
Announcements

§ HW
§ Project

272SM: Artificial Intelligence
Programming with Prolog

Instructor: Tatjana Petrov

University of Trieste, Italy

Today

§ Six lessons about problem solving and search with Prolog
(https://staff.fnwi.uva.nl/u.endriss/teaching/pss/slides/pss-prolog-
slides.pdf)

§ Examples:
§ Who is bigger? Who is related? Is Socrates mortal?
§ Lists: length, reversal; Checking if a word is a palindrome
§ Computing a Fibonacci sequence
§ Solving Sudoku, N-Queens

https://staff.fnwi.uva.nl/u.endriss/teaching/pss/slides/pss-prolog-slides.pdf

Prolog examples: Who is bigger? (basic syntax)
/* Facts (Clauses) */
bigger(elephant, horse).
bigger(horse, donkey).
bigger(donkey, dog).
bigger(donkey, monkey).

/* Rule (Clauses) */
is_bigger(X, Y) :- bigger(X,Y).
is_bigger(X, Y) :- bigger(X,Z), is_bigger(Z,Y).

/* SYNTAX
* Atoms: elephant, xYZ, a_123, 'How are you today?'
* Variables: X, Elephant, _G177, MyVariable
* Compound terms: is_bigger(horse, X), f(g(Alpha, _), 7), 'My Function' (dog)
* Facts
*/

Prolog examples: Family relations (matching)
/* Matching using a built-in equality predicate born(mary, yorkshire) = born(mary, X).
f(a, g(X, Y)) = f(X, Z), Z = g(W, h(X)).
p(X, 2, 2) = p(1, Y, X).
p(_, 2, 2) = p(1, Y, _). anonymous variable
*/

mortal(X) :- man(X).
man(socrates).

aunt(X, Z) :-
sister(X, Y),
parent(Y, Z).

Prolog examples: List concatenation
/% Lists */
X = [a, b, c].
/* MyList = [1,2,3,4,5], MyList = [1,_|Rest].*/

/* concatenation concat_lists([1, 2, 3, 4], [dog, cow, tiger], L).*/
concat_lists([], List, List).
concat_lists([Elem|List1], List2, [Elem|List3]) :- concat_lists(List1, List2, List3).

concat_lists(Begin, End, [1, 2, 3]).
Begin = []
End = [1, 2, 3] ;
Begin = [1]
End = [2, 3] ;
Begin = [1, 2]
End = [3] ;
Begin = [1, 2, 3]
End = [] ;
No

length([tiger, donkey, cow, tiger], N). % built-in operator
member(tiger, [dog, tiger, elephant, horse]).

show(List) :-
member(Element, List),
write(Element),
write(' ‘), % nl
false.

show([a,b,c]).

len([], 0).
len([_ | Tail], N) :-
len(Tail, N1),
N is N1 + 1.

X is 3+5

Vs.

X = 3+5

Fibonacci, factorial

fibo(0, 0). fibo(1, 1).
fibo(N, F) :-

N >= 2, N1 is N - 1, N2 is N - 2,
fibo(N1, F1), fibo(N2, F2), F is F1 + F2.

fact(0,1). fact(1,1).
fact(N,F) :-

N>=2, N1 is N-1,
fact(N1, F1), F is F1*N.

fibo(0, 0). fibo(1, 1).
fibo(N, F) :-

N >= 2,
N1 is N - 1,
N2 is N - 2,
fibo(N1, F1),
fibo(N2, F2),
F is F1 + F2.
write(F), nl.

What will we get here as output?

(solution: 1-2-1-3-1-2-5, show the tree if calls)

QUIZZ

[source: https://cs.union.edu/~striegnk/courses/esslli04prolog/practical.day1.php?s=practical.day1.node9]

female(helen).
female(ruth).
female(petunia).
female(lili).
male(paul).
male(albert).
male(vernon).
male(james).
male(dudley).
male(harry).

Formulate PROLOG rules to capture the relationship of aunt_of(Aunt, Person) :-

Computing the maximum
%% Base case: the list has one element.
%% The maximum must be this element as there are no other elements
%% which could be bigger.
max([Max],Max).

%% Two recursive clauses which compute the maximum of the tail and
%% then compare the result to the head.
%% First case: the head is greater than the maximum of the tail. The
%% head is the maximum of the whole list.
max([Head|Tail],Max) :- max(Tail,TailMax),

Head > TailMax,
Max = Head.

%% Second case: the head is smaller or equal to the maximum of the
%% tail. The maximum of the tail is the maximum of the whole list.
max([Head|Tail],Max) :- max(Tail,TailMax),

Head =< TailMax,
Max = TailMax.

Maze (Computing connections in a graph)
connected(1,2).
connected(3,4).
connected(5,6).
connected(7,8).
connected(9,10).
connected(12,13).
connected(13,14).
connected(15,16).
connected(17,18).
connected(19,20).
connected(4,1).
connected(6,3).
connected(4,7).
connected(6,11).
connected(14,9).
connected(11,15).
connected(16,12).
connected(14,17).
connected(16,19).

Write a predicate path/2 that tells
you from which point in the maze
you can get to which other point
when chaining together
connections given in the above
knowledge base.

Now ask some queries. Can you
get from point 5 to point 10?
Which other point can you get to
when starting in point 1? And
which points can be reached from
point 13?

Solving N-Queens with Prolog

Solving N-Queens with Prolog

Solving N-Queens with Prolog

Solving N-Queens with Prolog

Solving N-Queens with Prolog

Solving N-Queens with Prolog

Solving N-Queens with Prolog

Solving N-Queens with Prolog

Solving N-Queens with Prolog

Solving N-Queens with Prolog

Solving N-Queens with Prolog

Solving N-Queens with Prolog

Solving N-Queens with Prolog

Solving N-Queens with Prolog

Solving N-Queens with Prolog

N=4 N=10 N=20,

2.144 CPUtime

(default labeling)

Solving N-Queens with Prolog: with labelling

N=40, 0.23CPU time

(smart labeling)

N=100, 1.363CPU time

(smart labeling)

Implementing Eliza (1964 ChatGPT ;-)) with Prolog

Eliza-like program with Prolog

Resources

§ https://www.metalevel.at/prolog/introduction
(https://www.youtube.com/watch?v=l_tbL9RjFdo for N-Queens)

§ https://cs.union.edu/~striegnk/courses/esslli04prolog/
§ https://swish.swi-prolog.org/example/examples.swinb
§ Prolog for data science https://emiruz.com/post/2023-04-30-

prolog-for-data-science/
§ Picat-lang.org

https://www.metalevel.at/prolog/introduction
https://www.youtube.com/watch?v=l_tbL9RjFdo
https://cs.union.edu/~striegnk/courses/esslli04prolog/
https://swish.swi-prolog.org/example/examples.swinb
https://emiruz.com/post/2023-04-30-prolog-for-data-science/

