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Elasticity

Elasticity and Seismic Waves

• Some mathematical basics


• Strain-displacement relation 

 Linear elasticity

 Strain tensor – meaning of its elements


• Stress-strain relation (Hooke’s Law)

 Stress tensor

 Symmetry

 Elasticity tensor

 Lame’s parameters


• Equation of Motion

 P and S waves

 Plane wave solutions



Elasticity

Some basic definitions - 1

Principles of mechanics applied to bulk matter:

Mechanics of fluids  Mechanics of solids


Continuum Mechanics

A material can be called solid (rather than -perfect- fluid) 
if it can support a shearing force over the time scale of 

some natural process.


Shearing forces are directed parallel, rather than 
perpendicular, to the material surface on which they act.
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Some basic definitions - 2

When a material is loaded at sufficiently low temperature, and/
or short time scale, and with sufficiently limited stress 

magnitude, its deformation is fully recovered upon uploading:

the material is elastic

If there is a permanent (plastic) deformation due to exposition 
to large stresses:


the material is elastic-plastic

If there is a permanent deformation (viscous or creep), e.g. due 
to time exposure to a stress, and that increases with time:


the material is viscoelastic (with elastic response), or

the material is visco-plastic (with partial elastic response)
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Stress-strain regimes

• Linear elasticity (teleseismic waves)


• rupture, breaking


• stable slip (aseismic)


• stick-slip (with sudden ruptures)

Stable slip Stick slip

Breaking

Deformation

St
re

ss

Linear deformation
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Elastic means reversible! 
It goes back to its original state 
once the loading is removed.

Elastic Deformation

1. Initial 2. Small load

F

δ

bonds 
stretch

3. Unload

return to 
initial

δ

F Linear- 
elastic

Non-Linear-
elastic
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Stress as a measure of Force

Stress is a measure of Force. 


It is defined as the force per unit area (=F/A) (same units as pressure). 

Normal stress acts perpendicular to the surface 


(F=normal force)

Tensile causes elongation Compressive causes shrinkage

FF F F
A A

σ = stretching force
cross sectional area
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Shear Stress as a measure of Force

Shear stress acts tangentially to the surface (F=tangential force).

F

F A

ΔX

τ = shear force
tangential area



Elasticity

Linear Elastic Properties

 Modulus of Elasticity, E:

  (also known as Young's modulus)

• Hooke's Law:

σ = E ε

σ

Linear- 
elastic

E

ε

F

F
simple 
tension 
test

E: stiffness (material’s resistance to elastic deformation) 
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Young’s modulus
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Elasticity Theory

A time-dependent perturbation of an elastic medium (e.g. a 
rupture, an earthquake, a meteorite impact, a nuclear explosion 
etc.) generates elastic waves emanating from the source region. 
These disturbances produce local changes in stress and strain. 


To understand the propagation of elastic waves we need to 
describe kinematically the deformation of our medium and the 
resulting forces (stress). The relation between deformation and 
stress is governed by elastic constants.


The time-dependence of these disturbances will lead us to the 
elastic wave equation as a consequence of conservation of 
energy and momentum. 
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Deformation

Let us consider a point P0 at position r relative to some 
fixed origin and a second point Q0 displaced from P0 by 
dx

 P0 

 x 

 y 

 ! Q0 
δx

δx δu

r

u

 ! 
 !  P1 

 Q1δy

v

Unstrained state:

Relative position of point P0 w.r.t. 

Q0 is δx. 


Strained state:

Relative position of point P0 has 
been displaced a distance u to P1  

and point Q0 a distance v to Q1. 


Relative position of point P1 w.r.t. 

Q1 is δy= δx+ δu. The change in 
relative position between Q and P 
is just δu.

 ! 
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Linear Elasticity

The relative displacement in the 
unstrained state is u(r). The relative 
displacement in the strained state is 
v=u(r+ δx). 


So finally we arrive at expressing 
the relative displacement due to 
strain:


δu=u(r+ δx)-u(r)


We now apply Taylor’s theorem 
in 3-D to arrive at: 

What does this equation mean?

 P0  ! Q0 
δx

δx δu
u

 ! 
 !  P1 

 Q1δy

v

 ! 

δu
i
=

∂u
i

∂x
k

δx
k

k=1,3
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i

∂x
k

δx
k
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Linear Elasticity – symmetric part

The partial derivatives of the vector 
components

 symmetric

 strain

 antisymmetric

 pure rotation

 P0  ! Q0 
δx

δx δu
u

 ! 
 !  P1 

 Q1δy

v

 ! 

represent a second-rank tensor which can be resolved into a symmetric 
and anti-symmetric part:

∂u
i

∂x
k

δu
i
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2
(
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∂x
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∂u

k
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)δx
k
− 1
2
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−
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i

∂x
k

)δx
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Linear Elasticity – strain tensor

The symmetric part is called the 

strain tensor

 P0  !  ! Q0 
δx

δx δu
u

 ! 
 ! 

 P1 
 Q1δy

v

and describes the relation between strain and displacement in linear 
elasticity. In 2-D this tensor looks like:

ε
ij=

∂u
1

∂x
1
2
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∂u
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∂y
+
∂u
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Deformation tensor – its elements

Through eigenvector analysis the meaning of the elements of the deformation 
tensor can be clarified:


The strain tensor assigns each point – represented by its position vector u – 

new position with vector v=u+δu, where (summation over repeated indices applies):

The eigenvectors of the deformation tensor are those for which the tensor 
is diagonal, and the eigenvalues λ:

and can be obtained solving the system:

δu
i
= ε

ij
δx

j

δu
i
= λδx

i

ε
ij
− λδ

ij
= 0
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Deformation tensor – its elements

Thus

... in other words ...

the eigenvalues express the relative change of length along the three 

coordinate axes, or the elongation respect to a unitary length

In arbitrary coordinates the diagonal elements 
are the relative change of length along the 

coordinate axes and the off-diagonal elements 
are the infinitesimal shear angles.

shear angle

v
i
= u

i
(1 + λ

i
)

λ
i
=
v
i

u
i

− 1
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Deformation tensor – trace

The trace of a tensor is defined as the sum over the diagonal elements. 
Thus:  

This trace is linked to the volumetric change after deformation.

Before deformation the volume was V0. Because the diagonal elements are 
the relative change of lengths along each direction, the new volume after 

deformation is 

... and neglecting higher-order terms ...

ε
ii
= ε
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+ ε
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33
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V
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= ε
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Deformation tensor – applications

The fact that we have linearised the strain-displacement relation is quite 
severe. It means that the elements of the strain tensor should be <<1. Is 
this the case in seismology?

Let’s consider an example. The 1999 Taiwan earthquake (M=7.6) was recorded at a 
teleseismic distance and the maximum ground displacement was 1.5 mm measured 
for surface waves of approx. 30s period. Let us assume a phase velocity of 4km/
s. How big is the strain at the Earth’s surface, give an estimate !

The answer is that ε would be on the order of 10-7 <<1. This is typical for global 
seismology if we are far away from the source, so that the assumption of 
infinitesimal displacements is acceptable. 


For displacements closer to the source this assumption is not valid. There we 
need a finite strain theory. Strong motion seismology is an own field in seismology 
concentrating on effects close to the seismic source.
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Stress - Traction (vector)

In an elastic body there are restoring forces if deformation takes place. These forces can 
be seen as acting on planes inside the body. Forces divided by an areas are called 
stresses.

In order for the deformed body to remain deformed these forces have to compensate 
each other. 

Traction vector cannot be completely 
described without the specification of the 
force (ΔF) and the surface (ΔS) on which 
it acts:

And from the linear momentum 
conservation, we can show that:


T(-n)=-T(n)

T(n) = lim
ΔS→0

ΔF
ΔS = dF

dS
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Stress acting on a given internal plane can be decomposed in 3 mutually 
orthogonal components: one normal (direct stress), tending to change the volume 

of the material, and two tangential (shear stress), tending to deform, to the 
surface. If we consider an infinitely small cube, aligned with a Cartesian reference 

system:

T(n) = n
i
T(i) = n

i
T

j
(i)e

j
= n

i
σ

ij
e

j



Elasticity

Consider an infinitively small tethraedrum, whose 3 faces are oriented normally to the 
reference axes. The components of traction T, acting on the face whose normal is n can be 

written using the directional cosines referred to versor system ê 

T(n) = n
i
T(i) = n

i
T

j
(i)e

j
= n

i
σ

ij
e

j
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(Cauchy) Stress tensor

... in components we can write this as

where σij ist the stress tensor and n=(ni) is 
a surface normal. 

The stress tensor describes the forces 
acting on planes within a body.  Due to the 
symmetry condition  

there are only six independent elements.

The vector normal to the corresponding surface

The direction of the force vector acting on that surface

22

23

21

1

3

2

Tj(i) = niσij

σij = σ ji
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...and the stress state in a point of the material can be 
expressed  with:
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Stress tensor and principal axis
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Stress - 2
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Mohr’s circle

https://elearning.cpp.edu/learning-objects/mohrs-circle/

https://elearning.cpp.edu/learning-objects/mohrs-circle/
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Ideal fluids

In a viscosity free liquid the stress tensor is 
diagonal, and defines the PRESSURE:

The minus sign arises because of the outward 
normal convention: tractions that push inward 
are negative (positive stresses produce positive 
strains).

σij = −Pδji
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Stress equilibrium - Statics

If a body is in equilibrium the internal forces and the forces acting on its 
surface have to vanish

From the second equation the symmetry of the stress tensor can be 
derived. Using Gauss’ law the first equation yields

as well as the sum over the angular momentum

fi dV + Ti
S
!∫

V
∫ dS = 0

xi × fj dV + xi × Tj
S
!∫

V
∫ dS = 0

fi +
∂σij
∂xj

= 0
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Statics - 1
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Statics - 2
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Stress - Glossary

Stress units bar = 105N/m2== 105Pa =106dyne/cm2


mbar=102Pa=103dyne/cm2


1MPa=106Pa=10bar

At sea level    p=1bar

At depth 3km p=1kbar

maximum 
compressive 
stress

the direction perpendicular to the minimum 
compressive stress, near the surface mostly in 
horizontal direction, linked to tectonic processes.

principal stress 
axes

the direction of the eigenvectors of the stress 
tensor



Elasticity

Stress-strain relation - 1

The relation between stress and strain in general is described by the tensor 
of elastic constants cijkl

From the symmetry of the stress and strain tensor and a thermodynamic 
condition if follows that the maximum number if independent constants of 
cijkl is 21. In an isotropic body, where the properties do not depend on 
direction, the relation reduces to 

where λ and μ  are the Lame parameters, θ is the dilatation and  δij is the 
Kronecker delta. 

Generalised Hooke’s Law

Hooke’s Law

θδ
ij
= ε

kk
δ
ij
= ε

11
+ ε

22
+ ε

33( )δij

σij = cijklεkl

σij = λθδij + 2µεij
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Stress-strain relation - 2

The complete stress tensor looks like

Mean stress (invariant respect to the coordinate system) 


Deviatoric stress:


In the Earth the mean stress is essentially due to lithostatic load:

σ
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=

(λ +2µ)ε
11
+ λ(ε

22
+ ε

33
) 2µε
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2µε

13

2µε
21

(λ +2µ)ε
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+ ε
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) 2µε
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2µε
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2µε
32
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33
+ λ(ε
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+ ε
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⎛

⎝

⎜
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⎜

⎞

⎠

⎟
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⎟
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σ

11
+ σ

22
+ σ

33( )
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=
λ

n
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3

∑
3

D
ij
= σ
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−Mδ
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P = − ρ(z) dz
0

h

∫
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Elastic parameters 

Consider a stretching experiment where tension is applied to an isotropic

medium along a principal axis (say x).

For Poisson’s ratio we have  0<ν<0.5. 

A useful approximation is λ=μ (Poisson’s solid), then ν=0.25 and for fluids ν=0.5

Rigidity is the ratio of pure shear strain and the applied shear stress component

Bulk modulus of incompressibility is defined the ratio of pressure to volume change. Ideal 
fluid means no rigidity (µ = 0), thus λ  is the  incompressibility of a fluid.

Young's modulus ≡ E = −
σ

11

ε
11

= µ(3λ +2µ)
λ + µ

µ =
σ

ij

2ε
ij

K = − P
θ
= λ + 2

3
µ

λ = νE
(1 + ν)(1 −2ν)

µ = E
2(1 + ν)

  
Poisson's ratio ≡ ν = −

ε
22

ε
11

= λ
2(λ + µ)
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Stress-strain - significance

As in the case of deformation the stress-strain relation can be interpreted 
in simple geometric terms:

Remember that these relations are a generalization of Hooke’s Law:

l

u

γ l

u

 F= Kx

P = K ΔV
V = Kεiiσ22 = E ul = Kεiiσ12 = µγ = µε12
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Elastic constants

Let us look at some examples for elastic constants:

Rock K

1012 dynes/cm2

E

1012 dynes/cm2

μ

1012 dynes/cm2

v

Limestone 0.621 0.248 0.251

Granite 0.132 0.416 0.197 0.055

Gabbro 0.659 1.08 0.438 0.219

Dunite 1.52 0.6 0.27
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Elastic anisotropy

What is seismic anisotropy?

Seismic wave propagation in anisotropic media is quite different from 
isotropic media:


• There are in general 21 independent elastic constants (instead of 2 

  in the isotropic case)

• there is shear wave splitting (analogous to optical birefringence)

• waves travel at different speeds depending in the direction of    

  propagation

• the polarization of compressional and shear waves may not be 

   perpendicular or parallel to the wavefront, resp.

σ
ij
= c

ijkl
ε
kl
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Shear wave splitting
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Summary: Elasticity - Stress

Seismic wave propagation can in most cases be described 
by linear elasticity.

The deformation of a medium is described by the 
symmetric elasticity tensor. 

The internal forces acting on virtual planes within a 
medium are described by the symmetric stress tensor. 

The stress and strain are linked by the material 
parameters (like spring constants) through the 
generalised Hooke’s Law.

In isotropic media there are only two elastic constants, 
the Lame parameters.

In anisotropic media the wave speeds depend on 
direction and there are a maximum of 21 independent 
elastic constants.



Elasticity

The Elastic Wave Equation

• Elastic waves  in infinite homogeneous isotropic media

Helmholtz’s theorem

P and S waves


• Plane wave propagation in infinite media 

Frequency, wavenumber, wavelength

Geometrical spreading
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Equations of elastic motion

We now have a complete description of the forces acting within an elastic 
body. Adding the inertia forces with opposite sign leads us from

to

the equations of motion for dynamic elasticity

ρ
∂2u

i

∂t2
= f

i
+
∂σ

ij

∂x
j

f
i
+
∂σ

ij

∂x
j

= 0
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Eq. of motion - homogeneous media

What are the solutions to this equation? At first we look

at infinite homogeneous isotropic media, then:

ρ∂
t
2u

i
= f

i
+ ∂

j
σ

ij

ρ∂
t

2ui = fi + ∂j λ ∂kukδij + µ(∂iuj + ∂jui)( )
ρ∂

t

2ui = fi + λ ∂i∂kuk + µ ∂i∂juj + µ ∂
j

2ui

σ ij = λ ∂kukδij + µ(∂iuj + ∂jui)
σ ij = λθδij + 2µεij
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Navier equations

We can now simplify this equation using the curl and div operators

and

… this holds in any coordinate system …


This equation can be further simplified, 


neglecting body forces (by choosing a proper reference state) and 


separating the wavefield into curl free and div free parts 

ρ∂t
2ui = fi + λ ∂i∂kuk + µ ∂i∂juj + µ ∂jj

2 ui

∇ • u = ∂iui ∇2 = Δ = ∂
x
2+ ∂

y
2+ ∂

z
2

Δu = ∇∇ i u -∇ × ∇ × u

ρ∂
t
2u = f + (λ +2µ)∇∇ i u - µ∇ × ∇ × u
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Equations of motion – P waves

If we apply the div operator to this equation, we obtain

where

    with P-wave velocity“Acoustic” wave equation

1
α2∂t

2θ = Δθ

θ = ∇ i u

ρ∂
t
2θ = (λ +2µ)Δθ

ρ∂t
2u = (λ + 2µ)∇∇ • u - µ∇ × ∇ × u
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Equations of motion – S waves

If we apply the curl operator to this equation, we obtain

we now make use of   and define

to obtain

S-wave velocityShear wave equation

∇ × ∇θ = 0

ϕ = ∇ × u

  

1
β2

∂t
2ϕ = Δϕ

ρ∂
t
2∇ × u = (λ + µ)∇ × ∇θ + µΔ(∇ × u)

ρ∂t
2u = (λ + 2µ)∇∇ • u - µ∇ × ∇ × u
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Helmholtz theorem

Any vector field u=u(x) may be separated into scalar and vector potentials

http://farside.ph.utexas.edu/teaching/em/lectures/node37.html

since it is possible to solve the Poisson equation

∇2W = u

W(x) = − u(ξ)
4π x − ξV

∫∫∫ dξ

and then the identity

tells us that

Φ = ∇ ⋅W and Ψ = −∇ ×W

Δ = ∇∇ i -∇ × ∇ ×

u = ∇Φ +∇ × Ψ

http://farside.ph.utexas.edu/teaching/em/lectures/node37.html
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Elastodynamic Potentials 

Any vector may be separated into scalar and vector potentials

Shear waves have no change in volumeP-waves have no rotation

where Φ is the potential for P waves and Ψ the potential for shear waves

u = ∇Φ +∇ × Ψ

⇒θ = ΔΦ ⇒ ϕ = ∇ × u = ∇ × ∇ × Ψ = −ΔΨ

1
α2

∂
t
2θ = Δθ 1

β2
∂
t
2ϕ = Δϕ
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Plane waves

... what can we say about the direction of displacement, the

polarization of seismic waves?

... we now assume that the potentials have the well known form of 
plane harmonic waves

S waves are transverse because S is 
normal to the wave vector k

P waves are longitudinal as P is 
parallel to k

u = ∇Φ +∇ × Ψ ⇒ u = P + S
P = ∇Φ S = ∇ × Ψ

Ψ = Bexp[i(k • x − ωt)]Φ = Aexp[i(k • x − ωt)]

P = Akexp[i(k • x − ωt)] S = k ×Bexp[i(k • x − ωt)]
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Wavefields visualization
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Seismic Velocities 

Material P-wave velocity (m/s) shear wave velocity (m/s)

Water 1500 0

Loose sand 1800 500

Clay 1100-2500

Sandstone 1400-4300

Anhydrite, Gulf Coast 4100

Conglomerate 2400

Limestone 6030 3030

Granite 5640 2870

Granodiorite 4780 3100

Diorite 5780 3060

Basalt 6400 3200

Dunite 8000 4370

Gabbro 6450 3420
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Seismic Velocities 

Material Vp (km/s)

Unconsolidated material
        Sand (dry)   0.2-1.0
        Sand (wet)   1.5-2.0

Sediments
         Sandstones  2.0-6.0
         Limestones  2.0-6.0

Igneous rocks
         Granite  5.5-6.0
         Gabbro  6.5-8.5

Pore fluids
         Air    0.3
         Water    1.4-1.5
         Oil    1.3-1.4

Other material
         Steel     6.1
         Concrete     3.6
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Solutions to the wave eq. - general

Let us consider a region without sources 

Where η could be either dilatation or the vector potential and c is either P- or 
S- velocity. The general solution to this equation is: 

Let us take a look at a 1-D example

1
c2

∂η
∂t2

= Δη

η(x
i
, t) = G(k

j
x

j
± ωt)
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Solutions to the wave eq. - harmonic

Let us consider a region without sources 

The most appropriate choice for G is of 
course the use of harmonic functions:

1
c2

∂η
∂t2

= Δη

G(x, t) = Aexp i(k i x ± ωt)⎡
⎣

⎤
⎦ = Aexp i(k

j
x

j
± ωt)⎡

⎣
⎤
⎦
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Solutions to the wave equation - harmonic

… taking only the real part and considering only 1D we obtain

c wave speed

k wavenumber

λ wavelength

T period

ω frequency

A amplitude

u(x, t) = Acos[kx − ωt]

[kx − ωt] = 2π
λ

x − 2π
T

t
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= [k(x − ct)]
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Energy of elastic waves - kinetic
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Energy of elastic waves - strain
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Spherical Waves
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Spherical Waves

Let us assume that η is a function of 
the distance from the source

where we used the definition of the Laplace operator in 
spherical coordinates let us define


to obtain


r

with the known solution 

η = η
r

1
c2

∂2η
∂t2

= Δη

1
c2

∂2η
∂t2

= ∂2η
∂r2

η = f α ± rt( )

Δη = ∂r
2η + 2

r ∂rη = 1
c2 ∂t

2η
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Geometrical spreading

so a disturbance propagating away with spherical wavefronts 
decays like

... this is the geometrical spreading for 

spherical waves, the amplitude decays 
proportional to 1/r.

r

If we had looked at cylindrical waves the result would have been 
that the waves decay as (e.g. surface waves) 

η =
f α ± rt( )

r
η  1

r

η  1

r


