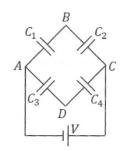
Universita` di Trieste, A.A. 2022/2023


Laurea Triennale in Ingegneria Elettronica e Informatica Fisica Generale 2 - Primo appello estivo - 16/6/2023

Coanome	Nome

Accetto il voto della simulazione per il [] primo, [] secondo, [] terzo problema

Istruzioni per gli esercizi:

Per ciascuna domanda rispondere fornendo solo il risultato finale: la grandezza incognita espressa simbolicamente in funzione delle grandezze date o di quelle ottenute in altre risposte, e il corrispondente risultato numerico, con il corretto numero di cifre significative e con le unità di misura appropriate.

- 1. Nel circuito in figura il sistema di quattro condensatori, con C_1 =4.0 μ F, C_2 =6.0 μ F, C_3 =9.0 μ F, C_4 =12 μ F, e` sottoposto alla differenza di potenziale V=100 V.
- a. Calcolate la carica su ogni condensatore.
- b. Calcolate la differenza di potenziale tra i punti B e D.
- c. Calcolate il valore che dovrebbe avere C_3 per bilanciare il ponte $(V_B = V_D)$

- 2. Un fascio di elettroni attraversa un selettore di velocita`, dove il campo elettrico e il campo magnetico hanno entrambi modulo uniforme, pari rispettivamente a 50,000 V/m e a 0.02 T. Chiamiamo x l'asse allineato con la direzione degli elettroni non deviati dal selettore, mentre il campo elettrico e` allineato con $-\hat{j}$ e il campo magnetico con \hat{k} . Usciti dal selettore, questi elettroni finiscono in una regione in cui e` presente un campo magnetico uniforme $\vec{B}=1~\hat{i}+1.732~\hat{j}$.
- a. Calcolare l'energia, in eV, degli elettroni che non vengono deflessi dal selettore di velocita`

b. Calcolare il raggio dell'orbita dell'elettrone dopo essere uscito dal selettore.
c. Ponendo l'origine degli assi nella posizione dell'elettrone all'uscita del selettore, calcolate la sua posizione (vettore) dopo mezza orbita.
3. Una bobina di 50 spire di raggio r=1 cm, ognuna delle quali ha una resistenza Rs=0.5 Ω , e` immersa in un solenoide di raggio R=4cm e lungo L=80 cm, composto da 1600 spire. La bobina e` coassiale con il solenoide, ed e` lontana dai suoi bordi. La corrente nel solenoide caria da 10 mA a 60 mA in un tempo δt =2 x 10 ⁻⁵ s.
a. Calcolate il coefficiente di mutua induzione solenoide-bobina.
b. Calcolate il campo magnetico totale al centro della bobina.
c. Supponiamo adesso di avere una corrente alternata di ampiezza 60 mA, a che frequenza avremmo una corrente indotta massima uguale a quella calcolata in precedenza?