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Hybrid systems

“hybrid: [...] A thing made by combining two different elements.”
Oxford dictionary

Hybrid systems are systems combining discrete and continuous behavior.

They can be found in
physical processes (bouncing ball, freezing water, . . .)
digital controllers for continuous systems (avionics, automotive,
automated plants) → cyber-physical systems

As they interact and possibly modify the surrounding environment they
are often safety critical.
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Hybrid systems reachability analysis

Reachability problem (for hybrid systems)
The reachability problem is the problem to decide whether a state is
reachable in a hybrid system from a set of initial states.
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Here: bounded over-approximative reachability analysis for linear hybrid
systems.
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The reachability problem is the problem to decide whether a state is
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Problem: In general undecidable.

Here: bounded over-approximative
reachability analysis for linear hybrid systems.
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Hybrid automata

Hybrid systems can be modeled by hybrid automata
Here: linear hybrid automata

l0
ẋ = A0 · x + B0 · u

c0(x)
cI(x)

l1
ẋ = A1 · x + B1 · u

c1(x)

c01(x)

x := A01 · x

c10(x)

x := A10 · x

A finite set of locations Loc
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ẋ = A0 · x + B0 · u

c0(x)
cI(x)

l1
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Hybrid automata

Hybrid systems can be modeled by hybrid automata
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ẋ = A0 · x + B0 · u

c0(x)
cI(x)

l1
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Hybrid automata – example

Simplified model of a thermostat1:

x ∈ [20,21]
t = 0

on
ẋ = 0.1 · (35 − x)

ṫ = 1
x ∈ [16,25]

off
ẋ = 0.1 · (10 − x)

ṫ = 1
x ∈ [16,25]

x ≥ 21

x ≤ 18

1https://www.digitalcity.wien/even-thermostats-have-a-heart/
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Reachability analysis algorithm

Basic iterative reachability analysis approach

Input: Set Init of initial states.
Output: Set R of reachable states.
Algorithm:

Rnew := Init;
R := ∅;
while (Rnew 6= ∅){

R := R ∪ Rnew;
Rnew := Reach (Rnew)\R;

}

Question: How to compute Reach for (linear) hybrid systems?
Answer: Alternatingly compute time- and jump-successor states.
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Linear hybrid automata: Time evolution

Assume initial set V0 and flow ẋ = Ax

Over-approximate flowpipe segment for time [iδ, (i + 1)δ] by Pi

time [0,δ]

time [δ,2δ]

time [2δ,3δ]

P0

P1

P2

t0 δ 2δ

V0

eAδV0

cl(V0, eAδV0)

P0 = cl(V0, eAδV0 ⊕ VA)
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Over-approximate flowpipe segment for time [iδ, (i + 1)δ] by Pi

t0 δ 2δ

V0

eAδV0

cl(V0, eAδV0)

P0 = cl(V0, eAδV0 ⊕ VA)

Stefan Schupp



Linear hybrid automata: Time evolution

Assume initial set V0 and flow ẋ = Ax
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Linear hybrid automata: Discrete steps (jumps)

P0

P1

P2

P3
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Example - linear hybrid automata

x ∈ [0.5,0.6]
y ∈ [0.1,0.2]

l0

ẋ = x + 4y
ẏ = −4x + y

x ≥ 0

x ≥ 0.25 ∧ x ≤ 0.3
y := 0.9y + 0.3

x := x − 0.1

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.5 0.52 0.54 0.56 0.58 0.6 0.62

I

Ω0
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ẏ = −4x + y

x ≥ 0

x ≥ 0.25 ∧ x ≤ 0.3
y := 0.9y + 0.3

x := x − 0.1

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.5 0.52 0.54 0.56 0.58 0.6 0.62

I

Ω0

Stefan Schupp



Example - linear hybrid automata

x ∈ [0.5,0.6]
y ∈ [0.1,0.2]

l0
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ẏ = −4x + y
x ≥ 0

x ≥ 0.25 ∧ x ≤ 0.3
y := 0.9y + 0.3

x := x − 0.1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

linear transformation: Ωi+1 = eδA · Ωi

Stefan Schupp



Example - linear hybrid automata

x ∈ [0.5,0.6]
y ∈ [0.1,0.2]

l0
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Induced search tree

The induced search tree depends on:

The model itself
Bounds (jump depth, time horizon)
Time step size
State set representation
Aggregation settings

Depth 0

Depth 1

root
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Analysis parameters – examples

The precision and running time depends on several parameters, e.g.,
Time step size δ

State set representation
Clustering/aggregation

Default behavior
+ No additional effort
− No control of number of

discrete successors
Aggregation

+ Only one discrete
successor

− Additional
over-approximation

Stefan Schupp
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Sets & required set operations

Required: State set representation.
Problem: There are several ways to represent sets (see next slides).

Required operations on sets:
linear transformation (time successors, reset functions)
intersection (invariants, guards, bad states)
union (first segment, clustering/aggregation)
Minkowski sum (first segment, bloating)

Goal: Unify available state set representations with a common interface.
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Sets & required set operations

Required: State set representation.
Problem: There are several ways to represent sets (see next slides).

Required operations on sets:
linear transformation (time successors, reset functions)
intersection (invariants, guards, bad states)
union (first segment, clustering/aggregation)
Minkowski sum (first segment, bloating)

Goal: Unify available state set representations with a common interface.

Stefan Schupp



Sets & required set operations

Required: State set representation.
Problem: There are several ways to represent sets (see next slides).

Required operations on sets:
linear transformation (time successors, reset functions)
intersection (invariants, guards, bad states)
union (first segment, clustering/aggregation)
Minkowski sum (first segment, bloating)

Goal: Unify available state set representations with a common interface.

Stefan Schupp



HyPro2

da
ta

st
ru

ct
ur

es

linear optimization

util

RA algorithms

re
pr

es
en

ta
tio

nsBox
HPolytope
VPolytope
PPL-Polytope
Zonotope
SupportFunction

Star set
Orthogonal polyhedra
Taylor model

GeometricObject
<Interface>

H
yb

rid
au

to
m

at
on

Po
in

t
H

al
f-

sp
ac

e
Se

ar
ch

tr
ee

Converter

Parser
Plotter
Tree

plotter
Logger

Statistics

LHA I & RA

LHA II

LHA II CEGAR

Subspace analysis

Optimizer

glpk SMT-RAT z3 SoPlex

2[SÁBMK17]

Stefan Schupp



HyPro2

da
ta

st
ru

ct
ur

es

linear optimization

util

RA algorithms

re
pr

es
en

ta
tio

nsBox
HPolytope
VPolytope
PPL-Polytope
Zonotope
SupportFunction

Star set
Orthogonal polyhedra
Taylor model

GeometricObject
<Interface>

H
yb

rid
au

to
m

at
on

Po
in

t
H

al
f-

sp
ac

e
Se

ar
ch

tr
ee

Converter

Parser
Plotter
Tree

plotter
Logger

Statistics

LHA I & RA

LHA II

LHA II CEGAR

Subspace analysis

Optimizer

glpk SMT-RAT z3 SoPlex

2[SÁBMK17]

Stefan Schupp



Implemented state set representations

boxes [MKC09]

convex polytopes [Zie95]
zonotopes [Gir05]
orthogonal polyhedra [BMP99]
support functions [LGG10]
Taylor models [CÁS12]

x

y

Ix

Iy

x

y

min

max
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GeometricObjectBase interface

Set operations:
X.affineTransformation(matrix A, vector b) AX + b
X.minkowskiSum(geometricObject Y) X ⊕ Y
X.intersectHalfspaces(matrix A, vector b) X ∩ {y | Ay ≤ b}
X.satisfiesHalfspaces(matrix A, vector b) X ∩ {y | Ay ≤ b} 6= ∅
X.unite(geometricObject Y) cl(X ∪ Y )

Set utility functions:
dimension()
empty()
vertices()
project(vector<dimensions> d)
contains(point p)
conversion operations
reduction functions
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Operations – complexity

Computational effort required for the most commonly used operations for
different representations:

·
⋃

· ·
⋂

· · ⊕ · A(·)
Box +
H-polytope - + - -
V-polytope + - + +
Zonotope + +
Support function + - + +

→ There is no "perfect" state set representation.
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Boxes

Boxes are one of the simplest ways to represent a set:

Definition: box [MKC09]
A box B of dimension n is defined as an ordered vector of intervals

x

y

Ix

Iy

B = (I0, . . . ,In),Ii ∈ I

Where I is the set of all real-valued intervals

Ii = {x | l ≤ x ≤ u} l,u ∈ R,

we write Ii = [l,u] ∈ I
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Boxes – operations

Intersection:

Bc = Ba ∩ Bb = {x | x ∈ Ba ∧ x ∈ Bb}

For boxes:

Bc = Ia0 ∩ Ib0 , . . . ,Ian ∩ Ibn
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Boxes – operations

Intersection:

Bc = Ba ∩ Bb = {x | x ∈ Ba ∧ x ∈ Bb}

For boxes:

Bc = Ia0 ∩ Ib0 , . . . ,Ian ∩ Ibn

Stefan Schupp



Boxes – operations

Intersection with a half-space (e.g. guards, invariants):

Recap: half-space
A half-space H ∈ Rn contains all points

H = {x | ~cT · x ≤ d, ~c ∈ Rn, d ∈ R}

Example:

H =

x

∣∣∣∣∣∣
(

1
1

)T

· x ≤ 1.5


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Excursion: Interval Arithmetic1

Binary operations (general case):
X � Y = {x � y | x ∈ X,y ∈ Y },X,Y ∈ I

Example (Basic arithmetic operations)
Addition: [4,5] + [−1,2]

= [3,7]
Subtraction : [4,5] − [−1,2] = [2,6]
Multiplication: [4,5] · [−1,2] = [−5,10]
Division: [4,5] ÷ [2,3] = [ 4

3 , 5
2 ]

Corner case: X ÷ Y with X,Y ∈ I,0 ∈ Y → may cause a split.
Example: [1,1] ÷ [−3,2]

0

1See e.g., [MKC09] for details.
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ICP-style Half-space Intersection

Interval constraint propagation (ICP):
Often used in SMT as a theory solver
In general incomplete
Exploits interval arithmetic

Example: Encoding of inequalities for interval-valued variables x,y with
intervals Ix,Iy ∈ I:

Sat(x + 2 · y ≤ 17) = Ix + 2 · Iy ∩ (−∞,17]

Approach: Given c :
∑

ai · xi ∼ d with xi interval-valued
For each variable xi with interval [a,b]:

Solve c for xi (symbolically) to get c′

Substitute intervals for all xj ,j 6= i in c′, solve to get interval [a′,b′]
Update interval for xi ∈ [a,b] ∩ [a′,b′]

If one interval becomes empty, the constraint is not satisfiable.
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ICP-style Half-space Intersection: Example

Example
Assume B = [0,3] × [0,2] and a constraint c : x + 2 · y ≤ 2.

Contraction for x:

x ≤ 2 − 2 · y ⇔ x ∈ [0,3]∩ (−∞,2]− [0,4] → x ∈ [0,2]

Contraction for y:

y ≤ (1 − x) ÷ 2 ⇔ y ∈ [0,2] ∩ ((−∞,2] − [0,2]) ÷ 2 → y ∈ [0,1]

x

y

Note: termination not guaranteed due to new intervals.
But: For single linear constraints, a single iteration suffices2.

2See [Sch19] for a proof.
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Boxes – operations

Union:
Bc = Ba ∪ Bb = {x | x ∈ Ba ∨ x ∈ Bb}

Note: The union of two convex sets is not necessarily convex → we use
the closure (cl) of the union.

Bc = cl(Ia0 ∪ Ib0), . . . ,cl(Ian ∪ Ibn)

= [min(Ia0l
,Ib0l

),max(Ia0u
,Ib0u

)], . . . , [min(Ianl
,Ibnl

),max(Ianu
,Ibnu

)]

Ba

Bb

Ia0 Ib0

Ia1

Ib1

Ba

Bb

Ia0 Ib0

Ia1

Ib1
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Boxes – operations

Minkowski-sum:

Bc = Ba ⊕ Bb = {x | x = xa + xb,xa ∈ Ba,xb ∈ Bb}

Note: Minkowski’s sum can be applied point-wise on convex sets.

Bc = Ia0 ⊕ Ib0 , . . . ,Ian ⊕ Ibn

= [Ia0l
+ Ib0l

,Ia0u
+ Ib0u

], . . . , [Ianl
+ Ibnl

,Ianu
+ Ibnu

]
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Boxes – operations

Linear transformation:

Bc = A · Ba = {x | x = A · xa,xa ∈ Ba},A ∈ Rn×n

Approaches:
Naive (conversion): apply A on all vertices, re-convert to box
Utilize interval arithmetic

·A
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Support functions

Definition: support function

x

y

The support function ρΩ of a n-dimensional set
Ω ∈ Rn is defined as

ρΩ : Rn → R ∪ {−∞,∞}
ρΩ(l) = sup

x∈Ω
lT · x

Properties:
implemented as tree structure (see next slides)
operations are cheap, reduced overhead
scale well in higher dimensions
well developed (see e.g. [LGG10, FKL13, FGD+11, LG09])
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Support functions – operations [LGG10]

Most commonly used operations during reachability analysis:
Intersection: ρc(l) = min(ρa(l),ρb(l))

ρc

ρa ρb

l

ρa(l)
l

ρb(l)

l
min(ρa(l),ρb(l))

l

l
l
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Support functions – operations [LGG10]

Most commonly used operations during reachability analysis:
Intersection with a half-space H = cT · x ≤ d (e.g. guards,
invariants): ρc(l) = min(ρa(l),H(l)),

where H(l) =

{
d when l = c

∞ else

H

l

c
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Support functions – operations [LGG10]

Most commonly used operations during reachability analysis:
Union: ρc(l) = max(ρa(l),ρb(l))

ρc

ρa ρb

l

ρa(l)
l

ρb(l)

l
max(ρa(l),ρb(l))

Note: The union operation on a set of support functions returns the
supporting hyperplane of the convex hull of the set of underlying
sets.
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Support functions – operations [LGG10]

Most commonly used operations during reachability analysis:
Minkowski-sum: ρc(l) = ρa(l) + ρb(l)

ρc

ρa ρb

l

ρa(l)
l

ρb(l)

l
ρa(l) + ρb(l)
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Support functions – operations [LGG10]

Most commonly used operations during reachability analysis:
Linear transformation: ρc = ρa(A

T l︸︷︷︸
l′

)

ρc

ρa

AT l ρa(AT l)

l
ρa(AT l)

·A

l

l′
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Support functions – optimization

The tree structure in combination with our domain-specific knowledge
allows for several optimizations:

collect sequences of linear transformations

ρ0 ρ1 ρ2 ρ3 ρ4 ρ5

ll5 = AT ll4 = AT l5l3 = AT l4l2 = AT l3l1 = AT l2

ρ0(l1) ρ1(l2) ρ2(l3) ρ3(l4) ρ4(l5) ρ5(l)

ρ0 ρ1 ρ2 ρ3 ρ4 ρ5

·A2

·A4

ll5 = AT l
l4 = (A4)T l5

ρ0(l4)
ρ4(l5) ρ5(l)

remove intersections which have no effect

reduce tree upon discrete jump (templated evaluation)
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Support functions – optimization

The tree structure in combination with our domain-specific knowledge
allows for several optimizations:

collect sequences of linear transformations
remove intersections which have no effect
reduce tree upon discrete jump (templated evaluation)
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Thermostat1

We model and analyze a thermostat according to the following
specifications:

Can either be on (initially) or off
Temperature x changes accordingly: ẋ = 50 − x (on), ẋ = 10 − x
(off)
Switches from on to off when x ∈ [20,25]
Switches off to on when x ∈ [16,18]

1https://www.digitalcity.wien/even-thermostats-have-a-heart
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Applications

Extensions for reachability analysis based on HyPro:
Syntactic decoupling - subspace computations
CEGAR-based reachability analysis

Stefan Schupp



CEGAR-based reachability analysis and parallelization

Parameters for reachability analysis
Time step size δ

State set representation
Aggregation
. . .

Reachability analysis induces a search tree, however
not all branches intersect with bad states → coarse analysis
avoid spurious counterexamples → fine analysis

Goal: Be as lazy as possible and as precise as necessary.
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CEGAR-based reachability analysis and parallelization

Goal: Be as lazy as possible and as precise as necessary.

A parameter setting collects a full set of relevant parameters, i.e.:
State set representation Ri

Time step size δi

Strategy (ordered set of parameter settings):

R0,
δ0

start
R1,
δ1

R2,
δ2

Depending on the application, order and choice of parameter settings
matters!
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CEGAR-based reachability analysis and parallelization

Goal: Be as lazy as possible and as precise as necessary.

A parameter setting collects a full set of relevant parameters, i.e.:
State set representation Ri

Time step size δi

Strategy (ordered set of parameter settings):

R0,
δ0

start
R1,
δ1

R2,
δ2

Depending on the application, order and choice of parameter settings
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CEGAR-based reachability analysis - Example

Strategy:
S1: box,
δ = 0.1

S2: support f.,
δ = 0.01

S3: polytope,
δ = 0.01

Search tree:
A

Extension: Parallelized search in different branches.
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CEGAR-based reachability analysis - Example

Strategy:
S1: box,
δ = 0.1

S2: support f.,
δ = 0.01

S3: polytope,
δ = 0.01

Search tree:
A

B C

D

X
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Example: Bouncing ball
@0x22bbb20

 

@0x22bd670

0 1

 [0, 0]
[0, 0]

@0x7fa37400ee10

0 1

 [1.42, 1.45]
[1.426, 1.444]

@0x7fa374031bb0

0

 [2.136, 2.17]

@0x7fa3740179c0

0

 [1.56, 1.67]

@0x7fa3740384d0

0

 [1.09, 1.34]
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Example: Bouncing ball
@0x18d7b20

 

@0x18d9670

0 1 2

 [0, 0]
[0, 0]
[0, 0]

@0x7f4c3400ee10

0 1 2

 [1.42, 1.45]
[1.42, 1.43]

[1.426, 1.444]

@0x7f4c34014b30

 D 1  D

 ]-INF, INF[
[1.43, 1.44]
]-INF, INF[

@0x7f4c340150a0

 D 1  D

 ]-INF, INF[
[1.44, 1.45]
]-INF, INF[
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0
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0
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0
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0

 [1.15, 1.29]

@0x7f4c340394c0

0
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@0x7f4c3407bd50

0

 [1.15, 1.29]
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A free and open source library for hybrid systems reachability analysis

https://github.com/hypro/hypro

https://github.com/hypro/hypro
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Bouncing ball, V-polytopes with conversion to H-polytopes for intersection,
double glpk-only, T = 3, δ = 0.01, 4 jumps
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Examples
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Examples
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