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Very basic tsunami physics...

Figure 1. Excitation of a tsunami by a seismic dislocation. In this very simple model, a fraction of the ocean
e

o
floor is suddenly uplifted, resulting in an immediate and identical hump on the ocean surface (a). Because th
cean is fluid, the hump is unstable and flows sideways (b), with the center of mass of the displaced material

t
(solid dot) falling down by an amount δh /2. The resulting change in potential energy makes up the energy of the
sunami wave, which propagates away from the now defunct hump (c).
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Gravity waves: dispersion

the boundary at the top gives the dispersion relation for  
incompressible, irrotational, small amplitude “gravity” waves:

Deep water 
(kh goes to infinity)

F(z) = 2Ae-kh cosh k(z + h)⎡⎣ ⎤⎦From the expression

ω2 = kg tanh(kh)⎡⎣ ⎤⎦
Shallow water 
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under the ocean with a fault orientation favorable

for tsunami excitation. Thus, tsunamis that in-

duce widespread damage number about one or

two per decade. Although one’s concepts might

be cast by rare “killer tsunamis”, many more be-

nign ones get lost in the shuffle. Today, ocean

bottom pressure sensors can detect a tsunami of a

few centimeters height even in the open sea. Be-

cause numerous, moderate (≈M6.5) earthquakes

can bear waves of this size, “baby” tsunamis oc-

cur several times per year. They pass by gener-

ally unnoticed, except by scientists. Perhaps

while swimming in the surf, the reader has al-

ready been in a tsunami! Whether killer waves or

ripples, tsunamis span three phases: generation,

propagation and shoaling. This article touches

gently on each.

II. Characteristics of Tsunamis

A. Tsunami Velocity, Wavelength, and Period

This article reviews classical tsunami theory.

Classical theory envisions a rigid seafloor over-

lain by an incompressible, homogeneous, and

non-viscous ocean subjected to a constant gravi-

tational field. Classical tsunami theory has been

investigated widely, and most of its predictions

change only slightly under relaxation of these

assumptions. This article draws upon linear the-

ory that also presumes that the ratio of wave am-

plitude to wavelength is much less than one. By

and large, linearity is violated only during the

final stage of wave breaking and perhaps, under

extreme nucleation conditions.

In classical theory, the phase c(ω), and group

u(ω) velocity of surface gravity waves on a flat

ocean of uniform depth h are

c( ) =
gh tanh[k( )h]

k( )h
    (1)

and

u( ) = c( )
1

2
+

k( )h

sinh[2k( )h]

 

  
 

  
   (2)

Here, g is the acceleration of gravity (9.8 m/s2)

and k(ω) is the wavenumber associated with a

sea wave of frequency ω. Wavenumber connects

to wavelength λ(ω) as λ(ω)=2π/k(ω). Wave-

number also satisfies the relation

2
= gk( )tanh[k( )h]    (3)

Figure 1. (top panel) Phase velocity c(ω) (solid lines) and

group velocity u(ω) (dashed lines) of tsunami waves on a

flat earth covered by oceans of 1, 2, 4 and 6 km depth.

(bottom panel) Wavelength associated with each wave

period. The ’tsunami window’ is marked.
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lipses can be thought of as tracing the path of a

water particle as a wave of frequency ω passes.

At 1500s period (left, Fig. 2), the tsunami has a

wavelength of λ=297km and it acts like a long

wave. The vertical displacement peaks at the

ocean surface and drops to zero at the seafloor.

The horizontal displacement is constant through

the ocean column and exceeds the vertical com-

ponent by more than a factor of ten. Every meter

of visible vertical motion in a tsunami of this

frequency involves ≈10m of “invisible” hori-

zontal motion. Because the eigenfunctions of

long waves reach to the seafloor, the velocity of

long waves are sensitive to ocean depth (see top

left-hand side of Fig. 1). As the wave period

slips to 150s (middle Fig. 2), λ decreases to

26km -- a length comparable to the ocean depth.

Long wave characteristics begin to break down,

and horizontal and vertical motions more closely

agree in amplitude. At 50s period (right, Fig. 2)

the waves completely transition to deep water

behavior. Water particles move in circles that

decay exponentially from the surface. The eigen-

functions of short waves do not reach to the sea-

floor, so the velocities of short waves are inde-

pendent of ocean depth (see right hand side of

Fig. 1, top). The failure of short waves (λ<<h) to

“feel” the seafloor also means that they can not

be excited by deformations of it. This is the

physical basis for the short wavelength bound on

the tsunami window that I mentioned above.

III. Excitation of Tsunamis

Suppose that the seafloor at points r0 uplifts in-

stantaneously by an amount uz

bot
(r0) at time τ(r0).

Under classical tsunami theory in a uniform

ocean of depth h, this sea bottom disturbance

produces surface tsunami waveforms (vertical

component) at observation point r=x ˆ x +y ˆ y  and

time t of

uz

surf (r,t) = Re dk
e
i [k •r− ( k ) t ]

4 2 cosh(kh)
F(k)

k

∫

with

F(k) = dr0 uz

bot (r0 )e

r0

∫
−i[ k •r0 − (k) ( r0 )]

   (5a,b)

with k=|k|, and 
2
(k) = gktanh(kh). The inte-

grals in (5) cover all wavenumber space and lo-

cations r0 where the seafloor disturbance

uz

bot
(r0)≠0.

Equation (5a) looks scary but it has three identi-

fiable pieces:

    a) The F(k) term is the wavenumber spectrum

of the seafloor uplift. This number relates to the

amplitude, spatial, and temporal distribution of

the uplift. Tsunami trains (5a) are dominated by

wavenumbers in the span where F(k) is greatest.

Figure 2 . Tsunami eigenfunctions in a 4 km deep ocean

at periods 1500, 150 and 50s. Vertical displacements at

the ocean surface has been normalized to 1 m in each

case.

Tsunami eigenvalues & eigenfunctions





Tsunami 
physics

research

support of improved measurement 
technology and the design of optimal 

tsunami monitoring networks

implementation of improved models 
to increase the speed and accuracy of 

operational forecasts and warnings

development of improved methods to 
predict tsunami impacts on the 
population and infrastructure of 

coastal communities



Tsunami forecast model

Arrival time
Height

Inundation area

Inundation maps

Inundation modelling

maximum wave height and maximum current speed as a function of location, 
maximum inundation line, as well as time series of wave height at different 

locations indicating wave arrival time

Generation of a database of pre-computed 
scenarios from potential sources



http://nctr.pmel.noaa.gov/model.html

December 26, 2004 Indonesia (Sumatra) - Global tsunami 
propagation

http://nctr.pmel.noaa.gov/model.html


http://nctr.pmel.noaa.gov/model.html

Inundation of the Aonae peninsula during the July 12, 1993 Hokkaido-Nansei-Oki 
tsunami computed with the MOST inundation model.

http://nctr.pmel.noaa.gov/model.html
http://nctr.pmel.noaa.gov/titov97.html
http://nctr.pmel.noaa.gov/titov97.html
http://www.pmel.noaa.gov/pubs/PDF/tito1927/tito1927.pdf


New York City Tsunami from M7 Quake

Courtesy of Steven Ward: http://www.es.ucsc.edu/~ward/

http://www.es.ucsc.edu/~ward/


Atlantic Ocean Asteroid Tsunami Simulation - 3d

Courtesy of Steven Ward: http://www.es.ucsc.edu/~ward/

http://www.es.ucsc.edu/~ward/


1958 Lituya Bay Landslide

Courtesy of Steven Ward: http://www.es.ucsc.edu/~ward/

http://www.es.ucsc.edu/~ward/


1958 Lituya Bay Landslide

Courtesy of Steven Ward: http://www.es.ucsc.edu/~ward/

http://www.es.ucsc.edu/~ward/


Santorini Tsunami Simulation 3D

Courtesy of Steven Ward: http://www.es.ucsc.edu/~ward/

http://www.es.ucsc.edu/~ward/


Ocean bottom data

The observation record of the 
ocean bottom pressure gauge.  
At around 14:46, the ground 

motion of the earthquake (M9) 
reaches the pressure gauge and 
at TM1 (coast-side), the sea level 

is gradually rising from that 
point. 

The sea level rose 2 m, and after 
11 minutes, the level went 
drastically up to 3m, which 

makes 5 m of elevation in total. 
At TM2: located 30km toward 

the land, a same elevation of sea 
level was recorded with 4 
minutes delay from TM1.



The DART II® system consists of a 
seafloor bottom pressure recording (BPR) 

system capable of detecting tsunamis as 
small as 1 cm, and a moored surface buoy 

for real-time communications. 

DART II has two-way communications 
between the BPR and the Tsunami 

Warning Center (TWC) using the Iridium 
commercial satellite communications 
system. The two-way communications 

allow the TWCs to set stations in event 
mode in anticipation of possible tsunamis 

or retrieve the high-resolution (15-s 
intervals) data in one-hour blocks for 

detailed analysis.

 DART II systems transmit standard mode 
data, containing twenty-four estimated 

sea-level height observations at 15-minute 
intervals, once very six hours.

NOAA 

Dart buoys



Tsunami data and simulations: source

by Yushiro Fujii (IISEE, BRI) and Kenji Satake (ERI, Univ. of Tokyo)
http://iisee.kenken.go.jp/staff/fujii/OffTohokuPacific2011/tsunami_inv.html

Tsunami Propagation   
The red color means that the water surface is higher than 

normal sea level, while the blue means lower. 

http://iisee.kenken.go.jp/staff/fujii/OffTohokuPacific2011/tsunami_inv.html
http://iisee.kenken.go.jp/staff/fujii/OffTohokuPacific2011/tsunami_prop_inv.html


Tsunami data and simulations



Tsunami data and simulations: source

Simulated Tsunami 
around Japanese 

coasts

 
Red and blue lines 

indicate the 
observed tsunami 

waveforms at 
Japanese tide gauges 
and ocean bottom 

tsunami sensors and 
synthetic ones, 

respectively. Solid 
lines show the time 
windows used for 

inversion.

by Yushiro Fujii (IISEE, BRI) and Kenji Satake (ERI, Univ. of Tokyo)
http://iisee.kenken.go.jp/staff/fujii/OffTohokuPacific2011/tsunami_inv.html

http://iisee.kenken.go.jp/staff/fujii/OffTohokuPacific2011/tsunami_inv.html


Tsunami data and simulations: source

by Yushiro Fujii (IISEE, BRI) and Kenji Satake (ERI, Univ. of Tokyo)
http://iisee.kenken.go.jp/staff/fujii/OffTohokuPacific2011/tsunami_inv.html

Calculated seafloor deformation due to the fault model

Slip distribution on the fault mode

http://iisee.kenken.go.jp/staff/fujii/OffTohokuPacific2011/tsunami_inv.html


Tsunami animation: time scales...
http://outreach.eri.u-tokyo.ac.jp/eqvolc/201103_tohoku/eng/

“Earthquake Research Institute, University of Tokyo, Prof. Takashi 
Furumura and Project Researcher Takuto Maeda”

http://eqseis.geosc.psu.edu/~cammon/Japan2011EQ/

http://supersites.earthobservations.org/honshu.php

http://outreach.eri.u-tokyo.ac.jp/eqvolc/201103_tohoku/eng/
http://eqseis.geosc.psu.edu/~cammon/Japan2011EQ/
http://supersites.earthobservations.org/honshu.php


Tsunami animation - NOAA



Tsunami signature in the ionosphere
By dynamic coupling with the atmosphere, acoustic-

gravity waves are generated

Traveling Ionospheric Disturbances (TID) can be 
detected and monitored by high-density GPS networks 



Tsunami signature in the ionosphere

Normalized vertical velocity Perturbation in the ionospheric plasma

Tsunami-generated IGWs and the response of the ionosphere to 
neutral motion at 2:40 UT.



Tsunami signature in the ionosphere

Liu, J.-Y., C.-H. Chen, C.-H. Lin, H.-F. Tsai, C.-H. Chen, and M. Kamogawa (2011), 

Ionospheric disturbances triggered by the 11 March 2011 M9.0 Tohoku earthquake, 


J. Geophys. Res., 116, A06319, doi:10.1029/2011JA016761.



Sea gate in Hachinohe

http://minkara.carview.co.jp/userid/405365/car/375387/1923923/photo.aspx

http://minkara.carview.co.jp/userid/405365/car/375387/1923923/photo.aspx


Sea gate (9.3 m high)

http://ja2xt.mu-sashi.com/Numazu5.htm

http://ja2xt.mu-sashi.com/Numazu5.htm


Sea walls

Deepest breakwater in Kamaishi (Iwate)

Sea wall with stairway evacuation route 
used to protect a coastal town against 

tsunami inundation in Japan.

Photo courtesy of River Bureau, Ministry of  Land, 
Infrastructure and Transport, Japan.

Elevated platform used for tsunami 
evacuation that also serves as a high-
elevation scenic vista point for tourist. 

Okushiri Island, Japan.  Photo courtesy of ITIC 



Topping a 12 m sea wall



Tsunami walls...

The 2.4 km long  tsunami wall in Miyako, Iwate Prefecture, was destroyed. The 6 m, 2 km long, wall 
in Kamaishi, Iwate Prefecture, was overwhelmed but delayed the tsunami inundation by 5 minutes. 

The 15.5 m tsunami wall in Fundai, Iwate Prefecture, provided the best protection, but it is good to 
know that the original design was only 10 m.  The village mayor fought to make it higher from 

information in the village historical records.

The biggest problem is that tsunami walls may give a false sense of security and other 
preparedness measures may NOT be undertaken.

Woody Epstein, 2011



Sea wall at Fudai

49 foot sea wall:
 completed in 1967; floodgates were added in 1984.

Following the 1896 Meiji tsunami, village mayor Kotoku 
Wamura pressed for a seawall at least 15 meters high, 
often repeating the tales handed down to him growing 

up: that the devastating tsunami was 15 meters.



Miyako and Fudai...

!
!

!

Fig. III-1-17 Photos of a stone monument and tsunami invading area below the stone monument. 

MiyakoMiyako
FudaiFudai

Fig. III-1-16 Difference of seawall heights resulting in different consequence. 

The 10m-high  seawall was destroyed in 
Taro district, Miyako city, Iwate Pref.

MiyakoMiyako

The 15.5m-high  seawall was undestroyed 
in Otabe district, Fudai village, Iwate Pref.

FudaiFudai

A photo from the village�s point of view (i.e. 
facing the coast)

A photo from a viewpoint of facing the 
village  taken at the spot slightly below the 
stone monument 

MiyakoMiyako MiyakoMiyako

The stone monument
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Expectations...
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“Estimated magnitude and 
long-term possibilities within 
30 years of earthquakes on 

regions of offshore based on 
Jan. 1, 2008.”

!
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Fig. III-1-6 Comparison of the source areas of the main shock and scenario earthquakes 
evaluated by Long-Term Evaluation Subcommittee, Earthquake Research 
Committee, Headquarters for Earthquake Research Promotion (HERP). 

Reference: Earthquake Research Comit., HERP Release  
[Online]. http://www.jishin.go.jp/main/index-e.html  
Partially modified by JNES. 

Source area of the Tohoku district 
� off the Pacific Ocean Earthquake

“Estimated magnitude and 
long-term possibilities 

within 30 years of 
earthquakes on regions of 
offshore based on Jan. 1, 

2011.”



Tsunami runup approximately 
twice fault slip 

      
M9 generates much larger 

tsunami

Planning assumed maximum magnitude 8 Seawalls 5-10 m high

CNN

NYTStein & Okal, 2011

Reality...

Stein, S. and E. Okal, The size of the 2011 Tohoku earthquake 
needn't have been a surprise, EOS, 92, 227-228, 2011.



Tsunami Assessment method 
for NPP in JSCE, Japan

The TSUNAMI EVALUATION SUBCOMMITTEE, 
Nuclear Civil Engineering Committee, JSCE

Masafumi Matsuyama (CRIEPI)

1
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Estimation of the design water levels on the basis of 
parametric study in terms of basis tsunamis

Design high water level
Design low water leveltide

Verification of fault model(s) and numerical 
calculation system on the basis of historical tsunami(s)

End

Sub flow 1

Sub flow 2

Niigata meeting, November 2010
http://www.jnes.go.jp/seismic-symposium10/presentationdata/3_sessionB.html
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General'parametric'study'in'the'near'field

Fukushima'Daiichi'NPS

General#parametric#study
?
?

General#parametric#study
? location
? strike

All#rights#reserved.##Tokyo#Electric#Power#Co.,#Inc. 14

Summary'of'Evaluation

T/BO.P.+10�13m S/B R/B

O.P.D3.6m

O.P.+5.7m

Minimum#water#level

Maximum#water#level

Maximum#water#level#=#4.4m#+#O.P.�1.3m##=#O.P.+5.7m
Minimum#water#level#=#
Maximum#water#level#=#4.4m#+#O.P.�1.3m##=#O.P.+5.7m
Minimum#water#level#=#D3.6m#� O.P.�0.0m##=#O.P.D3.6m

Mean#tide#level
O.P.+0.8m

Fukushima'Daiichi'NPS

We'assessed'and'confirmed'the'safety'of'the'
nuclear'plants'based'on'the'JSCE'method'
which'was'published'in'2002.

We'assessed'and'confirmed'the'safety'of'the'
nuclear'plants'based'on'the'JSCE'method'
which'was'published'in'2002.

http://www.jnes.go.jp/seismic-symposium10/presentationdata/3_sessionB.html

