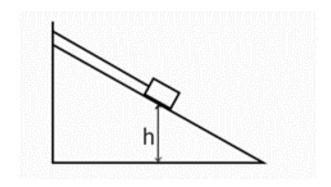
UNIVERSITÀ DEGLI STUDI DI TRIESTE


Corso di Laurea in Scienze e Tecnologie Biologiche – 011SM Fisica A.A. 2021/2022 Sessione Estiva – I Prova Scritta – 19.06.2023

Tempo a disposizione: 2 h e 30'

Cognome			Nome								
Istruzioni:	I problemi	vanno	dapprima							а	quadretti.
Successivam	nente, per ciascur	na domand	a, si richiede si	i riportare	negli a	ppositi spa	ızi su qu	esto fog	io:		,
i)	(ove possibile) l	a grandezz	a incognita ric	hiesta esp	ressa si	imbolicam	ente in j	funzione	delle grandezz	e dat	е, е
ii)	il corrispondent	e risultato	numerico, con	il corretto	o numei	o di cifre s	ignifica	tive e le i	unità di misura	appr	opriate

1) Un blocco di massa m = 1.5 kg si trova su un piano inclinato di $\theta = 30^{\circ}$ rispetto all'orizzontale, ad un'altezza h = 1.0 m. Esso è legato ad una fune che lo tiene fermo, come mostrato in figura. Il coefficiente di attrito statico tra il blocco e il piano è $\mu_s = 0.25$, mentre quello di attrito dinamico è $\mu_d = 0.20$.

a) In condizioni di equilibrio, trovare il modulo della tensione T della fune

i)
$$T=$$

Successivamente, la fune si spezza e il blocco inizia a scivolare verso il basso. Trovare:

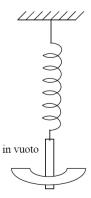
b) l'accelerazione α del blocco durante la discesa:

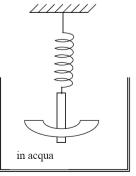
i)
$$\alpha =$$
 ______ ii) $\alpha =$ _____

ii)
$$a =$$

c) il lavoro L_A compiuto dalla forza di attrito dinamico in tutta la discesa:

i)
$$L_A =$$


ii)
$$L_A =$$


d) la velocità v del blocco alla fine della discesa:

i)
$$v=$$

ii)
$$v =$$

2) Un'àncora di metallo viene appesa ad una molla verticale, di costante elastica k = 1500 N/m. In vuoto, questo causa un allungamento della molla di $\Delta x = 60$ cm rispetto alla posizione di equilibrio. Se invece la stessa esperienza viene compiuta con l'àncora immersa in acqua, l'allungamento rispetto alla posizione di equilibrio è di $\Delta x' = 40$ cm.

Determinare:

a) Il volume dell'àncora V:

i	V =			

ii)
$$V =$$

b) La densità dell'àncora ρ

i)
$$\rho =$$

ii)
$$\rho =$$

3) Una mole di gas ideale (n = 1.0) si trova in equilibrio termodinamico all'interno di un cilindro mantenuto in contatto termico con un termostato alla temperatura T. Il cilindro è chiuso ermeticamente da un pistone mobile. Inizialmente, la pressione ed il volume del gas valgono rispettivamente $p_i = 10$ atm e $V_i = 3.0 \ l$. Successivamente, il gas effettua una espansione isoterma reversibile (a temperatura T), fino a raggiungere il volume $V_f = 12.0 \ l$. Calcolare:

a) la temperatura *T*:

ii)
$$T =$$

b) Il lavoro L compiuto dal gas contro le forze esterne (specificare la convenzione sul segno)

c) la variazione di energia interna ΔE_{int} del gas:

i)
$$\Delta E_{int} =$$

ii)
$$\Delta E_{int} =$$

d) la variazione di entropia ΔS del gas:

4) Il circuito in figura contiene un generatore di tensione ideale (G), che mantiene ai suoi capi una differenza di potenziale $\Delta V = 30$ V, e cinque resistenze, che valgono rispettivamente:

$$R_I = 60 \Omega$$

$$R_2 = R_4 = 90 \Omega$$

$$R_3 = 45 \Omega$$

$$R_5 = 150 \Omega$$

Calcolare:

a) La resistenza R_{eq} equivalente a questo insieme di resistenze:

ii)
$$R_{eq} =$$

b) Il valore di ciascuna delle correnti I, $I_{1,2}$ ed $I_{3,4}$ illustrate in figura:

i)
$$I_{1,2} =$$

ii)
$$I_{1,2} =$$

i)
$$I_{3,4} =$$

ii)
$$I_{3,4} =$$