

becomes

4.4) (1 Me +45) =Eaw

so that, in the generic core,

F.D(1 +Me+43) =0, i.e the
quantity (energy per unitwas) "I got to
is CONSTANT ALONGTHE STREAMLINES

-or
(gotbe

-&

KWx
=>
+Wo +Ez

while, in the special vos w =P
!

IN+Mg+4b's CONSTANT ON EVARY

CONNECTED COMPONENT OFTHE FLUID'S
DOMAIN.
The constancy ofthe energy densityon streamlines

Call the specialcare In W=0 are BERNOUILLI'STHM.



still in the case ofa homogeneous Euler their with
body pace densitis b admitting apotential, Lamb's
free leads to the so-called Melmholtz systems.

Conside (c =xxw) the quations
X.=0

45 ~+ +waw=-D.) nMe +46)E
Dow =0

Taking the cut of the second equation we have

at +Ix(w) =0

Now
, uing

the generalvector bletity

406) Dn(WN) =(.D)w-(w.D(r +(E1w-(
we are, thing not accountthe equations=Fw=0,

-

I
w =xxx

I. = 0

(4) D.w =0

W= +Ex)w =
= (w.x)I

karn as Helmholt formulation (as equations).
letter sequel we stall use the factthatin3D flows
(I =(N+(+,y,t),Yy(+,y,t),0)) w is

(0,0,wz =0xy -dyix) soul so the lostof
24.5) saythatCD listicityis erected:

+ (.x)wh =0, ie it material denativewas



Section 5. The Kutta-fonkowskitenis of eifat.
-

step wing)

Background hypothesis:
a) the infoilis infinitely long Hum a 3Dpb

to a 2D pb.

b) We shall seton study in the regime Y
so that air will be an"increpes.be Kangers
fleis

-) we shall study the satimary problem of
a steady velocity = Ux.

d)mustinclude quality inthe picture
-
W
--
-

-

-

Step (1): we glea use the inning's reference frame.
-> -

---

->

-
=-I
U.

call "downstream" theregion"x-x +0, yE/R
and upstreamthe region x-x - 0 y = IR

The ring (obstacles occupies
a fixed requion &

in IR2. So the problem is



5.1)
Gow =0

EF. (F) =-PM/ (gronty neglected)
withtheRollonib.c.

BCI) lie v(x,y) =.E1 yeR.
-> D

"constantvelocity" for every firm the obstacle.

BC2) Ne-flex through the surface of, .. e
bei v - m =0

(x,y) -20D

BASIC PROPERTY: sec -W.effax- Is
w =xxx =0x -10. From the Helmholtzequ's
(sea 4) we be that unticity is advected in
CD =1c

=0 everywhere.

becomes

tan
(5.)

eineen
(.x)= =

-TN/90
So the strategyis to site the liner part of15.2)
suppleatedby BC1enBC2, and the use
the lostof 5.2 to determinethe pursuer p.
Notice thatinsteadof the equative (f.Ds) +TMG0
we care use itsintegrated free"comingform



Bewailli's true,

IHVR+1gFF, sun w=o mpliesthat

It is a global constant,

In particular we shall be able to compute the farce
exected onthe wing

A =Fx e1 +Fyez =(-100) &xpal(er- (ebypal)
-

ARAG LIFT

The Kutta-Jonkowskistligy is them divided in

three steps:

:We solve the publem in the simplestpossible
fermetry, Newely D:disk ("round unl")

: Wehousfamthe problem with a publem
iscomplex generating

Steps:we use a suitableconceal Froustruction
to obtainan ailuit like obstacle.

Rework: No wiqueness in point 1.-

uniquevenwillbe enticedin step 3 by
means of a regularity requirement.



kep1:Flow ato dadisk.

The problem is to feel a rector field ofs.t.
D. I =0

(5.3)E Da =
0

Gei r =Vo=Y-s
r-> 5

X.er =0 er=a (a is the Ade
of the disk).

letus consides the equation=0. If
we think to itas a t-frm v,dx+wydy on
the dacaiIDID, then iis closed.

The point is thatthe topology of IR2-D is
no third. Its hology group is generated
by the one-fam
x =1( - ydx +xdy) =d0,ching the

x242

augular conducts. The cospondingrectin field
willbe t =.
Notice thatEt satisfiesBC2 aul vaigles at V-so.

it is the only topological fever eveting one problem,
So we can nor to the "potential" part of

-

the problem, where we wate= IE.



In such a case, (503) becomes

~
A4 =0 on IR2-D

~EhixK=U. exn-D
~

84 =0 r=a

we notice thatthe condition atr->can he

obseheil by 40 =U.x =
U.rcosd

Wity * =4s+E, we see that I

must satisfy
in R2-D

15.44 rio

It cost (i.e.a
Inthe firstpart of the course westudied a similar

problem (but looked for a solution site the disk).

By writingthe laplauai ice polar conducte

At =ot +1 +I
and lookingfu purdic functions, we fou
solutions

fn(r,0) =r" (XucosuO+BuScind), ueR.

Sure we wontsolutions goingto sew fur-x+0,



we have to conside the core 40, i.e exper
⑧

+cral- in(ancosud+Busina

now--, iht Kulsud+Busnd

aharu (r_o* ann Kulosur+Buscina

Thus thequation o Iv=o--cosch firm
Bu =0 u

<x=0,431, 4, = a5. Tis yields
the solution to 5.4 to be

+(4,0) =v, also the solution to
the potential problem (5.3) I to he
N
4 =

Ucosd (r+). Findly,WRER,
the velocity field is v =D4+F xx ie

I15.) -waterinter
M

I Iget * with
k
=-



↳ ofthe face.

Accordingto Bernoulli's them we have

fl+N=E (constant), so that

v ==er +2. On the boundary of the
disk we get(r =0 e r

=a by the BC2)

I
=Np =(Usaid C

2

·

(5.7]
2

On ID the rival M is 1-cosdest said
as =add and so, enting A

=Fxe1+Fje

swicep = HV+E webeave (E =
-( 1 de)

Zu

Ex =(add. [qu -E].cos =

- asrsio ·- said thatso

while
↑y = 1)ado.Tarsiasaid
=efeda =>eur (to

seT= 0).



Rack:According to thechoice of signs we
made (see 5.5) when it is positive, the "topological"
sumaul ofthe velocityrector field is directed as
-> es, i.e, clockwise.

When I
=
0 we have

E =Ucso/1-) er -UsinO(1+) e
The phase portraitof such a rector field is (red

ewes)
->- Rys.I i

->
->
(Cluck for exercise!). ↑

The topological colpmant de inblack.) for>0).
C

If Neal's or the with and south poles" ofthe
desk, I) HEMs =A by Bewulli 3

NNUs -- there will be a face
of liftinthe retical directive. Thus matches
·m last formula.

In steps 2 and3 we refer the interested reade to
Clovers book or Acesie's book, 2.4.



im6:Water Wares:deviation ofthe equations.
letus conside the Lamb's faceof the equations
In a houseous that in the grantial feel (retforl

(6.1) vt tDlv +wa = -YN-ges

(1)and
suppose C =0 so that, orway the domain- I

be simply connected, i=PK.
6.1 beware

(xd)+Y:
11x412

=
-(n +gz)

x(4t) =P integratingw.r.t. 1"we get

(6.2) 41 + I"T44
2
+gz =
=(N +N0) where we

called to the integrative cons but.

So we get (saixe I.F =
0) the sistem

E
A4 =0

(6.3) 4t +y44H+gz =pr - no

-

1) It can be power
that in the Euler core,

-(1,0) =0 =Dw(1,t) =0.



The full Water-ware problem consists estudying(6.2)
-ina domainwhich wasinspoc I time", that
is ina domainof the face:

(x,3) -> R2, g1,y) 12Iy(4,9,t)
Il

fier" bottore varing air-Vater

aterface,i.e
"More profile".

To this en wehave to discuss the boulay
conditions.

1) Kinematic boundary conditions translate
the concept that, by the very definition of bowelaus,
fled particles coves cross it.

If CIC) is the trajectory of a point particle
on the body of the down, andif the
part of boundary is given by on equation
f(x,t) =0 =D

0
=Gf(x,t) =e.xf +fz =>(x =1) -

AroDf=0.
If the bottom is given by E-g(x,y) =0
we have

vz -(V,0x9 + [22y1) =
0 =
x =x4 =

x



& - 4x9x - 4ygy =0 e z =g(t,3)

In the case of a flatbottom (g(x,3)= bol,
which is the one we shall stick to eater, we singly
har

(6.3)4z =0 &z=ho

There is an analogous condition on the air-water untefor
2 =y(x,4,t) which heads (here y=y(+,4,t))

(6,h)
4t+4x4, +4yMy =4z

We have also a father BC whichcams from requirig
thatthe persome be continuous [we one exting
no surface tension?)]. In the air-untercase
we have for0-D Nain=constant

= No.

[Exercise:why?]

So, substituting inthe second of (6.3) the get

6.5) 4- +1243 +gz =0 e z=y(x,y,t)
2

Thus is called Dynovnal boundary condition.
-

ofwoe-austingsurface train combe

treatedaswell - See Salsa's book, Ch. 5.10



surry up we are facingthe follug problem
Creater were problem with flatbottom):

At =0 -,te(0,T)
4t+IP4+g1 =N-te I

9.6)
2-
+4x4x+ky4y =4z 3 x,y (R2z =m(x,4,t,I 4 ++I(k+4 +44 +gz =0 te(qT)

92=0 x,yER? z=ho, te(0,).
In a (2D) picture air

-

-MatX

ho ii Water

11/11/IT
The gened strategy is to site 6.6-1, 6.6-2, 6.6.3 al

6.6-4 nowly, oulther use 6.6.4 to compute
No-Roo So we shall consider (eaning a bit
the rotatio

b
A4 =0 -hozy

6.7): +z =0 ez =-ho BKBC

me +4xMo+44y =4zez =4TEBC
4- +(4,+4 +42) +94 =0ez

=yTD



eire7:Wolewres:Linear theory.

Conside the sitution (16.7)4 =K, 1-0
oul rectant it:4=

12 +2 +0(2) y =2y +0(2)
we get, a 0(d):

Al =0 0zE}
92 =0 e z =- hoE3+ - 4z =02z =23
9x +93 =0 et =5)

Assumingregularityof we rentice thatthe Ce
2 =E) give, resting E

↳ 23t(x,y,t)
- 54z(4,y,23,t) =

0

29=24,1,59,t1 +93(x,y,t =0

#

SSet,y,t)- 34zL4, 4,0,t) -s4zz(4, 0.11.3-...E=9=(x,y,9,t +224tz(4,Y,0,43 +... +gag(x,y,t) =
0

So that, e0(d) we can "square up the domain"
and write the problem for the lensouzel War eques as

Ac =0 -hoLz0
--

E 4z =0 ez =-ho ↓-hoBt-4z =0 e t=0

-

24+9M =0 e z=P



Let us sluten the discussion a bit and search for a

place more solution:set x =(2,4), k =(kr, Ful
call write the Ansetz

3 =
A cos(1.x -wt +003 4 =y(z) sin (K.-n+ +00)

17.8).

letus first consider the subsyla

S Ago -hoz0Ot =0 ez =-ho

this yields (setting it: =E.1-nt+40

y"(E) Sin (4)-KRY Sin (4) =0
see

y'(z) =0 e z=-he

samplifyingthe few suitwe have the system

y" =se2 Ckauai repulse)b y'(-ho) =0
letus withthe sewed station to the Restone

esy(z) =B(h(x(ztho)) + c,Sh(p(z+holl
=D y =seBSh(x(z+40)) +caCCh(re(t+hol)
-Dy'(-ho) =0 gulls c =0 so that



y =B du(x/Etho)), and hence
· 4 =
B C(x(ztho)) Si (K. -at +(0)

witharea by 6.8,

100 =ACOS(R=-w++0 (koX -wt+d:=N)

letis now use the Bee the with face and
substitute (0) and 700 in

↳ 3 +
- ez =O (e z=0

9t +93 =

0 (2z =0)

3 Alsie- Be St(s(o) suit
=
0

gAcos-Bach(thol cost =0

symplifyingwe set the lower system vi (A, B)

co -> be Sh (behol

I q -racan)(]= [8]
we mostnon-gene solutions =D

- resalebol) =0 i.edet( -wch(bko)

-wch(cho) +seq Sh(seho) =0 i.e

6.9]
co2

=seg Th (Chol



26.9) isthe dispassionrelation to leased waternames.

Rank thatthis is an ewear, i.e

cit
=

1Th (bewo) is not a constant.
-

-2 x

them
we

have plan moves solutions, but

elementary moves travel with speeds thatare a

fenctiveof ae=.

Read:ifwe set oncelveswith ID core and
bke rightsongmoves (R >0) the dispusion
relation boils down to

at=grTh (kho).
In the "replete depth lent" (ho-2) Th(khi)+1
also we have

w2qk,w =4k =
x

E =V -5' =1.257.
In the opports core ("ho-so") ih kho kho

on one gets
ar2

=ghox2 =>

=Wh =co
"Shallow-he small-voter lever wares are
not dispensive u



u8:The Navier-States equation
Lina nutshell).

To uitoduce the Naia-Stokes equation (or,
systems we there to reconside the loudly
equections (Section 2, eg. 2.3)

(8.1) 9E =eb +Doi
3

where I is the Euler velocityfield wat
is the "materia deuative",

*

- &t +1.D)
At I

out is the stren tensor, encaling surface
faces as

Tang=ST.rdt, A beingthe usual
wit vectr.

&Bt

Rewarder that the Euler fluid hypothers
namely the Eule constitutive equation, we

M =
- p. Id (Id being the identity

kusn), implying thatsurface forces are alwa1
directors abung M

=



The Naviez - Stobes equations one obtainedrequirig
teat:

e) i
=

-NId +YY, T
=

0 it1 =0

2) is operals linedly onthe velocity qualient
Is =djui

(the linear dependence ofTV on Jx is called
Neutiion setting).

3) itv's is votionally inverent.

Reaock: vis count depend on 1 by Galleon
-

inovence of the terry. A must this depend meJr
To proceed further, 2) miliesthatIa tube

Even god such that(incomponents)

5.2(#vis)is =2, Eis ob Ju
ob

9,b

yid can be, in prope, a fraction of the position
but we stallmountainit to be constant.

3)above mucous that, if ReSO(3)
it must hild

(83) R T(Tr) RT =iVs(RJRT)



where thelow Js->IV is givenly 802.

In wpents (over la that in the Euclidean

setting there is no difference inconceitand

antilienttest indebes),

(8.4) eiske = IDia" RE RY eabed
obea

It can be slearn thatI exercise;check the
sufficiency statement] roktival inverence

yiells

18.5) C. Jv =M, Jr +M2 Jr +[rJ).Id.
Suce it must be symatic (see Section2)

Mi =Mz =pe, and so, under the Newtowin

setting,

(8.6] TV =M(Jr+5r) +xex.u).Id.
TrJr

Reak that the b-fan he the same form as

of that ofthe Euler one (stress - unwell
while thep-tae can he off-digand
than inducingstate stress (stienhas

compmentin the unwel plane). We shall
exure be to be undependent of X. (iscontscoeft).



18.2) thestakes equation

The Nauke-Stokes equation (in system)
onthe equations for a

Langeneous
2) Neutrin

3) Non-Euler flow.

houganeity means to do custant) to
Is =

tr Iv =0.

Heuce TV (86) veluces to M. (Jx+tr%.
Writing the Coudly equations

ePE:It competise yells
(=- pEd +(Ir +5t))

% (+ ZUTI=-ent +ET+ jU]=
10

- - (+u(z((8) +5), i.e, fulle
setting5 :=Ullo, the NAUER-Siobes eg:

· +fe.) = - +wae +b


