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Overview

Fluid Kinematics deals with the motion of fluids without 
necessarily considering the forces and moments which 
create the motion.
Items discussed: 

Material derivative and its relationship to Lagrangian and 
Eulerian descriptions of fluid flow.
Flow visualization.
Plotting flow data.
Fundamental kinematic properties of fluid motion and 
deformation.
Reynolds Transport Theorem
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System:  a quantity of matter or a region in space chosen for study. 

Surroundings: the mass or region outside the system

Boundary:  the real or imaginary surface that separates the system from its 
surroundings.

The boundary of a system can be fixed or movable.

Systems may be considered to be closed or open. 
Closed system (Control mass):  A fixed amount of mass, and no mass can 
cross its boundary

Systems and Control Volumes
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Open system (control volume): A properly selected 
region in space. 

It usually encloses a device that involves mass flow such as a 
compressor, turbine, or nozzle.
Both mass and energy can cross the boundary of a control 
volume.

Control surface: The boundaries of a control volume. It 
can be real or imaginary.
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Properties of a System
Property:  any characteristic of a 
system. 

Some familiar properties are pressure P, 
temperature T, volume V, and mass m. 

Properties are considered to be either 
intensive or extensive. 

Intensive properties:  those that are 
independent of the mass of a system, such 
as temperature, pressure, and density. 
Extensive properties: Those whose values 
depend on the size, or extent, of the 
system.

Specific properties:  Extensive properties 
per unit mass.
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Lagrangian Description

The two ways to describe motion are Lagrangian and Eulerian 
description.

Lagrangian description of fluid flow tracks the position and 
velocity of individual particles (eg. Billiard ball on a pooltable).

Motion is described based upon Newton's laws. 
Difficult to use for practical flow analysis.

Fluids are composed of billions of molecules.
 Interaction between molecules hard to describe/model. 

However, useful for specialized applications
Sprays, particles, bubble dynamics, rarefied gases.
Coupled Eulerian-Lagrangian methods.

Named after Italian mathematician Joseph Louis Lagrange 
(1736-1813).
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Eulerian Description

Eulerian description of fluid flow: a flow domain or control 
volume is defined by which fluid flows in and out.
We define field variables which are functions of space and time.

Pressure field, P=P(x,y,z,t)

Velocity field,

Acceleration field,

These (and other) field variables define the flow field.
Well suited for formulation of initial boundary-value problems (PDE's).
Named after Swiss mathematician Leonhard Euler (1707-1783).
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Lagrangian vs. Eulerian description

A fluid flow field can be thought of as being 
comprised of a large number of finite sized 
fluid particles which have mass, momentum, 
internal energy, and other properties. 
Mathematical laws can then be written for 
each fluid particle. This is the Lagrangian 
description of fluid motion.

Another view of fluid motion is the 
Eulerian description. In the Eulerian 
description of fluid motion, we consider 
how flow properties change at a fluid 
element that is fixed in space and time 
(x,y,z,t), rather than following individual 
fluid particles.

Governing equations can be derived using each method and 
converted to the other form.
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A Steady Two-Dimensional  Velocity Field

A steady, incompressible, two-
dimensional velocity field is given by:

     A stagnation point is defined as a 
point in the flow field where the 
velocity is identically zero. 

  
     (a) Determine if there are any 

stagnation points in this flow field 
and, if so, where?                         
(b) Sketch velocity vectors at 
several locations in the domain 
between x = - 2 m to 2 m and y = 0 
m to 5 m; qualitatively describe the 
flow field.

Collectively, these (and other) field variables define the flow field. The
velocity field of Eq. 4–2 can be expanded in Cartesian coordinates (x, y, z),
(i

→

, j
→

, k
→

) as

(4–4)

A similar expansion can be performed for the acceleration field of Eq. 4–3.
In the Eulerian description, all such field variables are defined at any loca-
tion (x, y, z) in the control volume and at any instant in time t (Fig. 4–3). In
the Eulerian description we don’t really care what happens to individual
fluid particles; rather we are concerned with the pressure, velocity, accelera-
tion, etc., of whichever fluid particle happens to be at the location of interest
at the time of interest.

The difference between these two descriptions is made clearer by imagin-
ing a person standing beside a river, measuring its properties. In the
Lagrangian approach, he throws in a probe that moves downstream with the
water. In the Eulerian approach, he anchors the probe at a fixed location in
the water.

While there are many occasions in which the Lagrangian description is
useful, the Eulerian description is often more convenient for fluid mechanics
applications. Furthermore, experimental measurements are generally more
suited to the Eulerian description. In a wind tunnel, for example, velocity or
pressure probes are usually placed at a fixed location in the flow, measuring
V
→

(x, y, z, t) or P(x, y, z, t). However, whereas the equations of motion in the
Lagrangian description following individual fluid particles are well known
(e.g., Newton’s second law), the equations of motion of fluid flow are not so
readily apparent in the Eulerian description and must be carefully derived.

EXAMPLE 4–1 A Steady Two-Dimensional Velocity Field

A steady, incompressible, two-dimensional velocity field is given by

(1)

where the x- and y-coordinates are in meters and the magnitude of velocity
is in m/s. A stagnation point is defined as a point in the flow field where the
velocity is identically zero. (a) Determine if there are any stagnation points in
this flow field and, if so, where? (b) Sketch velocity vectors at several loca-
tions in the domain between x ! "2 m to 2 m and y ! 0 m to 5 m; quali-
tatively describe the flow field.

SOLUTION For the given velocity field, the location(s) of stagnation point(s)
are to be determined. Several velocity vectors are to be sketched and the
velocity field is to be described.
Assumptions 1 The flow is steady and incompressible. 2 The flow is two-
dimensional, implying no z-component of velocity and no variation of u or v
with z.
Analysis (a) Since V

→
is a vector, all its components must equal zero in

order for V
→

itself to be zero. Using Eq. 4–4 and setting Eq. 1 equal to zero,

Stagnation point:

Yes. There is one stagnation point located at x ! "0.625 m, y ! 1.875 m.

 v ! 1.5 " 0.8y ! 0  →   y ! 1.875 m

 u ! 0.5 # 0.8x ! 0  →   x ! "0.625 m

V
→

! (u, v) ! (0.5 # 0.8x) i
→

# (1.5 " 0.8y) j
→

V
→

! (u, v, w) ! u(x, y, z, t) i
→

# v(x, y, z, t) j
→

# w(x, y, z, t)k
→
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Control volume

V(x, y, z, t)

P(x, y, z, t)

(x, y ,z)
→

FIGURE 4–3
In the Eulerian description, one

defines field variables, such as the
pressure field and the velocity field, at

any location and instant in time.
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(b) The x- and y-components of velocity are calculated from Eq. 1 for several
(x, y) locations in the specified range. For example, at the point (x ! 2 m, y
! 3 m), u ! 2.10 m/s and v ! "0.900 m/s. The magnitude of velocity (the
speed) at that point is 2.28 m/s. At this and at an array of other locations,
the velocity vector is constructed from its two components, the results of
which are shown in Fig. 4–4. The flow can be described as stagnation point
flow in which flow enters from the top and bottom and spreads out to the
right and left about a horizontal line of symmetry at y ! 1.875 m. The stag-
nation point of part (a) is indicated by the blue circle in Fig. 4–4.

If we look only at the shaded portion of Fig. 4–4, this flow field models a
converging, accelerating flow from the left to the right. Such a flow might be
encountered, for example, near the submerged bell mouth inlet of a hydro-
electric dam (Fig. 4–5). The useful portion of the given velocity field may be
thought of as a first-order approximation of the shaded portion of the physi-
cal flow field of Fig. 4–5.
Discussion It can be verified from the material in Chap. 9 that this flow
field is physically valid because it satisfies the differential equation for con-
servation of mass.

Acceleration Field
As you should recall from your study of thermodynamics, the fundamental
conservation laws (such as conservation of mass and the first law of thermo-
dynamics) are expressed for a system of fixed identity (also called a closed
system). In cases where analysis of a control volume (also called an open
system) is more convenient than system analysis, it is necessary to rewrite
these fundamental laws into forms applicable to the control volume. The
same principle applies here. In fact, there is a direct analogy between sys-
tems versus control volumes in thermodynamics and Lagrangian versus
Eulerian descriptions in fluid dynamics. The equations of motion for fluid
flow (such as Newton’s second law) are written for an object of fixed iden-
tity, taken here as a small fluid parcel, which we call a fluid particle or
material particle. If we were to follow a particular fluid particle as it
moves around in the flow, we would be employing the Lagrangian descrip-
tion, and the equations of motion would be directly applicable. For example,
we would define the particle’s location in space in terms of a material posi-
tion vector (xparticle(t), yparticle(t), zparticle(t)). However, some mathematical
manipulation is then necessary to convert the equations of motion into
forms applicable to the Eulerian description.

Consider, for example, Newton’s second law applied to our fluid particle,

Newton’s second law: (4–5)

where F
→

particle is the net force acting on the fluid particle, mparticle is its mass,
and a→particle is its acceleration (Fig. 4–6). By definition, the acceleration of
the fluid particle is the time derivative of the particle’s velocity,

Acceleration of a fluid particle: (4–6)

However, at any instant in time t, the velocity of the particle is the same
as the local value of the velocity field at the location (xparticle(t), yparticle(t),

a
→

particle !
dV

→
particle

dt

F
→

particle ! mparticlea
→

particle
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FIGURE 4–4
Velocity vectors for the velocity field
of Example 4–1. The scale is shown
by the top arrow, and the solid black
curves represent the approximate
shapes of some streamlines, based on
the calculated velocity vectors. The
stagnation point is indicated by the
blue circle. The shaded region
represents a portion of the flow field
that can approximate flow into an inlet
(Fig. 4–5).

Region in which the
velocity field is modeled

Streamlines

FIGURE 4–5
Flow field near the bell mouth inlet of
a hydroelectric dam; a portion of the
velocity field of Example 4–1 may be
used as a first-order approximation of
this physical flow field. The shaded
region corresponds to that of Fig. 4–4.
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Acceleration Field

Consider a fluid particle and Newton's second law, 

The acceleration of the particle is the time derivative of the 
particle's velocity.

 

However, particle velocity at a point at any instant in time t is 
the same as the fluid velocity,

To take the time derivative of, chain rule must be used.

,t)

Where ∂  is the partial derivative operator and 
d is the total derivative operator.
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Acceleration Field

Since

In vector form, the acceleration can be written as

First term is called the local acceleration and is nonzero only for unsteady 
flows.
Second term is called the advective acceleration and accounts for the effect 
of the fluid particle moving to a new location in the flow, where the velocity 
is different.

!
a x, y, z,t( ) = d

!
V
dt

= ∂
!
V
∂t

+
!
V i
!
∇( ) !V

dxparticle
dt

= u,
dyparticle
dt

= v,
dzparticle
dt

= w

!aparticle =
∂
!
V
∂t

+ u ∂
!
V
∂x

+ v ∂
!
V
∂y

+ w ∂
!
V
∂z
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If we move a parcel in time Δt
Using Taylor series expansion,  assuming increments over Δt are small, 
and ignoring Higher Order Terms

Higher
Order
Terms

Dividing by Δt and taking the small limit:

Δf = ∂ f
∂t

Δt + ∂ f
∂x

Δx + ∂ f
∂y

Δy + ∂ f
∂z

Δz +

df
dt

= ∂ f
∂t

+ ∂ f
∂x
dx
dt

+ ∂ f
∂y
dy
dt

+ ∂ f
∂z
dz
dt

Introducing the convention of d( )/dt ≡ D( )/Dt
Dx
Dt

= u, Dy
Dt

= v, Dz
Dt

= w

Df
Dt

= ∂ f
∂t

+ u ∂ f
∂x

+ v ∂ f
∂y

+ w ∂ f
∂z

Df
Dt

= ∂ f
∂t

+V ⋅∇( f )
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Advection
In mathematics and continuum mechanics, including fluid 
dynamics, the substantive derivative (sometimes the Lagrangian 
derivative, material derivative), written D/Dt, is the rate of 
change of some property of a small parcel of fluid.

Note that if the fluid is moving, the substantive derivative is the rate 
of change of fluid within the small parcel, hence the other names like  
fluid following derivative. 

Advection is transport of a some conserved scalar quantity in a 
vector field.

Advective acceleration is nonlinear:  source of many phenomenon and 
primary challenge in solving fluid flow problems.
Provides “transformation” between Lagrangian and Eulerian frames.

u
∂ f
∂x

+ v ∂ f
∂y

+ w ∂ f
∂z

= V ⋅∇( f )
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Material Acceleration of a Steady Velocity 
Field

Consider the same velocity field 
of first example. (a) Calculate the 
material acceleration at the point 
(x = 2 m, y = 3 m). (b) Sketch the 
material acceleration vectors at 
the same array of x- and y values 
as in Example A.

Equation 4–14 represents the time rate of change of pressure following a
fluid particle as it moves through the flow and contains both local
(unsteady) and advective components (Fig. 4–13).

EXAMPLE 4–3 Material Acceleration of a Steady Velocity Field

Consider the steady, incompressible, two-dimensional velocity field of Example
4–1. (a) Calculate the material acceleration at the point (x ! 2 m, y ! 3 m).
(b) Sketch the material acceleration vectors at the same array of x- and y-
values as in Example 4–1.

SOLUTION For the given velocity field, the material acceleration vector is to
be calculated at a particular point and plotted at an array of locations in the
flow field.
Assumptions 1 The flow is steady and incompressible. 2 The flow is two-
dimensional, implying no z-component of velocity and no variation of u or v
with z.
Analysis (a) Using the velocity field of Eq. 1 of Example 4–1 and the equa-
tion for material acceleration components in Cartesian coordinates (Eq.
4–11), we write expressions for the two nonzero components of the accelera-
tion vector:

and

At the point (x ! 2 m, y ! 3 m), ax ! 1.68 m/s2 and ay ! 0.720 m/s2.
(b) The equations in part (a) are applied to an array of x- and y-values in the
flow domain within the given limits, and the acceleration vectors are plotted
in Fig. 4–14.
Discussion The acceleration field is nonzero, even though the flow is
steady. Above the stagnation point (above y ! 1.875 m), the acceleration
vectors plotted in Fig. 4–14 point upward, increasing in magnitude away
from the stagnation point. To the right of the stagnation point (to the right of
x ! "0.625 m), the acceleration vectors point to the right, again increasing
in magnitude away from the stagnation point. This agrees qualitatively with
the velocity vectors of Fig. 4–4 and the streamlines sketched in Fig. 4–14;
namely, in the upper-right portion of the flow field, fluid particles are accel-
erated in the upper-right direction and therefore veer in the counterclockwise
direction due to centripetal acceleration toward the upper right. The flow
below y ! 1.875 m is a mirror image of the flow above this symmetry line,
and flow to the left of x ! "0.625 m is a mirror image of the flow to the
right of this symmetry line.

 !  0 # (0.5 # 0.8x)(0) # (1.5 " 0.8y)("0.8) # 0 ! ("1.2 # 0.64y) m/s2

 ay !
$v
$t

  #   u 
$v
$x

           # v 
$v
$y

     # w 
$v
$z

 

 !  0 # (0.5 # 0.8x)(0.8) # (15 " 0.8y)(0) #  0 ! (0.4 # 0.64x) m/s2

 ax !
$u
$t

  #   u 
$u
$x

          # v 
$u
$y

    # w 
$u
$z
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The material derivative D/Dt is
composed of a local or unsteady part
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FIGURE 4–14
Acceleration vectors for the velocity
field of Examples 4–1 and 4–3. The
scale is shown by the top arrow,
and the solid black curves represent
the approximate shapes of some
streamlines, based on the calculated
velocity vectors (see Fig. 4–4). The
stagnation point is indicated by the 
blue circle.
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Equation 4–14 represents the time rate of change of pressure following a
fluid particle as it moves through the flow and contains both local
(unsteady) and advective components (Fig. 4–13).

EXAMPLE 4–3 Material Acceleration of a Steady Velocity Field

Consider the steady, incompressible, two-dimensional velocity field of Example
4–1. (a) Calculate the material acceleration at the point (x ! 2 m, y ! 3 m).
(b) Sketch the material acceleration vectors at the same array of x- and y-
values as in Example 4–1.

SOLUTION For the given velocity field, the material acceleration vector is to
be calculated at a particular point and plotted at an array of locations in the
flow field.
Assumptions 1 The flow is steady and incompressible. 2 The flow is two-
dimensional, implying no z-component of velocity and no variation of u or v
with z.
Analysis (a) Using the velocity field of Eq. 1 of Example 4–1 and the equa-
tion for material acceleration components in Cartesian coordinates (Eq.
4–11), we write expressions for the two nonzero components of the accelera-
tion vector:

and

At the point (x ! 2 m, y ! 3 m), ax ! 1.68 m/s2 and ay ! 0.720 m/s2.
(b) The equations in part (a) are applied to an array of x- and y-values in the
flow domain within the given limits, and the acceleration vectors are plotted
in Fig. 4–14.
Discussion The acceleration field is nonzero, even though the flow is
steady. Above the stagnation point (above y ! 1.875 m), the acceleration
vectors plotted in Fig. 4–14 point upward, increasing in magnitude away
from the stagnation point. To the right of the stagnation point (to the right of
x ! "0.625 m), the acceleration vectors point to the right, again increasing
in magnitude away from the stagnation point. This agrees qualitatively with
the velocity vectors of Fig. 4–4 and the streamlines sketched in Fig. 4–14;
namely, in the upper-right portion of the flow field, fluid particles are accel-
erated in the upper-right direction and therefore veer in the counterclockwise
direction due to centripetal acceleration toward the upper right. The flow
below y ! 1.875 m is a mirror image of the flow above this symmetry line,
and flow to the left of x ! "0.625 m is a mirror image of the flow to the
right of this symmetry line.

 !  0 # (0.5 # 0.8x)(0) # (1.5 " 0.8y)("0.8) # 0 ! ("1.2 # 0.64y) m/s2

 ay !
$v
$t

  #   u 
$v
$x

           # v 
$v
$y

     # w 
$v
$z

 

 !  0 # (0.5 # 0.8x)(0.8) # (15 " 0.8y)(0) #  0 ! (0.4 # 0.64x) m/s2

 ax !
$u
$t

  #   u 
$u
$x

          # v 
$u
$y

    # w 
$u
$z
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field of Examples 4–1 and 4–3. The
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and the solid black curves represent
the approximate shapes of some
streamlines, based on the calculated
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Flow Visualization

Flow visualization is the visual 
examination of flow-field 
features.
Important for both physical 
experiments and numerical 
(CFD) solutions.
Numerous methods:

Streamlines and streamtubes

Pathlines

Streaklines

Timelines

Refractive techniques

Surface flow techniques

While quantitative study of fluid 
dynamics requires advanced 

mathematics, much can be learned 
from flow visualization
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Streamlines

A Streamline is a curve that is 
everywhere tangent to the 
instantaneous local velocity 
vector.

Consider an arc length 

     must be parallel to the local 
velocity vector 

Geometric arguments results in 
the equation for a streamline
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Streamlines in xy - analytical Solution

For the same velocity field of the example 
A, plot several streamlines in the right half 
of the flow (x > 0) and compare to the 
velocity vectors.

where C is a constant of 
integration that can be set to 
various values in order to plot the 
streamlines.
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Streamlines
NASCAR surface pressure 
contours and streamlines

Airplane surface pressure 
contours, volume streamlines, 
and surface streamlines 
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Streamtube
A streamtube consists of a 
bundle of streamlines (both 
are instantaneous quantities). 

Fluid within a streamtube must 
remain there and cannot cross 
the boundary of the streamtube.
In an unsteady flow, the 
streamline pattern may change 
significantly with time

⇨ the mass flow rate passing 
through any cross-sectional slice 
of a given streamtube must 
remain the same
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Pathlines

A Pathline is the actual path 
traveled by an individual 
fluid particle over some 
time period.

Same as the fluid particle's 
material position vector 

Particle location at time t: 
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Pathlines

A modern experimental technique called particle image 
velocimetry (PIV) utilizes (tracer) particle pathlines to 
measure the velocity field over an entire plane in a flow 
(Adrian, 1991).
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Streaklines

A Streakline is the locus 
of fluid particles that 
have passed sequentially 
through a prescribed 
point in the flow.
Easy to generate in 
experiments:  dye in a 
water flow, or smoke in 
an airflow.
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Streaklines
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Streaklines

Cylinder

x/D

A smoke wire with mineral oil was heated to generate a rake of Streaklines

Karman Vortex street
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Comparisons

For steady flow, streamlines, pathlines, and streaklines 
are identical. 
For unsteady flow, they can be very different. 

Streamlines are an instantaneous picture of the flow field
Pathlines and Streaklines are flow patterns that have a time 
history associated with them. 
Streakline:  instantaneous snapshot of a time-integrated flow 
pattern.
Pathline:  time-exposed flow path of an individual particle.
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Comparisons
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Timelines

A Timeline is a set of 
adjacent fluid particles 
that were marked at the 
same (earlier) instant in 
time.
Timelines can be 
generated using a 
hydrogen bubble wire.
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Timelines

Timelines produced by a hydrogen bubble wire are used to visualize 
the boundary layer velocity profile shape.
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Plots of Flow Data

Flow data are the presentation of the flow properties 
varying in time and/or space.
A Profile plot indicates how the value of a scalar 
property varies along some desired direction in the 
flow field.
A Vector plot is an array of arrows indicating the 
magnitude and direction of a vector property at an 
instant in time.
A Contour plot shows curves of constant values of a 
scalar property for the magnitude of a vector property 
at an instant in time.
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Profile plot

Profile plots of the horizontal component of velocity as 
a function of vertical distance; flow in the boundary 
layer growing along a horizontal flat plate.
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Vector plot
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Contour plot

Contour plots of the pressure field due to flow impinging on a block.
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Kinematic Description

In fluid dynamics, an element may 
undergo four fundamental types of 
motion: 

Translation
Rotation
Linear strain
Shear strain

Because fluids are in constant 
motion, motion and deformation 
is best described in terms of rates 

velocity: rate of translation
angular velocity: rate of rotation
linear strain rate: rate of linear strain
shear strain rate:  rate of shear strain
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Rate of Translation and Rotation

To be useful, these rates must 
be expressed in terms of 
velocity and derivatives of 
velocity

The rate of translation vector 
is described as the velocity 
vector.  In Cartesian 
coordinates:

Rule of thumb for rotation
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Linear Strain Rate
Linear Strain Rate is defined as the rate of 
increase in length per unit length.

In Cartesian coordinates:

 

Volumetric strain rate in Cartesian 
coordinates

Since the volume of a fluid element is 
constant for an incompressible flow, the 
volumetric strain rate must be zero.
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Rate of Translation and Rotation

Rate of rotation at a point is 
defined as the average 
rotation rate of two initially 
perpendicular lines that 
intersect at that point. The 
rate of rotation vector in 
Cartesian coordinates: !ω = d

dt
α a +α b

2
⎛
⎝⎜

⎞
⎠⎟
= 1
2

∂v
∂x

− ∂u
∂y

⎛
⎝⎜

⎞
⎠⎟
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Shear Strain Rate

Shear Strain Rate at a point 
is defined as half of the rate 
of decrease of the angle 
between two initially 
perpendicular lines that 
intersect at a point.

Shear strain rate can be 
expressed in Cartesian 
coordinates as: 
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Shear Strain Rate

We can combine linear strain rate and shear strain rate 
into one symmetric second-order tensor called the strain-
rate tensor
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Shear Strain Rate

Purpose of our discussion of fluid element kinematics:  
Better appreciation of the inherent complexity of fluid 
dynamics 
Mathematical sophistication required to fully describe fluid 
motion

Strain-rate tensor is important for numerous reasons.  
For example,

Develop relationships between fluid stress and strain rate. 
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Vorticity and Rotationality

The vorticity vector is defined as the curl of the velocity 
vector              , a measure of rotation of a fluid particle.

Vorticity is equal to twice the angular velocity of a fluid particle  
Cartesian coordinates 

 
Cylindrical coordinate

In regions where ζ = 0, the flow is called irrotational

Elsewhere, the flow is called rotational



ì

Vorticity and Rotationality



ì

Contour plot of the vorticity field ζz

Dark regions represent 
large negative vorticity, and 
light regions represent 
large positive vorticity.



ì

Comparison of Two Circular Flows

Special case:  consider two flows with circular streamlines



ì

Comparison

A Ferris wheel
A merry-go-round or
roundabout



ì

Reynolds—Transport Theorem (RTT)

A system is a quantity of 
matter of fixed identity. No 
mass can cross a system 
boundary.

A control volume is a region 
in space chosen for study. 
Mass can cross a control 
surface.

CV
fixed,

nondeformable

System
deformable



ì

Reynolds—Transport Theorem (RTT)

The fundamental conservation laws 
(conservation of mass, energy, and 
momentum) apply directly to systems.
However, in most fluid mechanics problems, 
control volume analysis is preferred over 
system analysis (for the same reason that 
the Eulerian description is usually preferred 
over the Lagrangian description).
Therefore, we need to transform the 
conservation laws from a system to a 
control volume. This is accomplished with 
the Reynolds transport theorem (RTT).



ì

Reynolds—Transport Theorem (RTT)
Let B represent any extensive property (such as mass, energy, or momentum), and let b=B/m 
represent the corresponding intensive property. Noting that extensive properties are additive, 
the extensive property B of the system at times t and t +Δt can be expressed as:

this motion is designated as section I (part of the CV), and the new region
covered by the system is designated as section II (not part of the CV).
Therefore, at time t ! "t, the system consists of the same fluid, but it occu-
pies the region CV # I ! II. The control volume is fixed in space, and thus
it remains as the shaded region marked CV at all times.

Let B represent any extensive property (such as mass, energy, or momen-
tum), and let b $ B/m represent the corresponding intensive property . Not-
ing that extensive properties are additive, the extensive property B of the
system at times t and t ! "t can be expressed as

Subtracting the first equation from the second one and dividing by "t gives

Taking the limit as "t → 0, and using the definition of derivative, we get

(4–38)

or

since

and

where A1 and A2 are the cross-sectional areas at locations 1 and 2. Equation
4–38 states that the time rate of change of the property B of the system is
equal to the time rate of change of B of the control volume plus the net flux
of B out of the control volume by mass crossing the control surface. This is
the desired relation since it relates the change of a property of a system to
the change of that property for a control volume. Note that Eq. 4–38 applies
at any instant in time, where it is assumed that the system and the control
volume occupy the same space at that particular instant in time.

The influx B
.
in and outflux B

.
out of the property B in this case are easy to

determine since there is only one inlet and one outlet, and the velocities are
normal to the surfaces at sections (1) and (2). In general, however, we may
have several inlet and outlet ports, and the velocity may not be normal to
the control surface at the point of entry. Also, the velocity may not be uni-
form. To generalize the process, we consider a differential surface area dA
on the control surface and denote its unit outer normal by n→. The flow rate
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this motion is designated as section I (part of the CV), and the new region
covered by the system is designated as section II (not part of the CV).
Therefore, at time t ! "t, the system consists of the same fluid, but it occu-
pies the region CV # I ! II. The control volume is fixed in space, and thus
it remains as the shaded region marked CV at all times.

Let B represent any extensive property (such as mass, energy, or momen-
tum), and let b $ B/m represent the corresponding intensive property . Not-
ing that extensive properties are additive, the extensive property B of the
system at times t and t ! "t can be expressed as

Subtracting the first equation from the second one and dividing by "t gives

Taking the limit as "t → 0, and using the definition of derivative, we get

(4–38)

or

since

and

where A1 and A2 are the cross-sectional areas at locations 1 and 2. Equation
4–38 states that the time rate of change of the property B of the system is
equal to the time rate of change of B of the control volume plus the net flux
of B out of the control volume by mass crossing the control surface. This is
the desired relation since it relates the change of a property of a system to
the change of that property for a control volume. Note that Eq. 4–38 applies
at any instant in time, where it is assumed that the system and the control
volume occupy the same space at that particular instant in time.

The influx B
.
in and outflux B

.
out of the property B in this case are easy to

determine since there is only one inlet and one outlet, and the velocities are
normal to the surfaces at sections (1) and (2). In general, however, we may
have several inlet and outlet ports, and the velocity may not be normal to
the control surface at the point of entry. Also, the velocity may not be uni-
form. To generalize the process, we consider a differential surface area dA
on the control surface and denote its unit outer normal by n→. The flow rate
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this motion is designated as section I (part of the CV), and the new region
covered by the system is designated as section II (not part of the CV).
Therefore, at time t ! "t, the system consists of the same fluid, but it occu-
pies the region CV # I ! II. The control volume is fixed in space, and thus
it remains as the shaded region marked CV at all times.

Let B represent any extensive property (such as mass, energy, or momen-
tum), and let b $ B/m represent the corresponding intensive property . Not-
ing that extensive properties are additive, the extensive property B of the
system at times t and t ! "t can be expressed as

Subtracting the first equation from the second one and dividing by "t gives

Taking the limit as "t → 0, and using the definition of derivative, we get

(4–38)

or

since

and

where A1 and A2 are the cross-sectional areas at locations 1 and 2. Equation
4–38 states that the time rate of change of the property B of the system is
equal to the time rate of change of B of the control volume plus the net flux
of B out of the control volume by mass crossing the control surface. This is
the desired relation since it relates the change of a property of a system to
the change of that property for a control volume. Note that Eq. 4–38 applies
at any instant in time, where it is assumed that the system and the control
volume occupy the same space at that particular instant in time.

The influx B
.
in and outflux B

.
out of the property B in this case are easy to

determine since there is only one inlet and one outlet, and the velocities are
normal to the surfaces at sections (1) and (2). In general, however, we may
have several inlet and outlet ports, and the velocity may not be normal to
the control surface at the point of entry. Also, the velocity may not be uni-
form. To generalize the process, we consider a differential surface area dA
on the control surface and denote its unit outer normal by n→. The flow rate
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this motion is designated as section I (part of the CV), and the new region
covered by the system is designated as section II (not part of the CV).
Therefore, at time t ! "t, the system consists of the same fluid, but it occu-
pies the region CV # I ! II. The control volume is fixed in space, and thus
it remains as the shaded region marked CV at all times.

Let B represent any extensive property (such as mass, energy, or momen-
tum), and let b $ B/m represent the corresponding intensive property . Not-
ing that extensive properties are additive, the extensive property B of the
system at times t and t ! "t can be expressed as

Subtracting the first equation from the second one and dividing by "t gives

Taking the limit as "t → 0, and using the definition of derivative, we get

(4–38)

or

since

and

where A1 and A2 are the cross-sectional areas at locations 1 and 2. Equation
4–38 states that the time rate of change of the property B of the system is
equal to the time rate of change of B of the control volume plus the net flux
of B out of the control volume by mass crossing the control surface. This is
the desired relation since it relates the change of a property of a system to
the change of that property for a control volume. Note that Eq. 4–38 applies
at any instant in time, where it is assumed that the system and the control
volume occupy the same space at that particular instant in time.

The influx B
.
in and outflux B

.
out of the property B in this case are easy to

determine since there is only one inlet and one outlet, and the velocities are
normal to the surfaces at sections (1) and (2). In general, however, we may
have several inlet and outlet ports, and the velocity may not be normal to
the control surface at the point of entry. Also, the velocity may not be uni-
form. To generalize the process, we consider a differential surface area dA
on the control surface and denote its unit outer normal by n→. The flow rate
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ì

Reynolds—Transport Theorem (RTT)

The equation states that the time rate of change of the 
property B of the system is equal to the time rate of 
change of B of the control volume plus the net flux of B 
out of the control volume by mass crossing the control 
surface. 

This is the desired relation since it relates the change of a 
property of a system to the change of that property for a 
control volume. 

Note that it applies at any instant in time, where it is 
assumed that the system and the control volume occupy 
the same space at that particular instant in time. 

this motion is designated as section I (part of the CV), and the new region
covered by the system is designated as section II (not part of the CV).
Therefore, at time t ! "t, the system consists of the same fluid, but it occu-
pies the region CV # I ! II. The control volume is fixed in space, and thus
it remains as the shaded region marked CV at all times.

Let B represent any extensive property (such as mass, energy, or momen-
tum), and let b $ B/m represent the corresponding intensive property . Not-
ing that extensive properties are additive, the extensive property B of the
system at times t and t ! "t can be expressed as

Subtracting the first equation from the second one and dividing by "t gives

Taking the limit as "t → 0, and using the definition of derivative, we get

(4–38)

or

since

and

where A1 and A2 are the cross-sectional areas at locations 1 and 2. Equation
4–38 states that the time rate of change of the property B of the system is
equal to the time rate of change of B of the control volume plus the net flux
of B out of the control volume by mass crossing the control surface. This is
the desired relation since it relates the change of a property of a system to
the change of that property for a control volume. Note that Eq. 4–38 applies
at any instant in time, where it is assumed that the system and the control
volume occupy the same space at that particular instant in time.

The influx B
.
in and outflux B

.
out of the property B in this case are easy to

determine since there is only one inlet and one outlet, and the velocities are
normal to the surfaces at sections (1) and (2). In general, however, we may
have several inlet and outlet ports, and the velocity may not be normal to
the control surface at the point of entry. Also, the velocity may not be uni-
form. To generalize the process, we consider a differential surface area dA
on the control surface and denote its unit outer normal by n→. The flow rate

 B
#

out $ B
#

II $ lim
"t→0

 
BII, t!"t

"t
$ lim

"t→0
 
b2r2V2 "t A2

"t
$ b2r2V2 A2 

 B
#

in $ B
#

I $ lim
"t→0

 
BI, t!"t

"t
$ lim

"t→0
 
b1r1V1 "t A1

"t
$ b1r1V1 A1 

 BII, t!"t $ b2mII, t!"t $ b2r2V II, t!"t $ b2r2V2 "t A2 

 BI, t!"t $ b1mI, t!"t $ b1r1V I, t!"t $ b1r1V1 "t A1 

dBsys

dt
$

dBCV

dt
# b1r1V1A1 ! b2r2V2A2

dBsys

dt
$

dBCV

dt
# B
#

in ! B
#

out

Bsys, t!"t # Bsys, t

"t
$

BCV, t!"t # BCV, t

"t
#

BI, t!"t

"t
!

B%, t!"t

"t

 Bsys, t!"t $ BCV, t!"t # BI, t!"t ! BII, t!"t 

 Bsys, t $ BCV, t  (the system and CV concide at time t)

150
FLUID MECHANICS

V2

II

Control volume at time t + ∆t 
(CV remains fixed in time)

At time t: Sys = CV
At time t +   t: Sys = CV − I + II

System (material volume) 
and control volume at time t 
(shaded region)

System at time t + ∆t 
(hatched region)

Outflow during ∆t

Inflow during ∆t

I

(1)

(2)

V1

∆

FIGURE 4–54
A moving system (hatched region) and
a fixed control volume (shaded region)
in a diverging portion of a flow field at
times t and t ! "t. The upper and lower
bounds are streamlines of the flow.

cen72367_ch04.qxd  12/1/04  6:19 PM  Page 150

this motion is designated as section I (part of the CV), and the new region
covered by the system is designated as section II (not part of the CV).
Therefore, at time t ! "t, the system consists of the same fluid, but it occu-
pies the region CV # I ! II. The control volume is fixed in space, and thus
it remains as the shaded region marked CV at all times.

Let B represent any extensive property (such as mass, energy, or momen-
tum), and let b $ B/m represent the corresponding intensive property . Not-
ing that extensive properties are additive, the extensive property B of the
system at times t and t ! "t can be expressed as

Subtracting the first equation from the second one and dividing by "t gives

Taking the limit as "t → 0, and using the definition of derivative, we get

(4–38)

or

since

and

where A1 and A2 are the cross-sectional areas at locations 1 and 2. Equation
4–38 states that the time rate of change of the property B of the system is
equal to the time rate of change of B of the control volume plus the net flux
of B out of the control volume by mass crossing the control surface. This is
the desired relation since it relates the change of a property of a system to
the change of that property for a control volume. Note that Eq. 4–38 applies
at any instant in time, where it is assumed that the system and the control
volume occupy the same space at that particular instant in time.

The influx B
.
in and outflux B

.
out of the property B in this case are easy to

determine since there is only one inlet and one outlet, and the velocities are
normal to the surfaces at sections (1) and (2). In general, however, we may
have several inlet and outlet ports, and the velocity may not be normal to
the control surface at the point of entry. Also, the velocity may not be uni-
form. To generalize the process, we consider a differential surface area dA
on the control surface and denote its unit outer normal by n→. The flow rate
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Reynolds—Transport Theorem (RTT)

In general, however, we may have 
several inlet and outlet ports, and 
the velocity may not be normal to 
the control surface at the point of 
entry.  Also, the velocity may not be 
uniform. To generalize the process, 
we consider a differential surface 
area dA on the control surface and 
denote its unit outer normal 

the differential is positive for mass flowing out of the control 
volume, and negative for mass flowing into the control 
volume, and its integral over the entire control surface gives 
the rate of net outflow of the property B by mass. 

of property b through dA is rbV
→

· n→ dA since the dot product V
→

· n→ gives the
normal component of the velocity. Then the net rate of outflow through the
entire control surface is determined by integration to be (Fig. 4–55)

(4–39)

An important aspect of this relation is that it automatically subtracts the
inflow from the outflow, as explained next. The dot product of the velocity
vector at a point on the control surface and the outer normal at that point is

, where u is the angle between the velocity
vector and the outer normal, as shown in Fig. 4–56. For u ! 90", we have
cos u # 0 and thus V

→
· n

→
# 0 for outflow of mass from the control volume,

and for u # 90", we have cos u ! 0 and thus V
→

· n
→

! 0 for inflow of mass
into the control volume. Therefore, the differential quantity rbV

→
· n

→
dA is

positive for mass flowing out of the control volume, and negative for mass
flowing into the control volume, and its integral over the entire control sur-
face gives the rate of net outflow of the property B by mass.

The properties within the control volume may vary with position, in gen-
eral. In such a case, the total amount of property B within the control vol-
ume must be determined by integration:

(4–40)

The term dBCV/dt in Eq. 4–38 is thus equal to , and represents

the time rate of change of the property B content of the control volume. A
positive value for dBCV/dt indicates an increase in the B content, and a neg-
ative value indicates a decrease. Substituting Eqs. 4–39 and 4–40 into Eq.
4–38 yields the Reynolds transport theorem, also known as the system-to-
control-volume transformation for a fixed control volume:

RTT, fixed CV: (4–41)

Since the control volume is not moving or deforming with time, the time
derivative on the right-hand side can be moved inside the integral, since the
domain of integration does not change with time. (In other words, it is irrel-
evant whether we differentiate or integrate first.) But the time derivative in
that case must be expressed as a partial derivative ($/$t) since density and
the quantity b may depend on the position within the control volume. Thus,
an alternate form of the Reynolds transport theorem for a fixed control vol-
ume is

Alternate RTT, fixed CV: (4–42)

Equation 4–41 was derived for a fixed control volume. However, many
practical systems such as turbine and propeller blades involve nonfixed con-
trol volumes. Fortunately, Eq. 4–41 is also valid for moving and/or deform-
ing control volumes provided that the absolute fluid velocity V

→
in the last

term is replaced by the relative velocity V
→
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→
' n→ dA over the

control surface gives the net amount 
of the property B flowing out of the

control volume (into the control
volume if it is negative) per unit time.

If u < 90°, then cos u > 0 (outflow).
If u > 90°, then cos u < 0 (inflow).
If u = 90°, then cos u = 0 (no flow).

n

Outflow:
u < 90°

dA
n

Inflow:
u > 90°

dA

    ' n = |   || n | cos u = V cos u

→

V
→

→ →

V

V V

u
u

→→

→→

FIGURE 4–56
Outflow and inflow of mass across the

differential area of a control surface.

cen72367_ch04.qxd  12/1/04  6:20 PM  Page 151



ì

Reynolds—Transport Theorem (RTT)

The properties within the control volume may vary with 
position, in general. In such a case, the total amount of 
property B within the control volume must be determined by 
integration: 

Therefore, the system-to-control-volume transformation for a 
fixed control volume:



ì

Reynolds—Transport Theorem (RTT)

Note that for a control volume that moves and/or deforms with time, the 
time derivative must be applied after integration many practical systems such 
as turbine and propeller blades involve nonfixed control volumes. Fortunately, 
is also valid for moving and/or deforming control volumes provided that the 
absolute fluid velocity in the last term is replaced by the relative velocity 

General RTT, nonfixed CV (integral analysis):

Relative velocity: (4–43)

where V
→

CS is the local velocity of the control surface (Fig. 4–57). The most
general form of the Reynolds transport theorem is thus

RTT, nonfixed CV: (4–44)

Note that for a control volume that moves and/or deforms with time, the
time derivative must be applied after integration, as in Eq. 4–44. As a simple
example of a moving control volume, consider a toy car moving at a con-
stant absolute velocity V

→

car ! 10 km/h to the right. A high-speed jet of water
(absolute velocity ! V

→

jet ! 25 km/h to the right) strikes the back of the car
and propels it (Fig. 4–58). If we draw a control volume around the car, the
relative velocity is V

→

r ! 25 " 10 ! 15 km/h to the right. This represents
the velocity at which an observer moving with the control volume (moving
with the car) would observe the fluid crossing the control surface. In other
words, V

→

r is the fluid velocity expressed relative to a coordinate system
moving with the control volume.

Finally, by application of the Leibnitz theorem, it can be shown that the
Reynolds transport theorem for a general moving and/or deforming control
volume (Eq. 4–44) is equivalent to the form given by Eq. 4–42, which is
repeated here:

Alternate RTT, nonfixed CV: (4–45)

In contrast to Eq. 4–44, the velocity vector V
→

in Eq. 4–45 must be taken as
the absolute velocity (as viewed from a fixed reference frame) in order to
apply to a nonfixed control volume.

During steady flow, the amount of the property B within the control vol-
ume remains constant in time, and thus the time derivative in Eq. 4–44
becomes zero. Then the Reynolds transport theorem reduces to

RTT, steady flow: (4–46)

Note that unlike the control volume, the property B content of the system
may still change with time during a steady process. But in this case the
change must be equal to the net property transported by mass across the
control surface (an advective rather than an unsteady effect).

In most practical engineering applications of the RTT, fluid crosses the
boundary of the control volume at a finite number of well-defined inlets and
outlets (Fig. 4–59). In such cases, it is convenient to cut the control surface
directly across each inlet and outlet and replace the surface integral in Eq.
4–44 with approximate algebraic expressions at each inlet and outlet based
on the average values of fluid properties crossing the boundary. We define
ravg, bavg, and Vr, avg as the average values of r, b, and Vr, respectively, across 

an inlet or outlet of cross-sectional area A [e.g., ]. The bavg ! (1#A) !
A
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Reynolds transport theorem applied to
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Relative velocity: (4–43)

where V
→

CS is the local velocity of the control surface (Fig. 4–57). The most
general form of the Reynolds transport theorem is thus

RTT, nonfixed CV: (4–44)

Note that for a control volume that moves and/or deforms with time, the
time derivative must be applied after integration, as in Eq. 4–44. As a simple
example of a moving control volume, consider a toy car moving at a con-
stant absolute velocity V

→

car ! 10 km/h to the right. A high-speed jet of water
(absolute velocity ! V

→

jet ! 25 km/h to the right) strikes the back of the car
and propels it (Fig. 4–58). If we draw a control volume around the car, the
relative velocity is V

→

r ! 25 " 10 ! 15 km/h to the right. This represents
the velocity at which an observer moving with the control volume (moving
with the car) would observe the fluid crossing the control surface. In other
words, V

→

r is the fluid velocity expressed relative to a coordinate system
moving with the control volume.

Finally, by application of the Leibnitz theorem, it can be shown that the
Reynolds transport theorem for a general moving and/or deforming control
volume (Eq. 4–44) is equivalent to the form given by Eq. 4–42, which is
repeated here:

Alternate RTT, nonfixed CV: (4–45)

In contrast to Eq. 4–44, the velocity vector V
→

in Eq. 4–45 must be taken as
the absolute velocity (as viewed from a fixed reference frame) in order to
apply to a nonfixed control volume.

During steady flow, the amount of the property B within the control vol-
ume remains constant in time, and thus the time derivative in Eq. 4–44
becomes zero. Then the Reynolds transport theorem reduces to

RTT, steady flow: (4–46)

Note that unlike the control volume, the property B content of the system
may still change with time during a steady process. But in this case the
change must be equal to the net property transported by mass across the
control surface (an advective rather than an unsteady effect).

In most practical engineering applications of the RTT, fluid crosses the
boundary of the control volume at a finite number of well-defined inlets and
outlets (Fig. 4–59). In such cases, it is convenient to cut the control surface
directly across each inlet and outlet and replace the surface integral in Eq.
4–44 with approximate algebraic expressions at each inlet and outlet based
on the average values of fluid properties crossing the boundary. We define
ravg, bavg, and Vr, avg as the average values of r, b, and Vr, respectively, across 

an inlet or outlet of cross-sectional area A [e.g., ]. The bavg ! (1#A) !
A
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Relative velocity crossing a control
surface is found by vector addition 
of the absolute velocity of the fluid
and the negative of the local velocity
of the control surface.
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Reynolds transport theorem applied to
a control volume moving at constant
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cen72367_ch04.qxd  12/1/04  6:20 PM  Page 152

Relative velocity: (4–43)

where V
→

CS is the local velocity of the control surface (Fig. 4–57). The most
general form of the Reynolds transport theorem is thus

RTT, nonfixed CV: (4–44)

Note that for a control volume that moves and/or deforms with time, the
time derivative must be applied after integration, as in Eq. 4–44. As a simple
example of a moving control volume, consider a toy car moving at a con-
stant absolute velocity V

→

car ! 10 km/h to the right. A high-speed jet of water
(absolute velocity ! V

→

jet ! 25 km/h to the right) strikes the back of the car
and propels it (Fig. 4–58). If we draw a control volume around the car, the
relative velocity is V

→

r ! 25 " 10 ! 15 km/h to the right. This represents
the velocity at which an observer moving with the control volume (moving
with the car) would observe the fluid crossing the control surface. In other
words, V

→

r is the fluid velocity expressed relative to a coordinate system
moving with the control volume.

Finally, by application of the Leibnitz theorem, it can be shown that the
Reynolds transport theorem for a general moving and/or deforming control
volume (Eq. 4–44) is equivalent to the form given by Eq. 4–42, which is
repeated here:

Alternate RTT, nonfixed CV: (4–45)

In contrast to Eq. 4–44, the velocity vector V
→

in Eq. 4–45 must be taken as
the absolute velocity (as viewed from a fixed reference frame) in order to
apply to a nonfixed control volume.

During steady flow, the amount of the property B within the control vol-
ume remains constant in time, and thus the time derivative in Eq. 4–44
becomes zero. Then the Reynolds transport theorem reduces to

RTT, steady flow: (4–46)

Note that unlike the control volume, the property B content of the system
may still change with time during a steady process. But in this case the
change must be equal to the net property transported by mass across the
control surface (an advective rather than an unsteady effect).

In most practical engineering applications of the RTT, fluid crosses the
boundary of the control volume at a finite number of well-defined inlets and
outlets (Fig. 4–59). In such cases, it is convenient to cut the control surface
directly across each inlet and outlet and replace the surface integral in Eq.
4–44 with approximate algebraic expressions at each inlet and outlet based
on the average values of fluid properties crossing the boundary. We define
ravg, bavg, and Vr, avg as the average values of r, b, and Vr, respectively, across 

an inlet or outlet of cross-sectional area A [e.g., ]. The bavg ! (1#A) !
A
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Relative velocity crossing a control
surface is found by vector addition 
of the absolute velocity of the fluid
and the negative of the local velocity
of the control surface.
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ì

RTT Special Cases

For steady flow, the time derivative drops out, 

For control volumes with well-defined inlets and outlets

0
dBsys
dt

= ∂
∂t

ρb( )dV +
CV∫ ρb

!
Vr i
!n dA

CS∫ = ρb
!
Vr i
!n dA

CS∫

dBsys
dt

= d
dt

ρbdV +
CV∫ ρavgbavg

out
∑ Vr ,avg A− ρavgbavg

in
∑ Vr ,avg A



ì

Reynolds—Transport Theorem (RTT)

Interpretation of the RTT:
Time rate of change of the property B of the system is equal to   
(Term 1) + (Term 2)
Term 1:  the time rate of change of B of the control volume
Term 2:  the net flux of B out of the control volume by mass crossing 
the control surface

dBsys
dt

= ∂
∂t

ρb( )dV +
CV∫ ρb

!
V i !n dA

CS∫
We will apply RTT to conservation of mass, energy, linear 
momentum, and angular momentum.

Mass Momentum Energy Angular 
momentum

B, Extensive properties m E

b, Intensive properties 1 e



ì

Reynolds—Transport Theorem (RTT)
There is a direct analogy between the transformation from 
Lagrangian to Eulerian descriptions (for differential analysis using 
infinitesimally small fluid elements) and the transformation from 
systems to control volumes (for integral analysis using large, finite 
flow fields).


