
Cyber-Physical Systems
Laura Nenzi

Università degli Studi di Trieste
II Semestre 2022

Lecture 22: RL + TL

• RL is the theoretical model for learning from
interaction with an uncertain environment
• aleatory (intrinsic) or epistemic (knowledge)

uncertainty
• Maximize the average reward function over a

given time horizon
• Very important notion of time horizon, it can

change your goal
• There could be different reward to achieve the

same goal

Reinforcement Learning

Agent

Environment

Rewards
ObservationsActions

u RL Course by David Silver:
https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PLzuuYNsE1EZAXYR4FJ75jcJseB
mo4KQ9-

u Reinforcement learning tutorial with demo:
https://github.com/omerbsezer/Reinforcement_learning_tutorial_with_demo#Function
Approximation

u Coursera
https://www.coursera.org/specializations/reinforcement-learning

u RL Youtube Course DeepMind
https://www.youtube.com/watch?v=TCCjZe0y4Qc&ab_channel=DeepMind
(https://deepmind.com/learning-resources/reinforcement-learning-series-2021)

3

https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PLzuuYNsE1EZAXYR4FJ75jcJseBmo4KQ9-
https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PLzuuYNsE1EZAXYR4FJ75jcJseBmo4KQ9-
https://github.com/omerbsezer/Reinforcement_learning_tutorial_with_demo
https://github.com/omerbsezer/Reinforcement_learning_tutorial_with_demo
https://www.coursera.org/specializations/reinforcement-learning
https://www.youtube.com/watch?v=TCCjZe0y4Qc&ab_channel=DeepMind
https://deepmind.com/learning-resources/reinforcement-learning-series-2021

Challenges:
u Safe RL
u Reward Hacking
u Complex/Multi Tasks

Reinforcement Learning and Temporal Logic

4

Safe Reinforcement Learning

5

Reward Hacking

6

A policy that achieves high returns but against the designer’s intentions

https://www.youtube.com/watch?v=92qDfT8pENs

https://www.youtube.com/watch?v=92qDfT8pENs

Complex Tasks

7

Kitchen
(𝑘)

Bedroom (𝑑)

Living Room (ℓ)

Bathroom (𝑏)

Study (𝑠)

Several Works with different motivations

8

u Reward shaping using robusntess satisfaction

u LTL constrained, Reward function remained the same

u multi-task-RL

Reward function is not enough

9

u To define task better

u To learn more efficiently and precisely

u To transfer learning between tasks

u To be “safe”

Description using a language can help..

10

General Idea

11

Reward Shaping problem:
Design 𝑅 𝑠, 𝑎 s.t. I can find 𝜋∗ 𝑠. 𝑡. ∀ 𝑥, 𝜋∗ 𝑥 the “satisfaction” of x is
maximised

Why important?
u Poorly design -> poorly convergence
u Learning unsafe or unrealistic action

12

1)
Learning a deterministic predictive model of the system dynamics using deep
neural networks.

Given a state and a sequence of actions, such a predictive model produces a
predicted trajectory over a user-specified time horizon.

Model-based RL from STL specification

13

2)
We use a cost function based on the quantitative semantics of STL to evaluate
the optimality of the predicted trajectory.

We use a black-box optimizer that uses evolutionary strategies to identify the
optimal sequence of actions (in an MPC setting).

Model-based RL from STL specification

14

3)
We demonstrate the efficacy of our approach on a number of examples from
the robotics and autonomous driving domains.

Model-based RL from STL specification

15

1. Given a dataset 𝒟 on sample transitions (𝑠, 𝑎, 𝑠′) collected from simulations
or real-world demonstrations.

2. Fit a model .𝐹"(𝑠# , 𝑎#) that takes the current state 𝑠# and an action 𝑎#, and
outputs a distribution over the set of possible successor states 𝑠#$%!

3. MPC: let an action sequence be denoted 𝐴#
(') = 𝑎# , … , 𝑎#$')*

At every time step t during the execution of the controller for a finite
planning horizon H we solve the following optimization problem

� maximize 𝜌(𝑠̂# , 𝑎# , 𝑠̂#$*, . . . , 𝑎#$')*, 𝑠̂#$')
� where:

𝑠̂# = 𝑠# and
𝑠̂#$+$* = .𝐹 𝑠̂#$+ , 𝑎#$+ , ∀ 𝑖 ∈ 0,… , 𝐻 − 1

Model-based RL from STL specification

16

u Monte-Carlo methods [25], the Cross-Entropy Method [26], or evolutionary
strategies, like CMA-ES [27] and Natural Evolutionary Strategies [28].

u This paper uses CMA-ES: Covariance Matrix Adaptation Evolution Strategy

u In contrast to most classical methods, fewer assumptions on the nature of the
underlying objective function are made.

Non-Linear Optmization Techiniques

17

ew candidate solutions are sampled according to a multivariate normal distribution in . Recombination amounts to selecting a new mean value for the distribution. Mutation amounts to adding a random vector, a per

https://en.wikipedia.org/wiki/Multivariate_normal_distribution

� ES:
• Sampling according to a multivariate normal distribution.
• Mutation amounts to adding a random vector, a perturbation with zero mean.
• Recombination amounts to selecting a new mean value for the distribution.
• Pairwise dependencies between the variables in the distribution are represented by a

covariance matrix.
� CMA-ES : Method to update the covariance matrix of this distribution.
� Only the ranking between candidate solutions is exploited for learning the sample

distribution and neither derivatives nor even the function values themselves are required
by the method.

CMA-ES: Covariance Matrix Adaptation Evolution Strategy

18

A framework that combines the use of:
u model-based reinforcement learning (MBRL)
u sampling-based model predictive control (MPC)
u to maximize the robustness value of a trajectory against a given STL formula

via CMA-ES

Robust control Synthesis

19

The out put θ is the vector of parameters of the NN
The learned dynamics, .𝐹" , is deterministic

Learning the System Dynamics

20

We train the model by minimizing the sum of squared error loss for each
transition in the dataset:

The loss minimization is carried out using stochastic gradient descent, where
the dataset is split into randomly sampled batches and the loss is minimized
over these batches.

Training the model

21

Sampling-based Model Predictive Control

22

A pole is attached to a cart on an
unactuated joint
The cart moves on a frictionless track
It is controlled by applying a force to
push it left or right on the track.

Cartpole

23

𝑠 = (𝜃, 𝑥, 𝜃,, 𝑥′)

𝜑 ≔ G(𝑥 < 0.1 ∧ 𝜃 < 12◦)

A car stuck at the bottom of a valley
between two mountains.
The car can be controlled by applying a
force pushing it left or right

Mountain Car

24

𝑠 = (𝑥, 𝑥′)

𝜑 ∶= 𝐹(𝑥 > 0.4)

The goal of the environment is
design a controller to move the arm
of a simulated Fetch manipulator
robot to a region in 3D space

The state vector of the environment
is a 16 dimensional vector containing
the position and orientation of the
robots joints and end-effector

Fetch robot

25

𝜑:= 𝐹(|𝑥- − 𝑥| < 0.1 ∧ |𝑦- − 𝑦| < 0.1 ∧ |𝑧- − 𝑧| < 0.1)

The goal is to synthesize a controller for a car
(the ego car) that safely does cruise control in
the presence of an adversarial (or ado) car ahead
of it.
The environment itself is a single lan. The ego car
is controlled only by the acceleration applied to
the car.
The ado agent ahead of the car accelerates and
decelerates in an erratic manner, in an attempt
to cause a crash.

Adaptive Cruise-Control

26
𝜑 ∶= 𝐹𝐺(50 > 𝑑𝑟𝑒𝑙 > 15)𝑠 = (𝑥.-/ , 𝑣.-/ , 𝑎.-/ , 𝑑0.1 , 𝑣0.1)

27

u D. Aksaray, A. Jones, Z. Kong, M. Schwager, and C. Belta, “Q-Learning for robust satisfaction of signal
temporal logic specifications,” in 2016 IEEE, CDC, Dec. 2016, pp. 6565–6570.
An extension to Q-learning where STL robustness is directly used to define
reward functions over trajectories in an MDP.

u X. Li, C.-I. Vasile, and C. Belta, “Reinforcement learning with temporal logic rewards,” in 2017 IEEE/RSJ
International Conference on Intelli- gent Robots and Systems (IROS), Sept. 2017, pp. 3834–3839.
Propose a method that augments an MDP with finite trajectories, and
defines reward functions for a truncated form of Linear Temporal Logic.

u A. Balakrishnan and J. V. Deshmukh, “Structured Reward Shaping using Signal Temporal Logic
specifications,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Nov.
2019, pp. 3481–3486.
Translate STL specifications into locally shaped reward functions using a
notion of “bounded horizon nominal robustness”

Q-learning RL with TL

29

STL and discrete space

30

31

General idea
u States: partition of a Continuous Space

Unknown stochastic dynamics
u Goal: Maximizing Pr[𝑠 ⊨ Φ] or 𝐸[𝑟(𝑠,Φ)]
u Issue: Pr[𝑠 ⊨ Φ] or 𝐸[𝑟(𝑠,Φ)] are not in the

standard objective form of Q- learning (i.e., the
sum of instantaneous rewards)

u Solution: approximation of STL synthesis
problems that can be solved via Q-learning,

32

System Model

u Set of partitions with centroid 𝜎* = ∆3
4
, ∆5
4

u Motion primitives 𝑎 ∈ 𝐴 , blue arrow
u 𝑠#":##: state trajectory of the system within 𝑡* , 𝑡4

e.g. s7 = 𝜎*. If the system visits 𝜎8 and returns to 𝜎*, its
state trajectory can be written as 𝑠7:4∆# = 𝜎*𝜎8𝜎*

u probability distribution for 𝑠#$* is unknown

33

Problem: history- dependence of the satisfaction

u Let Φ be an STL specification with hrz(Φ) = T . Given a stochastic model M =
⟨Σ,A,P,R⟩ with unknown P and an initial partial state trajectory s0:τ for some 0 ≤ τ
< T , find a control policy π such that

u Fragment of STL such that the progress towards satisfaction is checked with a
sufficient number of (i.e., τ) state measurements.

Q-learning

34

35

Problem: history- dependence of the satisfaction
u The policies should be defined as 𝜋 ∶ Σ9 ×𝑁:7 → 𝐴 where Σ9 = Σ×···×Σ for

τ times. Hence, the state-space of the system needs to be redefined as Σ9
×𝑁:7.

u 𝜏 −MDP where 𝜏 = [;0< =
>#

] + 1 for 𝐹[7,A]𝜓, 𝐺[7,A]𝜓

u Each state corresponds to a
𝜏-length trajectory

36

Problem: robustness shape

u log-sum-exp approximation to adapt the Robustness of Q-learning

37

Finally…

The immediate reward is :

38

Experiments

|S|= 19, |S(| = 676 and 𝜏 = 3

the robustness degree gives “partial credit”
for trajectories that are close to satisfaction

For the satisfaction prob, instead, Q-
learning algorithm is essentially performing
a random search

Φ) = 𝐺 *,,) (𝐹 *,) (𝑟𝑒𝑔𝑖𝑜𝑛 𝐴) ∧ 𝐹 *,) (𝑟𝑒𝑔𝑖𝑜𝑛 𝐵))

STL and continuous space

39

40

Truncated Linear
Temporal Logic (TLTL)

• Specifically for robots

• Unbounded

• Atomic propositions

• Evaluated against finite time sequences
𝑠-:-/0 = 𝑠- 𝑠-/,…𝑠-/0

•

41

STL and continuous space
u Policy parametrization 𝜋 𝑠, 𝑎 𝜃 where θ is the set of model parameters

u 𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥" 𝐸C$%(9)[𝑅(𝜏)] ,
where 𝑝D%(𝜏) is trajectory distribution from following policy π

u Relative Entropy Policy Search (REPS) :
constrained optimization problem that can be solved by Lagrange multipliers
method

u Time-varying linear Gaussian policies and weighted maximum-likelihood
estimation to update the policy parameters

42

Experiments

LTL constrained to discrete state and action

45

47

LTL constrained to discrete state and action
u select the reward function on the product MDP so it corresponds to the Rabin

acceptance condition of the LTL specification.

u Prove convergence if policy exist s.t. it satisfies property with probability 1

u 1) Learn the transition probabilities and
2) Optimize the expected utility.
E.g. with a modified active temporal difference learning algorithm

Several Works with different motivations

48

u Reward shaping using probability of average robusntess satisfaction

u LTL constrained, Reward function remained the same

u multi-task-RL

49

Safe RL via Shield

50

u The shield is computed upfront from the safety part of
the given system specification and an abstraction of
the agent’s environment dynamics

u Minimum interference: monitors the actions selected
by the learning agent and corrects them if and only if
the chosen action is unsafe.

u Boundary helps to separate the concerns, e.g., safety
and correctness on one side and convergence and
optimality on the other

u Compatible with mechanisms such as function
approximation, employed by learning algorithms in
order to improve their scalability

How can we let a learning agent do whatever it is doing, and also monitor and interfere with
its operation whenever absolutely needed in order to ensure safety?

Safe RL via Shield

51

u Safety fragment of LTL
(something bad should never happen, e.g. no safety G(r → Fg), every request is eventually
granted)

u A faithful, yet precise enough, abstraction of the physical environment is required

u Independent of the state space components of the system to be controlled

u The shield is the product between specification automaton and the MDP abstraction

Grid world Example

53

With tabular Q-learning with an ε-greedy explorer

φs: the robot must not crash into walls or
the moving opponent agent.

The PacMan Example

54

Approximate Deep Q-learning agent

The safety specification in this example is to avoid
crashing into a wall.

Several Works with different motivations

55

u LTL constrained, Reward function remained the same

u Reward shaping using probability of average robusntess satisfaction

u Multi-task-RL

Multi-task-RL

56

Decompose tasks into subtasks with LTL progression

57Task with finite-episode -> restriction to co-safe properties

