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Given a model M and a property specification S, does M satisfy S?

M⊨S

That is the case if the model M does not reveal behaviour violating the specification S

i.e. if every behaviour of M is also behaviour of S

Model Checking



Model Checking



● All kinds of components (synchronous, asynchronous, timed, hybrid, continuous 
components) have an underlying transition system

● State in the transition system underlying a component captures any given 
runtime configuration of the component

● If a component has finite input/output types and a finite number of “states” in its 
ESM, then it has a finite-state transition system

● Continuous components, Timed Processes, Hybrid Processes in general, have 
infinite number of states

Transition Systems and state



(Label) Transition System
A Transition System TS is a tuple  <S, I, Act, ⟦T⟧, AP, L>
● �S: set of state, finite or countable infinite
● �I⊆S: set of initial state, finite or countable infinite
● �Act: Set of actions
● �⟦T⟧: is a set of transition relation S�Act�S, si➝

𝛼isi+1   
● �AP: set of atomic proposition on S
● �L:S →2AP   is a labeling function, where 2AP is the alphabet



Transition System

● A execution is an (infinite) alternating sequence of states si and actions 𝛼i 
s.t. Si➝

𝛼isi+1,     
e.g.  ρ= s0 as1b s2bs2bs2…�

● A path is a sequence of states in the TS, starting from an initial state and 
either ending in a terminal state, or infinite,   
e.g. σ = s0 s1 s2 s2 s2…�

● A trace is the corresponding sequence of labels over the alphabet 
e.g. L(s0)L(s1)L(s2)L(s2)L(s2)...=p{p,q}qqq�



Conditional Transition

g: a boolean condition on data variables 

𝛼: an action that is possible if g is satisfied 
 



Example of a TS
● S ={on, off}×int
● I = { off, x = 0 }
● ⟦T⟧ has an infinite number 

of transitions: 
E.g.  (off, 0)→(on,0)        
(on 0)→(on,1)



(off,0)

(on,0) (on,1)

(on,2)

(on,100)

(off,42) (on,42)

TS describes all possible transitions

● Transitions indicated as dotted lines can’t really happen in the component
● But, the TS will describe then, as the states of the TS are over {on,off}×int!



Reachable states of a modified switch TS

(off,0)

(on,0) (on,1)

(on,2)

(on,100)

(off,42) (on,42)

Reachable states 
and transitions

A state s of a transition system is reachable if there is an execution starting in some 

initial state that ends in s.



Desirable behaviors of a TS

● Desirable behavior of a TS: defined in terms of acceptable (finite or 
infinite) sequences of states

● Safety property can be specified by partitioning the states S  into a 
safe/unsafe set
○ Safe⊆S, Unsafe⊆S, Safe∩Unsafe=∅
○ Any finite sequence that ends in a state q∈Unsafe is a witness to 

undesirable behavior, or if all (infinite) sequences starting from 
an initial state never include a state from Unsafe, then the TS is 
safe.

● Can we use a monitor to classify infinite behaviors into good or bad?



Can we use a monitor to classify infinite behaviors into good or bad?
Yes, using theoretical model of Büchi automata proposed by J. Richard Büchi in 1960

Büchi automaton

Extension of finite state automata to accept infinite strings
A Büchi automaton is tuple A=<Q,I,δ,Σ,F>:
● Q  finite set of states (like a TS) –
● Q0 is a set of initial states (like a TS) –
● Σ is a finite alphabet (like a TS) –
● δ is a transition relation, δ: SｘΣ  →2S (like a TS)
● F ⊆ Q is a set of accepting states

An infinite sequence of states (a path/trace 𝜌 ) is accepted iff it contains accepting 
states (from F) infinitely often



Büchi automaton

Every LTL formula φ can be converted to a Büchi monitor/automaton Aφ

Example: What is the language of A1?



Büchi automaton Example 

Fun fact: there is no deterministic Büchi automaton that accepts this language as it was for Finite Automata

● Note that this is a nondeterministic 
Büchi automaton

● A2 accepts ρ if there exists a path 
along which a state in F appears 
infinitely often

● What is the language of A2?

● S: {q0,qf },  Σ: {0,1}, F: {qf}
● Transitions: (as shown)

○ LTL formula FG(x=1)



Büchi automaton Example 3

● S: {q0,q1 },  Σ: {0,1}, F: {q0}
● Transitions: (as shown)

What is the language of A3?
�LTL formula:

G((x=1)⇒F(y=1))
● I.e. always when (x=1), in some 

future step, (y=1)
● In other words, (x=1) must be 

followed by (y=1)



Model Checking Problem 

Given a model M, a state s, and a property P, the model checking problem is to 
determine if M, s |= P.

● If P is a LTL formula φ, then M, s |= φ if and only if σ |= φ for each σ trace of M 
such that σ[0] = s, i.e. if and only if  the language of (M, s) is contained in the 
language of φ: L(M, s) ⊆ L(φ).

● If P is a CTL formula φ, then the satisfaction M, s |= φ has the usual meaning.
● Analogously, if φ is given by an automaton A, then M, s |= A if and only if L(M, 

s) ⊆ L(A)



MC for LTL 
To solve the model checking problem for LTL for a model Ms (fixing the 
initial state s), the idea is:
● negate the LTL formula φ
● covert the LTL formula ¬φ into an equivalent Büchi automaton A¬φ
● construct the product between the original model and the automaton 

A¬φ, obtaining another Büchi automaton Ms ⊗ A¬φ
● Apply a graph algorithm (identification of strongly connected 

components) to the product automaton to test for language emptiness.



MC for LTL 

LTL model checking is reduced to checking whether an accept state is visited in TS ⊗ A¬φ infinitely often 



Synchronous  Product 

LTL model checking is reduced to checking whether an accept state is visited in TS ⊗ A¬φ infinitely often 

For a transition system TS=<S, I, Act, ⟦T⟧, AP, L> and a automata A=<Q,I,δ,2AP,F>:

TS ⊗ A = (S’, Act, ⟦T⟧’, I’, AP’,L’)

● �S’=S�Q
● �I’ = { ⟨ s0 , q ⟩ | s0 ∈ I ∧ ∃ q0 ∈ Q0 . q0→

L(s0) q }
● �Act: Set of actions
● �AP’=Q
● �L’=(<s,q>={q})
● �⟦T⟧’: 



Synchronous  Product 
Example: Simple Traffic Light with 2 modes: red and green. 

  LTL formula to check 

TS T for the traffic light. NBA A¬φ for

=⇒ Blackboard construction of T ⊗ A¬φ.



Synchronous  Product 
Example: Simple Traffic Light with 2 modes: red and green. 

  LTL formula to check 

Yes! State <s1, q2> can be seen at most once, and state <s2,q2> is not reachable. 
=⇒ There is no common trace between T and A¬φ



Specification in LTL

 

 



Example: accepted words

What words are accepted by this automaton B? 

L(B) = pq+(pq+)* L(B) is called the language of B.

 It is the set of words for which there exists an accepting run of the automaton.



LTL to Buchi
Every LTL formula has a corresponding Buchi automaton that accepts all and only the 
infinite state traces that satisfy the formula

 



LTL Model Checking



LTL Model Checking



LTL Model Checking
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CTL



● CTL is a branching time logic, i.e. reasoning over the tree of executions, i.e.
 one “time instant” may have several possible successor “time instants”

● Its models usually representing computations, in which the branching structure is 
used to describe uncertainty/ ignorance in a non-deterministic way

● We care about CTL because:
○ There are some properties that cannot be expressed in LTL, but can be expressed in CTL (and 

viceversa) 
From every system state, there is a system execution that takes it back to the initial state (also known 
as the reset property)

○ Can express interesting properties for multi-agent systems

Computation Tree Logic



► Basically a tree that 
considers “all 
possibilities” in a 
reactive program

Computation Tree

Process

Finite State machine



CTL Syntax

State Formulae
φ ∷= p | ¬φ | φ∧φ | E𝜓 | A𝜓 

Path Formulae
𝜓 ∷= φ | Xφ | φUφ 



CTL Syntax
Syntax of CTL

φ ∷= p | ¬φ |  φ∧φ | Prop. in 𝐴𝑃, negation, conjunction
𝐄𝐗𝜑 | Exists NeXt Step
𝐄F𝜑 | Exists a Future Step
𝐄G𝜑 | Exists an execution where  Globally in all steps

𝐄𝜑U𝜑 | Exists an execution where in all steps Until in some step

A𝐗𝜑 | In All NeXt Steps
AF𝜑 | In All possible future paths, there is a future step
AG𝜑 | In All possible future paths, Globally in all steps

A𝜑U𝜑 | In All possible future executions, in all steps Until in some step



CTL semantics
● Path properties: properties of any given path or execution in 

the program

● Path Quantification: 
○ Eψ, existential quantification: there exists a path (out of a given state) 

for which ψ holds

○ Aψ, universal quantification: for every path (out of a given state), ψ 
holds. 



CTL semantics

For All executions Eventually/In Some Future step

● Example CTL operator:

 A F  p



CTL semantics through examples

 

    

 

 

   

 

 

  
 

 

 

 



CTL semantics through examples

  

 

 

  

 

 

 



CTL semantics through examples
 

 

 

 

  

 

 

  

 

 

 

 



 

CTL Operator fun



 

CTL advantages and limitations



Timed Automata
Finite-state timed automaton: a machine where all state variables other than clock variables have finite 
types (e.g. Boolean, enums)

State-space of timed automata is infinite (clocks can become arbitrarily large!)

An automata with:

● A set of clock C
● A set of clock constraints on the transition 



Timed Computation Tree Logic TCTL

State Formulae
φ ∷= p | ¬φ | φ∧φ | E𝜓 | A𝜓 

Path Formulae
𝜓 ∷= φ  | φUIφ 



TCTL Example

● A[offU[0,15]on]

● EF(0,2] b



Timed Automata Model 
Checking



Basic Method: Abstraction

● Given: a concrete system (here a timed automaton)
● Goal: reduce the size of the system by abstraction (here reduce infinite state 

space to a finite one)
● Result: abstract system (here a region transition system)

Behaviorally equivalent abstraction: If treated as a black box, we cannot 
distinguish the abstraction from the original in experiments.

Example: Input-output behavior for programs.

For model checking: both satisfy the same formulas of the underlying logic.



Model checking for timed automata

Input: timed automaton T, TCTL formula 𝜓
Output: the answer whether T ⊧ 𝜓

1. Eliminate timing parameters of 𝜓, provides CTL formula 𝜓’ with clock 
constraints

2. Create finite abstraction of the state space of T
3. Create abstract state transition system RTS such that T ⊧ 𝜓 iff RTS ⊧ 𝜓’
4. Apply CTL model checking to check whether RTS ⊧ 𝜓’



1. Eliminating timing parameters

Let T be a timed automaton with clocks C and atomic propositions AP. Let T’ result 
from T by adding a fresh clock z which never gets reset.

For any state s of T it holds that

1. T,s ⊧TCTL E(𝜓 UJ 𝜑) iff 
T’,reset(z) in s ⊧TCTL E(𝜓 U (z ∊ J) ∧ 𝜑)

2. T,s ⊧TCTL A(𝜓 UJ 𝜑) iff 
T’,reset(z) in s ⊧TCTL A(𝜓 U (z ∊ J) ∧ 𝜑)

3. T, s ⊧TCTL  EF≤2𝜑 iff 
T’,reset(z) in s ⊧TCTL  EF ((z ≤ 2) ∧ 𝜑)

4. T, s ⊧TCTL  EG≤2𝜑 iff 
T’,reset(z) in s ⊧TCTL  EG ((z ≤ 2) → 𝜑)

47



2. Finite state space abstraction

We search for an equivalence relation ~ on states such that equivalent states 
satisfy the same (sub)formulas 𝜓’ occurring in the timed automaton T or in the 
specification 𝜓: s ~ s’ ⇒ (s ⊧ 𝜓’ iff s’ ⊧ 𝜓’).

Goal: find a finite number of equivalence classes.

Definition (Bisimulation): Assume an LSTS with states Σ and edge relation →. Let 
AP be a set of atomic propositions and L: Σ→2AP a labeling function. A bisimulation 
for LSTS is an equivalence relation ≈ ⊆ Σ×Σ such that for all s1≈s2

1. L(s1) = L(s2)
2. for all s1’∊Σ with s1→as1’ there exists s2’ ∊ Σ such that s2→as2’ and s1’ ≈ s2’

48



Time abstract bisimulation

A time abstract bisimulation for a timed automaton T is an equivalence relation ≈ 
⊆ Σ×Σ such that for all s1, s2 ∊ Σ satisfying s1 ≈ s2

● L(s1) = L(s2)
● for all s1’∊ Σ with s1→as1’ there exists s2’ ∊ Σ such that s2→as2’ and s1’ ≈ s2’
● for all s1’∊ Σ with s1→ts1’ there exists s2’ ∊ Σ such that s2→ts2’ and s1’ ≈ s2’

Intuition: given TA T and a timed bisimulation then

π:  s  →  s1  →  s2→…

π’: s’  →  s1’→  s2’→...

49
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Finite state space abstraction

For timed automata, states s = (l,ν) and s’ = (l’,ν’) are equivalent, if 

● l = l’
● s and s’ satisfy the same clock constraints:

○ For x < c, c ∊ℕ: ν ⊧ x < c ⇔ ν(x) < c ⇔ ⌊ν(x)⌋ < c
○ For x ≤ c, c ∊ℕ: ν ⊧ x ≤ c ⇔ ν(x) ≤ c ⇔ ⌊ν(x)⌋ < c ∨( ⌊ν(x)⌋ = c ∧ frac(ν(x)) = 0)

Problem: creates infinitely many classes!

Idea: we cannot distinguish classes for values larger than the largest constant c in T.

Solution: collect all equivalence classes for values larger than c.

50

Notation: ν = valuation
ν(x) = valuation of variable x



Finite state space abstraction

Largest constants cx = 4, cy = 4

51

3 < x < 4 ∧ 3 < y < 4

1 < x < 2 ∧ y = 1 

x = 1 ∧ y = 3

x > 4 ∧ 1 < y < 2



Finite state space abstraction

Largest constants cx = 4, cy = 4

52

Require further refinement!
Example:

y ≤ 2

l
x ≥ 2

...

...

unbounded region r∞We call cells in this refined grid regions.



Model checking for timed automata

Input: timed automaton T, TCTL formula 𝜓
Output: the answer whether T ⊧ 𝜓

1. Eliminate timing parameters of 𝜓, provides CTL formula 𝜓’ with clock 
constraints

2. Create finite abstraction of the state space of T
3. Create abstract state transition system RTS such that T ⊧ 𝜓 iff RTS ⊧ 𝜓’
4. Apply CTL model checking to check whether RTS ⊧ 𝜓’



3. Region transition system

We have two kinds of transitions between regions: time-elapse and discrete jumps.

Given regions r, r’, r’ = succ(r) if

● r = r’ = r∞, or
● r ≠ r∞, r ≠ r’, and for all 𝜈 in r: 

∃d∊ℝ>0. (𝜈 + d ∊ r’ ∧ ∀ 0 ≤ d’ ≤ d. 𝜈 + d’ ∊ r ∪ r’ )

Intuition: r’ = succ(r) if either both are the unbounded region or if r’ can be reached by 
time elapse and is the direct successor region.
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3. Region transition system

The region transition system (RTS) R for a timed automaton T and a TCTL formula 
𝜓 over atomic propositions AP is defined as:

● The state set Σ is the set of all regions (l,V) in T where V ∊ Inv(l)
● The initial region is build from the initial states of T
● The transition relation is extended to time-successor regions via succ(r) and 

jump successor regions (see examples)

The set of atomic propositions AP’ of R is given as AP ∪ ACC(T) ∪ ACC(𝜓), the 
labeling function L((l,V))’ = L(l) ∪ {g ∊ AP’ \ AP | V ⊧ g}.

Idea: Add APs to be able to label regions which satisfy certain atomic clock 
constraints (ACC).
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Model checking for timed automata

Input: timed automaton T, TCTL formula 𝜓
Output: the answer whether T ⊧ 𝜓

1. Eliminate timing parameters of 𝜓, provides CTL formula 𝜓’ with clock 
constraints

2. Create finite abstraction of the state space of T
3. Create abstract state transition system RTS such that T ⊧ 𝜓 iff RTS ⊧ 𝜓’
4. Apply CTL model checking to check whether RTS ⊧ 𝜓’



4. CTL Model Checking
● Convert formula to existential normal form (ENF)
● Recursively, bottom-up:

○ Use parse tree of the converted formula
○ Compute SAT-sets of leaf nodes
○ Recursively: Compute SAT-set of parent nodes until root is reached

Example parse tree:
𝜓: A(a U (b ∨ ¬ c)) A

a

U

∨

b ¬

c



Computing Sat-sets

Given LTS with states s ∊ S, atomic propositions AP and CTL formulas 𝜓,𝜑 it holds:

● Sat(true) = S
● Sat(a) = {s ∊ S | a ∊ L(s) } for any a in AP
● Sat(𝜓∧𝜑) = Sat(𝜓) ∩ Sat(𝜑)
● Sat(¬𝜑) = S \ Sat(𝜑)
● Sat(E(𝜓U𝜑)) = smallest subset T of S where 

○ Sat(𝜑) ⊆ T and
○ s ∊ Sat(𝜓) and Post(s) ∩ T ≠ ∅ implies s ∊ T

● Sat(EF𝜑) = {s ∊ S | Post(s) ∩ Sat(𝜑) ≠ ∅}
● Sat(EG𝜑) = largest subset T of S where

○ T ⊆  Sat(𝜑) and
○ s ∊ T implies Post(s) ∩ T ≠ ∅

58

Intuition (until):
Every state satisfying 𝜑 directly satisfies the 
formula and every state from which such a 
state can be reached while satisfying 𝜓 is 
added to the sat-set.



● Sat(a) = {1,2,3,4,5}
● Sat(b) = {4}
● Sat(c) = {1,2,3,5}

● Sat(¬c) = {4}
● Sat(b ∨¬c) = {4}
● Sat(A(a U (b ∨ ¬c)) = {4}

4. CTL Model Checking
𝜓: A(a U (b ∨ ¬ c))

A

a

U

∨

b ¬

c

a,c

a,ca,b

a,c a,c
1 2 3

4 5



Complete examples
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l

x ≤ 1

a
x=1
x:=0

x=0

Formula: AGAF x = 0

1: ¬EF¬A true U x = 0
1

2

3

4

5

2: 

0 1 = cx

3:

𝜏 𝜏
a

x=0 0<x
x<1

x=1 x>1

1,2,
5

2,5 2,5 3,4
4:



Complete examples
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x ≤ 2

e1
x ≥ 1

e2
x = 2
x := 0

{b}

𝜑: EF(0,2] b

1. E(true U (b ∧ (z > 0 ∧ z ≤ 
2)))

2,3:
l0

x=0
z=0

l0
x∊(0,1)
z∊(0,1)

l0
x=1
z=1

l0
x=2
z=2

l0
x>2
z>2

l0
x∊(1,2)
z∊(1,2)

𝜏 𝜏 𝜏 𝜏 𝜏
𝜏

l1
x=1
z=1

l1
x=2
z=2

l1
x∊(1,2)
z∊(1,2)

𝜏 𝜏

e1 e1 e1

{b} {b} {b}

l1
x=0
z=2

l1
x∊(0,1)

z>2

l1
x=1
z>2

l1
x=2
z>2

l1
x=0
z>2

l1
x∊(1,2)

z>2

𝜏 𝜏 𝜏 𝜏 e2

𝜏

e2

{b} {b} {b} {b} {b} {b}
1 23

4

5

{2,5} {1,2,5}

{1,2,5} {1,2,5} {1,2,5}

{1}

{1,2,3,4,5
}

{1,3} {1,3} {1,3} {1,3}
{1,3}

{1,2,3,4,5
}

{1,2,3,4,5
}

{1,2,3,4,5
}


